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ABSTRACT 
A Replica Location Service (RLS) allows registration and 
discovery of data replicas. In earlier work, we proposed an RLS 
framework and described the performance and scalability of an 
RLS implementation in Globus Toolkit Version 3.0. In this paper, 
we present a Peer-to-Peer Replica Location Service (P-RLS) with 
properties of self-organization, fault-tolerance and improved 
scalability. P-RLS uses the Chord algorithm to self-organize P-
RLS servers and exploits the Chord overlay network to replicate 
P-RLS mappings adaptively. Our performance measurements 
demonstrate that update and query latencies increase at a 
logarithmic rate with the size of the P-RLS network, while the 
overhead of maintaining the P-RLS network is reasonable. Our 
simulation results for adaptive replication demonstrate that as the 
number of replicas per mapping increases, the mappings are more 
evenly distributed among P-RLS nodes. We introduce a  
predecessor replication scheme and show it reduces query 
hotspots of popular mappings by distributing queries among 
nodes. 

Categories and Subject Descriptors 
C.2.4 [Computer Communication Systems]: Distributed 
Systems; C.4 [Performance of Systems]: Design Studies 

General Terms 
Algorithms, Experimentation 
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1. INTRODUCTION 
In Grid environments, replication of remote data is important for 
data intensive applications. Replication is used for fault tolerance 
as well as to provide load balancing by allowing access to 
multiple replicas of data. One component of a scalable and 
reliable replication management system is a Replica Location 
Service (RLS) that allows the registration and discovery of 
replicas. Given a logical identifier of a data object, the Replica 
Location Service must provide the physical locations of the 
replicas for the object. In earlier work, Chervenak et al. [1] 
proposed a parameterized RLS framework that allows users to 
deploy a range of replica location services that make tradeoffs 
with respect to consistency, space overhead, reliability, update 
costs, and query costs by varying six system design parameters. A 
Replica Location Service implementation based on this 

framework is currently available as part of the Globus Toolkit 
Version 3 [2].  

The Replica Location Service design consists of two components. 
Local Replica Catalogs (LRCs) maintain consistent information 
about logical-to-physical mappings on a site or storage system, 
and Replica Location Indices (RLIs) aggregate information about 
mappings contained in one or more LRCs. The RLS achieves 
reliability and load balancing by deploying multiple and possibly 
redundant RLIs in a hierarchical, distributed index. An example 
RLS deployment is shown in Figure 1.  
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Replica Location Index Nodes

Local Replica Catalogs

RLI RLI

 
Figure 1: Example of a hierarchical RLI Index configuration 
supported by the RLS implementation available in the Globus 
Toolkit Version 3. 

The RLS framework also envisions a membership management 
service that keeps track of LRCs and RLIs as they enter and leave 
the system and adapts the distributed RLI index according to the 
current server membership. However, the current RLS 
implementation does not contain a membership service; instead, it 
uses a static configuration of LRCs and RLIs that must be known 
to servers and clients.   

The current RLS implementation is being used successfully in 
production mode for several scientific projects, including as the 
Earth System Grid [3] and the Laser Interferometer Gravitational 
Wave Observatory [4]. However, there are several features of the 
existing RLS that could be improved. First, because a membership 
service has not been implemented for the RLS, each deployment 
is statically configured, and the system does not automatically 
react to changes in membership (i.e., servers joining or leaving the 
system). Configuration files at each RLS server specify 
parameters including authorization policies; whether a particular 
server will act as an LRC, an RLI or both; how state updates are 
propagated from LRCs to RLIs; etc. When new servers are added 



 

to or removed from the distributed RLS system, affected 
configuration files are typically updated via command-line 
administration tools to reflect these changes. While this static 
configuration scheme has proven adequate for the scale of current 
deployments, which typically contain fewer than ten RLS servers, 
more automated and flexible membership management is 
desirable for larger deployments. Second, although the current 
RLS provides some fault tolerance by allowing LRCs to send state 
updates to more than one RLI index node, the overall RLI 
deployment is statically configured and does not automatically 
recover from RLI failures. We have no ability to specify, for 
example, that we want the system to maintain at least 3 copies of 
every mapping in the RLI index space or that after an RLI server 
failure, the distributed RLS should automatically reconfigure its 
remaining servers to maintain the required level of redundancy. 

The goal of our current work is to use a peer-to-peer approach to 
provide a distributed RLI index with properties of self-
organization, greater fault-tolerance and improved scalability. We 
have designed a Peer-to-Peer Replica Location Service (P-RLS) 
design that uses the overlay network of the Chord peer-to-peer 
system [5] to self-organize P-RLS servers. A P-RLS server 
consists of an unchanged Local Replica Catalog (LRC) and a 
peer-to-peer Replica Location Index node called a P-RLI. The 
network of P-RLIs uses the Chord routing algorithm to store 
mappings from logical names to LRC sites. A P-RLI responds to 
queries regarding the mappings it contains and routes queries for 
other mappings to the P-RLI nodes that contain those mappings. 
The P-RLS system also exploits the structured overlay network 
among P-RLI nodes to replicate mappings adaptively among the 
nodes; this replication of mappings provides a high level of 
reliability and availability in the P-RLS network.  

We implemented a prototype of the P-RLS system by extending 
the RLS implementation in Globus Toolkit Version 3.0 with 
Chord protocols.  We evaluated the performance and scalability of 
a P-RLS network with up to 16 nodes containing 100,000 or 1 
million total mappings. We also simulated the distribution of 
mappings and queries in P-RLS systems ranging in size from 10 
to 10,000 nodes that contain a total of 500,000 replica mappings. 
In this paper, we describe the P-RLS design, its implementation 
and our performance results.  

