
0-7695-2153-3/04 $20.00 (c)2004 IEEE

A Peer-to-Peer Replica Location Service Based on A
Distributed Hash Table

Min Cai
USC Information Sciences Institute

4676 Admiralty Way,
Marina del Rey, CA 90292

mcai@isi.edu

Ann Chervenak
USC Information Sciences Institute

4676 Admiralty Way,
Marina del Rey, CA 90292

annc@isi.edu

Martin Frank
USC Information Sciences Institute

4676 Admiralty Way,
Marina del Rey, CA 90292

frank@isi.edu

ABSTRACT
A Replica Location Service (RLS) allows registration and
discovery of data replicas. In earlier work, we proposed an RLS
framework and described the performance and scalability of an
RLS implementation in Globus Toolkit Version 3.0. In this paper,
we present a Peer-to-Peer Replica Location Service (P-RLS) with
properties of self-organization, fault-tolerance and improved
scalability. P-RLS uses the Chord algorithm to self-organize P-
RLS servers and exploits the Chord overlay network to replicate
P-RLS mappings adaptively. Our performance measurements
demonstrate that update and query latencies increase at a
logarithmic rate with the size of the P-RLS network, while the
overhead of maintaining the P-RLS network is reasonable. Our
simulation results for adaptive replication demonstrate that as the
number of replicas per mapping increases, the mappings are more
evenly distributed among P-RLS nodes. We introduce a
predecessor replication scheme and show it reduces query
hotspots of popular mappings by distributing queries among
nodes.

Categories and Subject Descriptors
C.2.4 [Computer Communication Systems]: Distributed
Systems; C.4 [Performance of Systems]: Design Studies

General Terms
Algorithms, Experimentation

Keywords
Grid, Peer-to-Peer, Replication

1. INTRODUCTION
In Grid environments, replication of remote data is important for
data intensive applications. Replication is used for fault tolerance
as well as to provide load balancing by allowing access to
multiple replicas of data. One component of a scalable and
reliable replication management system is a Replica Location
Service (RLS) that allows the registration and discovery of
replicas. Given a logical identifier of a data object, the Replica
Location Service must provide the physical locations of the
replicas for the object. In earlier work, Chervenak et al. [1]
proposed a parameterized RLS framework that allows users to
deploy a range of replica location services that make tradeoffs
with respect to consistency, space overhead, reliability, update
costs, and query costs by varying six system design parameters. A
Replica Location Service implementation based on this

framework is currently available as part of the Globus Toolkit
Version 3 [2].

The Replica Location Service design consists of two components.
Local Replica Catalogs (LRCs) maintain consistent information
about logical-to-physical mappings on a site or storage system,
and Replica Location Indices (RLIs) aggregate information about
mappings contained in one or more LRCs. The RLS achieves
reliability and load balancing by deploying multiple and possibly
redundant RLIs in a hierarchical, distributed index. An example
RLS deployment is shown in Figure 1.

LRC LRC LRC LRC

RLI RLI RLI

Replica Location Index Nodes

Local Replica Catalogs

RLI RLI

Figure 1: Example of a hierarchical RLI Index configuration
supported by the RLS implementation available in the Globus
Toolkit Version 3.

The RLS framework also envisions a membership management
service that keeps track of LRCs and RLIs as they enter and leave
the system and adapts the distributed RLI index according to the
current server membership. However, the current RLS
implementation does not contain a membership service; instead, it
uses a static configuration of LRCs and RLIs that must be known
to servers and clients.

The current RLS implementation is being used successfully in
production mode for several scientific projects, including as the
Earth System Grid [3] and the Laser Interferometer Gravitational
Wave Observatory [4]. However, there are several features of the
existing RLS that could be improved. First, because a membership
service has not been implemented for the RLS, each deployment
is statically configured, and the system does not automatically
react to changes in membership (i.e., servers joining or leaving the
system). Configuration files at each RLS server specify
parameters including authorization policies; whether a particular
server will act as an LRC, an RLI or both; how state updates are
propagated from LRCs to RLIs; etc. When new servers are added

to or removed from the distributed RLS system, affected
configuration files are typically updated via command-line
administration tools to reflect these changes. While this static
configuration scheme has proven adequate for the scale of current
deployments, which typically contain fewer than ten RLS servers,
more automated and flexible membership management is
desirable for larger deployments. Second, although the current
RLS provides some fault tolerance by allowing LRCs to send state
updates to more than one RLI index node, the overall RLI
deployment is statically configured and does not automatically
recover from RLI failures. We have no ability to specify, for
example, that we want the system to maintain at least 3 copies of
every mapping in the RLI index space or that after an RLI server
failure, the distributed RLS should automatically reconfigure its
remaining servers to maintain the required level of redundancy.

The goal of our current work is to use a peer-to-peer approach to
provide a distributed RLI index with properties of self-
organization, greater fault-tolerance and improved scalability. We
have designed a Peer-to-Peer Replica Location Service (P-RLS)
design that uses the overlay network of the Chord peer-to-peer
system [5] to self-organize P-RLS servers. A P-RLS server
consists of an unchanged Local Replica Catalog (LRC) and a
peer-to-peer Replica Location Index node called a P-RLI. The
network of P-RLIs uses the Chord routing algorithm to store
mappings from logical names to LRC sites. A P-RLI responds to
queries regarding the mappings it contains and routes queries for
other mappings to the P-RLI nodes that contain those mappings.
The P-RLS system also exploits the structured overlay network
among P-RLI nodes to replicate mappings adaptively among the
nodes; this replication of mappings provides a high level of
reliability and availability in the P-RLS network.

We implemented a prototype of the P-RLS system by extending
the RLS implementation in Globus Toolkit Version 3.0 with
Chord protocols. We evaluated the performance and scalability of
a P-RLS network with up to 16 nodes containing 100,000 or 1
million total mappings. We also simulated the distribution of
mappings and queries in P-RLS systems ranging in size from 10
to 10,000 nodes that contain a total of 500,000 replica mappings.
In this paper, we describe the P-RLS design, its implementation
and our performance results.

2. BACKGROUND
2.1 The Globus Toolkit Replica Location
Service Implementation
The RLS included in the Globus Toolkit Version 3 provides a
distributed registry that maintains information about physical
locations of copies and allows discovery of replicas. The RLS
framework [1] consists of five components: the LRC, the RLI, a
soft state maintenance mechanism, optional compression of state
updates, and a membership service. The LRCs maintain mappings
between logical names of data items and target physical names.
The RLIs aggregate state information contained in one or more
LRCs and build a hierarchical, distributed index to support
discovery of replicas at multiple sites, as shown in Figure 1. LRCs
send summaries of their state to RLIs using soft state update
protocols. Information in RLIs times out and must be periodically
refreshed. To reduce the network traffic of soft state updates and
RLI storage overheads, the RLS also implements an optional

Bloom filter compression scheme [6]. In this scheme, each LRC
only sends a bit map that summarizes its mappings to the RLIs.
The bit map is constructed by performing a series of hash
functions on logical names that are registered in an LRC and
setting the corresponding bits in the bit map. Bloom filter
compression greatly reduces the overhead of soft state updates.
However, the bloom filter is a lossy compression scheme. Using
bloom filters, the RLIs lose information about specific logical
names registered in the LRCs. There is also a small probability
that the Bloom filter will provide a false positive, an incorrect
indication that a mapping exists in the corresponding LRC when it
does not