2. BACKGROUND 
2.1 The Globus Toolkit Replica Location 
Service Implementation 
The RLS included in the Globus Toolkit Version 3 provides a 
distributed registry that maintains information about physical 
locations of copies and allows discovery of replicas. The RLS 
framework [1] consists of five components: the LRC, the RLI, a 
soft state maintenance mechanism, optional compression of state 
updates, and a membership service. The LRCs maintain mappings 
between logical names of data items and target physical names. 
The RLIs aggregate state information contained in one or more 
LRCs and build a hierarchical, distributed index to support 
discovery of replicas at multiple sites, as shown in Figure 1. LRCs 
send summaries of their state to RLIs using soft state update 
protocols. Information in RLIs times out and must be periodically 
refreshed. To reduce the network traffic of soft state updates and 
RLI storage overheads, the RLS also implements an optional 

Bloom filter compression scheme [6]. In this scheme, each LRC 
only sends a bit map that summarizes its mappings to the RLIs. 
The bit map is constructed by performing a series of hash 
functions on logical names that are registered in an LRC and 
setting the corresponding bits in the bit map. Bloom filter 
compression greatly reduces the overhead of soft state updates. 
However, the bloom filter is a lossy compression scheme. Using 
bloom filters, the RLIs lose information about specific logical 
names registered in the LRCs. There is also a small probability 
that the Bloom filter will provide a false positive, an incorrect 
indication that a mapping exists in the corresponding LRC when it 
does not.  A membership service is intended to keep track of 
participating LRCs and RLIs as well as which servers send and 
receive soft state updates from one another. The current 
implementation does not include a membership service but rather 
maintains a static configuration for the RLS.  

The RLS is implemented in C and uses the globus_io socket layer 
from the Globus Toolkit. The server consists of a multi-threaded 
front end server and a back-end relational database, such as 
MySQL or PostgreSQL. The front end server can be configured to 
act as an LRC server and/or an RLI server. Clients access the 
server via a simple string-based RPC protocol. The client APIs 
support both C, Java and Python. The implementation supports 
two types of soft state updates from LRCs to RLIs: (1) a complete 
list of logical names registered in the LRC and (2) Bloom filter 
summaries of the contents of an LRC. The implementation also 
supports partitioning of the soft state updates based on pattern 
matching of logical names.  

The distributed RLI index can provide redundancy and/or 
partitioning of the index space among RLI index nodes. LRCs can 
be configured to send soft state updates summarizing their 
contents to one or more RLIs. When these updates are sent to 
multiple RLIs, we avoid having performance bottlenecks or single 
points of failure in the index space. In the framework design as 
well as the Globus Toolkit 3 implementation, RLS also supports 
the capability of limiting the size of soft state updates based on a 
partitioning of the logical namespace. With partitioning, we 
perform pattern matching of logical names and send only 
matching updates to a specified RLI index. The concept of 
partitioning was considered important to reduce the network and 
memory requirements for sending soft state updates. In practice, 
however, the use of Bloom filter compression is so efficient at 
reducing the size of updates that partitioning is rarely used.   

While the current implementation of the RLS is being used 
effectively in several Grid production deployments and systems 
[3, 7-9], we are interested in applying peer-to-peer ideas to the 
distributed RLI index to produce an index that is self-
configurable, highly fault tolerant and scalable. 

2.2 Peer to Peer Systems and Chord 
Peer-to-peer (P2P) systems can be categorized as either 
unstructured or structured networks. These systems provide 
failure tolerant approaches to looking up the location of an object. 
The Gnutella [10] peer-to-peer file sharing system uses an 
unstructured network among peers; each query for an object 
location is flooded to the whole network. However, measurement 
studies show that this approach does not scale well because of the 
large volume of query messages generated by flooding [11-13]. 
By contrast, structured P2P networks such as those using 



 

distributed hash tables (DHTs) [14] maintain a structured overlay 
network among peers and use message routing instead of 
flooding. The basic functionality they offer is lookup (key), which 
returns the identity of the node storing the object with that key. 
Recent proposed DHT systems include Tapestry [15], Pastry 
[16], Chord [5], CAN [17] and Koorde [18]. In these DHT 
systems, objects are associated with a key that can be produced by 
hashing the object name. Nodes have identifiers that share the 
same space as keys. Each node is responsible for storing a range 
of keys and corresponding objects. The DHT nodes maintain an 
overlay network, with each node having several other nodes as 
neighbors. When a lookup (key) request is issued from one node, 
the lookup message is routed through the overlay network to the 
node responsible for the key. Different DHT systems construct a 
variety of overlay networks and employ different routing 
algorithms. They can guarantee to finish a lookup operation in 
O(log N) or )( /1 ddNO  hops, and each node only maintains the 
information of O(log N) or d neighbors for an N node network 
(where d is the dimension of the hypercube organization of the 
network). Therefore, these DHT systems provide good scalability 
as well as failure resilience. 

Our design of the P-RLS is based on the Chord system. Next, we 
briefly describe the basic Chord algorithm proposed by Stoica, et 
al. [5]. Chord uses a one-dimensional circular identifier space 
with modulo m2  for both node identifiers and object keys. Every 
node in Chord is assigned a unique m-bit identifier by hashing 
their IP address and port number, and all nodes self-organize into 
a ring topology based on their node identifiers in the circular 
space. Each object is also assigned a unique m-bit identifier called 
its object key. Object keys are assigned to nodes by using 
consistent hashing, i.e., key k is assigned to the first node whose 
identifier is equal to or follows the identifier of k in the circular 
space. This node is responsible for storing the object with key k 
and is called its successor node, denoted by successor(k).  

Each Chord node maintains two sets of neighbors, its successors 
and its fingers. The successor nodes immediately follow the node 
in the identifier space, while the finger nodes are spaced 
exponentially around the identifier space. Each node has a 
constant number of successors and at most m fingers. The i-th 
finger for the node with identity n is the first node that succeeds n 
by at least 12 −i  on the identifier circle, where mi ≤≤1 . The first 
finger node is the immediate successor of n, where i=1. When 
node n wants to lookup the object with key k, it will route a 
lookup request to the successor node of key k. If the successor 
node is far away from n, node n forwards the request to the finger 
node whose identifier most immediately precedes the successor 
node of key k. By repeating this process, the request gets closer 
and closer to the successor node. Eventually, the successor node 
receives the lookup request for the object with key k, finds the 
object locally and sends the result back to node n. Because the 
fingers of each node are spaced exponentially around the 
identifier space, each hop from one node to the next node covers 
at least half the identifier space (clockwise) between that node and 
the successor node of key k. So the number of routing hops for a 
lookup is O(log N) for a Chord network with N nodes. In addition, 
each node only needs to maintain pointers to O(log N) neighbors. 

Chord achieves load balancing of nodes by using consistent 
hashing and virtual nodes. Consistent hashing assigns each object 

key to the first node whose identifier is equal to or follows the 
object key in the circular space, so the number of keys stored on 
each node is determined by the distance of the node to its 
immediate predecessor in the circular space. However, the node 
identifiers generated by SHA1 hashing do not uniformly cover the 
entire space. Chord solves this problem by associating object keys 
to virtual nodes, and mapping multiple virtual nodes to each real 
node. Each virtual node has its own node identifier in the circular 
space and maintains the separated neighborhood information of 
other virtual nodes. 

To maintain the ring topology correctly when nodes join and 
leave, each Chord node also runs a stabilization protocol 
periodically in the background that  ensures each node’s successor 
pointer is up to date and improves the finger table for better 
lookup performance. Chord achieves fault tolerance for its ring 
topology and routing by maintaining a constant number of 
successors for each node. However, Chord does not provide fault 
tolerance for the data stored on its nodes; this data maybe be lost 
when a node fails. Section 3.1 discusses our approach to 
providing greater fault tolerance by adaptively replicating 
mappings on multiple P-RLS nodes. Our scheme leverages the 
membership information provided by Chord to perform this 
adaptive replication. 

3. THE PEER-TO-PEER REPLICA 
LOCATION SERVICE DESIGN 
Next, we describe the design of our peer-to-peer Replica Location 
Service (P-RLS). This design replaces the hierarchical RLI index 
from the Globus Toolkit Version 3 RLS implementation with a 
self-organizing, peer-to-peer network of P-RLS nodes.   

In the P-RLS system, the Local Replica Catalogs (LRCs) are 
unchanged. Each LRC has a local P-RLI server associated with it, 
and each P-RLI node is assigned a unique m-bit Chord identifier. 
The P-RLI nodes self-organize into a ring topology based on the 
Chord overlay construction algorithm discussed in Section 2.2. 
The P-RLI nodes maintain connections to a small number of other 
P-RLI nodes that are their successor nodes and finger nodes. 
When P-RLI nodes join or leave, the network topology is repaired 
by running the Chord stabilization algorithm. Thus, the Chord 
overlay network provides membership maintenance for the P-RLS 
system. 

Updates to the Replica Location Service begin at the Local 
Replica Catalog (LRC), where a user registers or unregisters 
replica mappings from logical names to physical locations. LRCs 
periodically send soft state updates summarizing their state into 
the peer-to-peer P-RLS network. The soft state update 
implementation in P-RLS is based on the uncompressed soft state 
updates of the original RLS implementation. Just as in that 
implementation, our updates contain {logical name, LRC} 
mappings. To perform a soft state update in P-RLS, the system 
first generates the Chord key identifier for each logical name in 
the soft state update by applying an SHA1 hash function to the 
logical names.  Then the system identifies the P-RLI successor 
node of the Chord key of each logical name and stores the 
corresponding {logical name, LRC} mapping on that node. We 
call this successor node the root node of the mapping. Figure 2 
shows how three mapping are placed in a P-RLS network with 8 
nodes. 
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Figure 2: Example of the mapping placement of 3 mappings in 
the P-RLS network with 8 nodes. 

To locate an object in the P-RLS system, clients can submit 
queries to any P-RLS node. When a P-RLS node receives a query 
for a particular logical name, it generates the Chord key for that 
name and checks whether it is the successor node for that key. If 
so, then this node contains the desired {logical name, LRC}; the 
node searches its local RLI database and returns the query result 
to the client. Otherwise, the node will determine the successor 
node for the object using the Chord successor routing algorithm 
and will forward the client’s query to the successor node, which 
returns zero or more {logical name, LRC} mappings to the client. 
Once the the client receives these P-RLS query results, the client 
makes a separate query to one or more LRCs to retrieve mappings 
from the logical name to one or more physical locations of 
replicas. Finally, the client can access the physical replica. 

Next, we describe several aspects of our P-RLS design, including 
adaptive replication of P-RLI mappings and load balancing.  

3.1 Adaptive Replication  
The P-RLI nodes in the P-RLS network can join and leave at any 
time, and also the network connection between any two nodes can 
be broken. In order to resolve queries for {logical name, LRC} 
mappings continuously despite node failures, we need to replicate 
the mappings on different P-RLI nodes. In the P-RLS network, 
the Chord membership maintenance protocol can maintain the 
ring topology among P-RLI nodes even when a number of nodes 
join and leave concurrently. Thus, it is quite intuitive to replicate 
our mappings in the P-RLS network based on the membership 
information provided by the Chord protocol.  

Based on the above P-RLS design, we know that each mapping 
will be stored on the root node of the mapping. The root node 
maintains the connections to its k successor nodes in the Chord 
ring for successor routing reliability, where k is the replication 
factor and is typically O(log N) for a P-RLS network with N 
nodes. Thus, the total number of copies of each mapping is k+1.  

A simple replication approach is to replicate the mappings stored 
on the root node to its k successors. This scheme, called successor 
replication, is adaptive when nodes join or leave the system. 

When a node joins the P-RLS network, it will take over some of 
the mappings and replicas from its successor node. When a node 
leaves the system, no explicit handover procedure is required, and 
the node does not need to notify its neighbors; the Chord protocol 
running on the node’s predecessor will detect its departure, make 
another node the new successor,  and replicate mappings on the 
new successor node adaptively. If, because of membership 
changes in the P-RLS network, a particular node is no longer a 
successor of a root node, then the mappings from that root node 
need to be removed from the former successor node. We solve 
this problem by leveraging the soft state replication and the 
periodic probing messages of the Chord protocol. Each mapping 
has an expiration time, and whenever a node receives a probe 
message from its predecessor, it will extend the expiration time of 
the mappings belonging to that predecessor, because the node 
knows that it is still the successor node of that predecessor. 
Expired mappings are timed out to avoid unnecessary replication 
of mappings. When a mapping on a root node is updated by an 
LRC, the root node updates its successors immediately to 
maintain the consistency of replicated mappings. Since the 
successor replication scheme adapts to nodes joining and leaving 
the system, the mappings stored in the P-RLS network will not be 
lost unless all k successors of a particular root node fail 
simultaneously. 

3.2 Load Balancing 
Load balancing is another important problem for a distributed 
replication index system, such as P-RLS. Here, we consider two 
aspects of the load balancing problem: evenly distributing 
mappings among nodes and query load balancing for extremely 
popular mappings. 

3.2.1 Even Distribution of Mappings among Nodes 
The Chord algorithm we discussed in section 2.2 uses consistent 
hashing and virtual nodes to balance the number of keys stored on 
each node. However, the virtual nodes approach introduces some 
extra costs, such as maintaining more neighbors per node and 
increasing the number of hops per lookup. 

We adaptively replicate mappings on multiple P-RLS nodes for 
fault tolerance purpose. At the same time, mapping replication can 
improve the distribution of mappings among nodes without using 
virtual nodes. In P-RLS, the number of {logical name, LRC} 
mappings stored on each P-RLI node is determined by the 
distance of the node to its immediate predecessor in the circular 
space, i.e. the “owned region” of the P-RLI node. In Chord [5], 
the distribution of the owned region of each node is tightly 
approximated by an exponential distribution with mean Nm /2 , 
where m is the number of bits of the Chord identifier space and N 
is the number of nodes in the network. With adaptive replication 
using replication factor k, each P-RLI node not only stores the 
mappings belonging to its owned region, but also replicates the 
mappings belonging to its k predecessors. Therefore, the number 
of mappings stored on each P-RLI node is determined by the sum 
of k+1 continuous owned regions before the node. Since the node 
identifiers are generated randomly, there is no dependency among 
those continuous owned regions. Intuitively, when the replication 
factor k increases, the sum of k+1 continuous owned regions will 
be more normally distributed. Therefore, we can achieve a better 
balance of mappings per node when we replicate more copies of 
each mapping. This hypothesis is verified by the simulation 



 

results in Section 0. Moreover, we can still use virtual nodes to 
distribute mappings among heterogeneous nodes with different 
capacities. 

3.2.2 Query Load Balancing 
Although successor replication can achieve better distribution of 
the mappings stored on P-RLI nodes, it does not solve the hotspot 
problem for extremely popular mappings. Consider a mapping 
{“popular-object”, rlsn://pioneer.isi.edu:8000} that is queried 
10,000 times from different P-RLI nodes. All the queries will be 
routed to the root node of the mapping, say node Ni, and it will be 
a query hotspot in the P-RLS network. The successor replication 
scheme does not solve the problem because all replicas of the 
mapping are placed on successor nodes that are after the root 
node (clockwise) in the circular space. The virtual nodes scheme 
does not solve this problem either because the physical node that 
hosts the virtual root node will be a hotspot.  
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Figure 4: P-RLI Queries for logical name “popular-object” 
traverse the predecessors of the root node Ni. 

However, recall that in the Chord successor routing algorithm, 
each hop from one node to the next node covers at least half of the 
identifier space (clockwise) between that node and the destination 
successor node, i.e. the root node of the mapping. When the query 
is closer to the root node, there are fewer nodes in the circular 
space being skipped for each hop. Therefore, before the query is 
routed to its root node, it will traverse one of the predecessors of 
the root node with very high probability, as shown in Figure 4.  

Therefore, we can improve our adaptive replication scheme and 
balance the query load for popular mappings by replicating 
mappings in the predecessor nodes of the root node. When a 

predecessor node of the root node receives a query to that root 
node, it will resolve it locally by looking up the replicated 
mappings and then return the query results directly without 
forwarding the query to the root node.  We call this approach 
predecessor replication.   

The predecessor replication scheme does not introduce extra 
overhead for Chord membership maintenance because each P-RLI 
node has information about its predecessors, since it receives 
probe messages from its predecessors. Also, this scheme has the 
same effect of evenly distributing mappings as the successor 
replication scheme because now each node stores its own 
mappings and those of its k successors. 

4. THE P-RLS IMPLEMENTATION 
We implemented a prototype of the P-RLS system by extending 
the RLS implementation in Globus Toolkit 3.0 with Chord 
protocols. Figure 3 shows the architecture of our P-RLS 
implementation. In this implementation, each P-RLS node 
consists of a LRC server and a P-RLI server. The LRC server 
implements the same LRC protocol in original RLS, but uses 
Chord protocol to update {logical name, LRC} mappings. The P-
RLI server implements both original RLI protocol and the Chord 
protocol. Messages in the Chord protocol include SUCCESSOR, 
JOIN, UPDATE, QUERY, PROBING, and STABILIZATION 
messages. The SUCCESSOR message is routed to the successor 
node of the key in the message, and the node identifier and 
address of the successor node are returned to the message 
originator. When a P-RLI node joins the P-RLS network, it first 
finds its immediate successor node by sending a SUCCESSOR 
message, and then it sends the JOIN message directly to the 
successor node to join the network. The UPDATE message is used 
to add or delete a mapping, and the QUERY message is used to 
lookup matched mappings for a logical name. The P-RLI nodes 
also periodically send PROBING and STABILIZATION messages 
to detect node failures and repair the network topology.  

We implemented the Chord successor lookup algorithm using the 
recursive mode rather than the iterative mode. In iterative mode, 
when a node receives a successor request for an object key, it will 
send information about the next hop to the request originator if it 
is not the successor node of the key. The originator then sends the 
request to the next node directly. By contrast, in recursive mode, 
after a node finds the next hop, it will forward the request to that 
node on behalf of the request originator. There are two 
approaches for the successor node to send the reply to the request 
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Figure 3: The P2P Replica Location Service Architecture 
 



 

originator. The first approach is simply to send the reply to the 
request originator. This approach might introduce a large number 
of TCP connections on the request originator from many different 
repliers. The second approach is to send the reply to its upstream 
node (the node where this node receives the successor request) 
and let the upstream node route the reply back to the request 
originator. In our P-RLS implementation, we implemented the 
second approach to avoid too many open TCP connections. All 
LRC, RLI and Chord protocols are implemented on top of the 
RLS RPC layer called RRPC.  

5. P-RLS PERFORMANCE  
In this section, we present performance measurements for a P-
RLS system deployed in a 16-node cluster as well as analytical 
and simulation results for a P-RLS system ranging in size from 10 
to 10,000 nodes with 500,000 {logical name, LRC} mappings.  

5.1 Scalability Measurements 
First, we present performance measurements for update operations 
(add or delete) and query operations in a P-RLS network running 
on our 16-node cluster. The cluster nodes are dual Pentium III 
547MHz processors with 1.5 gigabytes of memory running 
Redhat Linux 9 and connected via a 1-Gigabit Ethernet switch. 
Figure 5 shows that update latency increases O(log N) with 
respect to the network size N. This result is expected, since in the 
Chord overlay network, each update message will be routed 
through at most O(log N) nodes. The error bar in the graph shows 
the standard deviation of the update latency. These results are 
measured for a P-RLS network that contains no mappings at the 
beginning of the test. Our test performs 1000 updates on each 
node, and the mean update latency and standard deviation are 
calculated. The maximum number of mappings in the P-RLS 
network during this test is 1000, with subsequent updates 
overwriting earlier ones for the same logical names.  
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Figure 5: Shows update latency in milliseconds for performing 
an update operation in the P-RLS network. 

Figure 6 shows that the query latency also increases on a log scale 
with the number of nodes in the system. These results are 
measured for two P-RLS networks that preload 100,000 and 1 
million mappings respectively at the beginning of the test. Our 
test performs 1000 queries on each node, and the mean query 
latency and standard deviation are calculated. The results show 
that there is only slight latency increase when we increase the 
number of mappings in the P-RLS network from 100,000 to 1 

million. This is because all the mappings on each node are stored 
in a hash table and the local lookup cost is nearly constant with 
respect to the number of mappings. 

Next, Figure 7 shows the number of RPC calls that are required to 
perform a fixed number of updates as the size of the network 
increases. This test uses 15 clients with 10 requesting threads per 
client, where each thread performs 1000 update operations. For 
each configuration, the clients are distributed among the available 
P-RLI nodes. For a P-RLS network consisting of a single node, 
the number of RPC calls is zero. The number of RPC calls 
increases on a log scale with the number of nodes in the system. 
Since the queries are routed to the root node, the number of RPC 
calls for each query should increase logarithmically with the 
number of nodes in the system. 

Query latency as a function of network size
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Figure 6: Shows query latency in milliseconds for performing 
a query operation in the P-RLI network 

The number of RRPC requests as a function of network size 
(15 clients, 10 threads per client, 1000 mappings per thread)
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Figure 7: Number of RPC Calls performed for a fixed number 
of update operations as the size of the P-RLS network 
increases. 

In the Chord overlay network, each P-RLI node must maintain 
pointers to its successors and to its finger nodes. The number of 
successors maintained by each node is determined by the 
replication factor k that is part of the P-RLI configuration. Figure 
8 shows the rate at which the number of pointers to neighbors 
maintained by a P-RLI node increases. In this experiment, we set 
the replication factor to be two, i.e. each P-RLI node maintains 
the pointers to two successors. The number of neighbor pointers 



 

maintained by a node increases logarithmically with the size of 
the network. The error bars shows the minimum and maximum 
number of neighbor pointers maintained by each P-RLI node. 

Next, we show the amount of overhead required to maintain the 
Chord overlay network. To maintain the Chord ring topology, P-
RLS nodes periodically send probe messages to one another to 
determine that nodes are still active in the network. P-RLI nodes 
also send Chord stabilization messages to their immediate 
successors; these messages ask nodes to identify their predecessor 
nodes. If the node’s predecessor has changed because of the 
addition of new P-RLI nodes, this allows the ring network to 
adjust to those membership changes. Finally, additional messages 
are sent periodically to maintain an updated finger table, in which 
each P-RLI node maintains pointers to nodes that are 
logarithmically distributed around the Chord identifier space. We 
refer collectively to these three types of messages for P-RLI 
membership maintenance as stabilization traffic. 
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Figure 8: Rate of increase in pointers to neighbor nodes 
maintained by each P-RLI node as the network size increases, 
where the replication factor k equals to two. 

Membership maintenance traffic as a function of network size

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of nodes

M
em

be
rs

hi
p 

m
ai

nt
en

an
ce

 tr
af

fic
 

(b
yt

es
/s

ec
)

5 seconds stabilizing interval 10 seconds stabilizing interval
 

Figure 9: Stabilization Traffic for a P-RLS network of up to 
16 nodes with stabilization intervals of 5 and 10 seconds. 

Figure 9 shows the measured overhead in bytes per second for 
stabilization traffic as the number of nodes in the P-RLS network 
increases. The two lines show different periods (5 seconds and 10 
seconds) at which the stabilization messages are sent. For both 
update intervals, the stabilization traffic is quite low (less than 1.5 
Kbytes/second for 16 nodes). The stabilization traffic increases at 

a rate of O(N log N) for a network of size N. The graph shows the 
tradeoff between frequent updates of the Chord ring topology and 
stabilization traffic. If the stabilization operations occur more 
frequently, then the Chord overlay network will react more 
quickly to node additions or failures. In turn, this will result in 
better performance, since the finger tables for routing will be more 
accurate. The disadvantage of more frequent stabilization 
operations is the increase in network traffic for these messages. 

5.2 Analytical Model for Stabilization Traffic 
Next, we developed an analytical model for stabilization traffic in 
a P-RLS network to estimate the traffic for larger networks than 
we could measure directly. 

Suppose we have a P-RLS network of N nodes with stabilization 
interval I and replication factor k. The average sizes of messages 
sent by a node to probe its neighbors, stabilize its immediate 
successor, and update its fingers are pS , 

sS , and 
fS  

respectively. In our implementation, over the course of three 
stabilization intervals, each P-RLS node sends messages of these 
three types. Thus, the total membership maintenance traffic T for a 
stable network is: 

N
I

SSNSkN
T sfp

3

)log())(log( +×+×+
=  

We measured the average message sizes in our P-RLS 
implementation. These values are shown in Table 1. 

Table 1: Measured message sizes for our P-RLS 
implementation  

pS  96.00 

fS  164.73 

sS  255.78 
 

Based on this analytical model, we computed the membership 
traffic for networks ranging from 10 to 10000 nodes, where the 
replication factor is 2. These values are shown in Table 2. To 
validate our analytical model, we compared the calculated 
stabilization traffic with the traffic we measured in our 16-node 
cluster (shown in Figure 9 of the previous section). Figure 10 
shows that the analytical model does a good job in predicting the 
stabilization traffic for a network of up to 16 P-RLI nodes. 

Table 2: Stabilization traffic (bytes per second) predicted by 
our analytical model 

Stabilization Interval 
Network size 

5 seconds 10 seconds 

10 876 bytes/sec 438 bytes/sec 

100 14533 7267 

1000 203077  101538 

10,000 2608190 1304095 

 
5.3 Simulations for Adaptive Replication 
In this section, we present simulation results for a larger network 
of P-RLI nodes. We simulate P-RLS networks ranging in size 
from 10 to 10,000 nodes with 500,000 mappings in the system.  
We picked 500,000 unique mappings as a representative number 



 

for a medium size RLS system. RLS deployments to date have 
ranged from a few thousand to tens of millions of mappings.  
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Figure 10: Comparison of measured and predicted values for 
stabilization traffic. 

We used different random seeds and ran the simulation 20 times. 
In these simulations, we are interested in evaluating the 
distribution of mappings in a P-RLS network. A fairly even 
distribution of mappings in the P-RLS network should result in 
better load-balancing of queries to the system if those queries are 
uniformly distributed on the mappings. We also evaluate the 
distribution of queries for extremely popular mappings when we 
replicate mappings on the predecessors.  

The simulator used in this section is written in Java. It is not a 
complete simulation of the P-RLS system, but rather, it focuses on 
how keys are mapped to the P-RLI nodes and how queries for 
mappings are resolved in the network.  

First, we simulate the effect of increasing the number of replicas 
for each mapping in the P-RLS network, where k is the replication 
factor and there are a total of k+1 replicas of each mapping. As 
we increase the replication factor, we must obviously store a 
proportionally increasing number of mappings in the P-RLS 
network. Table 3 shows the mean number of mappings per node 
for P-RLS networks ranging in size from 10 to 10,000 nodes 
when the replication factor k ranges from 0 to 12. We simulate a 
P-RLS network with a total of 500,000 unique mappings. The 
table shows that as the P-RLS network size increases, the average 
number of mappings per node decreases proportionally. As the 
replication factor increases, the average number of mappings per 
node increases proportionally. The mean numbers of mappings 
shown in Table 3 would increase proportionally with the total 
number of unique mappings in the P-RLS system.  

Table 3: Mean number of mappings per node for a given 
network size and replication factor. 

Replication Factor (Total Replicas) Network 
size 0 (1) 1 (2) 4 (5) 12 (13) 

10  50000  100000  250000   N/A 

100  5000  10000  25000  65000 

1000  500  1000  2500  6500 

10000  50  100  250  650 

While Table 3 shows that the mean number of mappings per node 
is  proportional to the replication factor and inversely proportional 
to the network size, the actual distribution of mappings among the 
nodes is not uniform. However, we observe in Figure 11 that as 
the replication factor increases, the mappings tends to become 
more evenly distributed. Figure 11 shows the distribution of 
mappings over a network of 100 P-RLI nodes. On the horizontal 
axis, we show the number of nodes ordered from the largest to the 
smallest number of mappings per node. On the vertical axis, we 
show the cumulative percentage of the total mappings that are 
stored on some percentage of the P-RLI nodes. For a replication 
factor of zero (i.e., a single copy of each mapping), the 20% of the 
nodes with the most mappings contain approximately 50% of the 
total mappings. By contrast, with a replication factor of 12 (or 13 
total replicas), the 20% of nodes with the most mappings contain 
only about 30% of the total mappings. Similarly, in the case of a 
single replica, the 50% of nodes with the most mappings contain 
approximately 85% of the total mappings, while for 13 total 
replicas, 50% of the nodes contain only about 60% of the total 
mappings.  

Distribution of mappings over nodes: 
percentage of mappings vs. percentage of nodes (100 nodes)
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Figure 11: Shows the distribution of mappings among nodes in 
a P-RLS network. The vertical axis shows cumulative 
percentage of total mappings stored. The horizontal axis shows 
the percentage of total nodes, where the nodes are ordered 
from the most to least number of mappings per node. The 
replication factor varies from 0 to 12. There are 100 nodes in 
the P-RLS network and 500,000 unique mappings.  

 
Figure 12 also provides evidence that as we increase the number 
of replicas for each mapping, the mappings are more evenly 
distributed among the P-RLI nodes. The vertical axis shows the 
cumulative density functions for the number of mappings stored 
per P-RLI node versus the number of mappings per node. The 
replication factor for P-RLI mappings ranges from 0 to 12, and 
the P-RLS network size is 100 nodes. The left-most line shows 
the case where P-RLI mappings are not replicated at all. This line 
shows a skewed distribution, in which most nodes store few 
mappings but a small percentage of nodes store thousands of 
mappings. By contrast, the line representing a replication factor of 
12 is less skewed and resembles a Normal distribution. The ratio 
between the nodes with the least and greatest number mappings is 
approximately 3, with most nodes containing 40,000 to 100,000 
mappings. 
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Figure 12: Cumulative distribution of mappings per node as 
the replication factor increases in a P-RLS network of 100 
nodes with 500,000 unique mappings. 

Distribution of mappings over nodes: 
percentage of mappings vs. percentage of nodes (10,000 nodes)
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Figure 13: Shows the distribution of mappings among nodes in 
a P-RLS network. There are 10,000 nodes in the P-RLS 
network and 500,000 unique mappings. 

Figure 11 and Figure 12 show a P-RLS network of 100 nodes. We 
ran the same simulations for network sizes of 1,000 and 10,000 
nodes and found very similar results. For example, Figure 13 and 
Figure 14 show that a network of 10,000 P-RLS nodes has almost 
exactly the same shape as the previous graphs. The main 
difference between Figure 12 and Figure 14 is that the values on 
the horizontal axis showing the number of mappings per node 
differ by a factor of 100, corresponding to the difference in total 
nodes between the two P-RLS networks.  

Next, we show in Figure 15 that the ratio between the greatest 
number of mappings per node and the average number per node 
converges as we increase the replication factor. The top line in 
Figure 15 shows this ratio, which decreases from approximately 
10 to 2 as we increase the total number of replicas per mapping 
from 1 to 13. The graph shows the average ratio of 20 simulation 
runs. The bottom line in the graph shows that the ratio between 
the P-RLI node with the smallest number of mappings and the 
average number of mappings increases very slightly from a value 
of 0 as the replication factor increases.  
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Figure 14:  Cumulative density function for the number of 
mappings per node for a P-RLI network of 10,000 nodes for a 
given replication factor. 

Ratios of the P-RLI nodes with the greatest and smallest 
number of mappings compared to the average number of 
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Figure 15: Ratios of the P-RLI nodes with the greatest and 
smallest number of mappings compared to the average number 
of mappings per node.  
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Figure 16: The number of queries resolved on the root node N 
and its predecessors becomes more evenly distributed when 
the number of replicas per mapping increases. 

 



 

Finally, we present simulation results for our predecessor 
replication scheme, which is designed to reduce query hotspots 
for popular mappings. Figure 16 shows simulation results for a P-
RLS network with 10,000 nodes. We randomly choose 100 
popular mappings. For each of these popular mappings, we issue 
10,000 queries from a randomly selected P-RLI node, and the 
average number of queries that are resolved on the root node and 
its predecessors is simulated. In Figure 16, node N represents the 
root node and node N-i is the i-th predecessor of node N in the 
Chord overlay network. Thus, node N-1 is the immediate 
predecessor of N, and node N-12 is 12th predecessor of node N. 
The results show that if there is no predecessor replication, all 
10,000 queries will be resolved by the root node N. However, as 
we increase the number of replicas of popular mappings on node 
N’s predecessors, the query load is more evenly distributed among 
node N and its predecessors.  

6. RELATED WORK 
6.1 Replica Management in Grids 
Related Grid systems include the Storage Resource Broker [19] 
and GridFarm [20] projects that register and discover replicas 
using a metadata service and the European DataGrid Project [21], 
which has implemented a Web Service-based Replica Location 
Service that is based on the RLS Framework [1].  Ripeanu et. al 
[22] constructed a peer-to-peer overlay network of replica 
location services; their work focused on the use of Bloom filter 
compression for soft state updates for efficient distribution of 
location information. In contrast to P-RLS, which inserts 
mappings and routes queries in a structured peer-to-peer network, 
Ripeanu’s approach distributes compressed location information 
to each node participating in an unstructured peer-to-peer 
network. Each node can answer queries locally without 
forwarding requests, and thus query latencies are reduced 
compared to P-RLS. However, since updates have to be 
propagated to the whole network, the cost of creating and deleting 
a replica mapping in Ripeanu’s unstructured scheme is higher 
than for P-RLS when the network scales to large sizes. 

6.2 Replica Management in Distributed File 
Systems and Distributed Databases 
Data replication has also been studied extensively in the literature 
of distributed file systems and distributed databases [23-28]. A 
primary focus of much of that work is the tradeoff between the 
consistency and availability of replicated data when the network is 
partitioned. In distributed file systems, the specific problem of 
replica location is known as the replicated volume location 
problem, i.e. locating a replica of a volume in the name hierarchy 
[29]. NFS [30] solves this problem using informal coordination 
and out-of-band communication among system administrators, 
who manually set mount points referring to remote volume 
locations. Locus [31] identifies volume locations by replicating a 
global mounting table among all sites. ASF [32] and Coda [33]  
employ a Volume Location Data Base (VLDB) for each local site 
and replicate it on the backbone servers of all sites. Ficus [29] 
places the location information in the mounted-on leaf, called a 
graft point. The graph points need location information since they 
must locate a volume replica in the distributed file system. The 
graft points may be replicated at any site where the referring 
volume is also replicated. 

6.3 Structured Peer-to-Peer Networks 
Besides Chord, there are many other structured Peer-to-Peer 
networks proposed in recent years, such as Tapestry [15], Pastry 
[16], CAN [17], Koorde [18], Skip Graphs [34] and SkipNet 
[35]. 

The routing algorithms used in Tapestry and Pastry are both 
inspired by Plaxton [36] . The idea of the Plaxton algorithm is to 
find a neighboring node that shares the longest prefix with the key 
in the lookup message and to repeat this operation until a 
destination node is found that shares the longest possible prefix 
with the key. Each node has neighboring nodes that match each 
prefix of its own identifier but differ in the next digit. For a 
system with N nodes, each node has )(log NO  neighbors, and 
the routing path takes at most )(log NO  hops. Tapestry uses a 
variant of the Plaxton algorithm and focuses on supporting a more 
dynamic environment, with nodes joining and leaving the system. 
It maintains neighborhood state through both proactive, explicit 
updates and soft-state republishing. To adapt to environment 
changes, Tapestry dynamically selects neighbors based on the 
latency between the local node and its neighbors. Pastry uses a 
prefix-based lookup algorithm similar to Tapestry’s. Each Pastry 
node maintains a routing table, a neighborhood set and a leaf set. 
Pastry also employs the locality information in its neighborhood 
set to achieve topology-aware routing, i.e. to route messages to 
the nearest node among the numerically closest nodes  [37].  

CAN [17] maps its keys to a d-dimensional Cartesian coordinate 
space. The coordinate space is partitioned into N zones for a 
network with N nodes. Each CAN node owns the zone 
corresponding to the mapping of its node identifier in the 
coordinate space. The neighbors on each node are the nodes that 
own the contiguous zones to its local zone. Routing in CAN is 
straightforward: a message is always greedily forwarded to a 
neighbor that is closer to the key’s destination in the coordinate 
space. Each node in a CAN network with N nodes has )(dO  

neighbors, and routing path length is )( /1 ddNO  hops. Compared 
to Tapstry/Pastry and Chord, CAN keeps less neighborhood state 
when d is less than )(log NO . However, CAN has relatively 
longer routing paths on lookup operations in this case. If d is 
chosen to be )(log NO , it has )(log NO  neighbors and 

)(log NO  routing hops like the above algorithms. CAN trades 
off neighborhood state for routing efficiency by adjusting the 
number of dimensions.  

The above DHT algorithms are quite scalable because of their 
logarithmic neighborhood state and routing hops. However, these 
bounds are close to optimal but not optimal. Kaashoek et al. 
proved that for any constant neighborhood state k, )(log NΘ  
routing hops is optimal. But in order to provide a high degree of 
fault tolerance, a node must maintain )(log NO  neighbors. In 
that case, )loglog/(log NNO  optimal routing hops can be 
achieved. Koorde is a neighborhood state optimal DHT based on 
Chord and de Bruijn graphs. It embeds a de Bruijn graph on the 
identifier circle of Chord for forwarding lookup requests. Each 
node maintains two neighbors: its successor and the first node that 
precedes its first de Bruijn node.  It meets the lower bounds, such 
as )(log NO  routing hops per lookup request with only 2 



 

neighbors per node. To allow users to trade-off neighbor state for 
routing hops, Koorde can use degree-k de Bruijn graphs. 
When Nk log= , Koorde can be made fault-tolerant, and the 
number of routing hops is )loglog/(log NNO .  

Recently, two novel, structured P2P systems based on skip lists 
[38] were proposed: Skip Graphs [34] and SkipNet [35]. These 
systems are designed for use in searching P2P networks and 
provide the ability to perform queries based on key ordering, 
rather than just looking up a key. Thus, Skip Graphs and SkipNet 
maintain data locality, unlike DHTs. Each node in a Skip Graphs 
or SkipNet system maintains )(log NO  neighbors in its routing 

table. A neighbor that is h2  nodes away from a particular node is 
said to be at level h with respect to that node. This scheme is 
similar to the fingers in Chord. There are h2  rings at level h with 

hn 2/  nodes per ring. A search for a key in Skip Graphs or 
SkipNet begins at the top-most level of the node seeking the key. 
It proceeds along the same level without overshooting the key, 
continuing at a lower level if required, until it reaches level 0. The 
number of routing hops required to search for a key is )(log NO . 
In addition, these schemes are highly resilient, tolerating a large 
fraction of failed nodes without losing connectivity.  

7. FUTURE WORK 
We plan to conduct further performance experiments for the P-
RLS system, including measuring the throughput of the system for 
update and query operations at high request loads and the effect of 
adaptive replication on query load balancing. We will also 
measure the fault tolerance of the system. 

Our current results focus on P-RLS performance in a local area 
network, but we plan similar studies in the wide area. One 
important issue in the wide area is potentially long latencies for 
sending messages among nodes in the P-RLS network. One 
concern regarding the use of Chord in a wide area deployment is 
that each hop in the Chord overlay might correspond to multiple 
hops in the underlying IP network. We plan to experiment with 
the algorithm proposed by Zhang et al [39] called lookup-
parasitic random sampling (LPRS) that reduces the IP layer 
lookup latency of Chord. The authors proved that LPRS-Chord 
can result in lookup latencies proportional to the average unicast 
latency of the network, provided the underlying physical topology 
has power-law latency expansion. We plan to use their algorithm 
to reduce the network latencies experienced by a wide area P-RLS 
system.  

Providing security in an open peer-to-peer network is an open 
problem [40]. Castro et al. [41] combine secure node identifier 
assignment, secure routing table maintenance, and secure message 
forwarding to tolerate up to 25% malicious nodes in a peer-to-
peer network. However, mechanisms for providing access control 
for P-RLS mappings are still needed. We will be addressing this 
problem in our future work. 

8. CONCLUSIONS 
We have described the design of a Peer-to-Peer Replica Location 
Service. The goal of our design is to provide a distributed RLI 
index with properties of self-organization, fault-tolerance and 

improved scalability. The P-RLS design uses the overlay network 
of the Chord peer-to-peer system to self-organize P-RLS servers.  

We described the P-RLS implementation and presented 
performance measurements and simulation results. Our 
performance measurements on a 16-node cluster demonstrated 
that update and query latencies increase at a logarithmic rate with 
the size of the P-RLS network. We also demonstrated that the 
overhead of maintaining the P-RLS network is reasonable, with 
the number of remote procedure calls and the number of pointers 
maintained by each P-RLS node increasing at a logarithmic rate 
with respect to the size of the network and the amount of traffic to 
stabilize the network topology increasing at a rate of O(N log(N)).  

We also presented simulation results for adaptive replication of P-
RLS mappings for network sizes ranging from 10 to 10,000 P-
RLS nodes. We demonstrated that as the replication factor of 
these mappings increases, the mappings are more evenly 
distributed among the P-RLI nodes when using the adaptive 
replication scheme. Also, we showed that the predecessor 
replication scheme can more evenly distribute the queries for 
extremely popular mappings, thereby reducing the hotspot effect 
on a root node.  
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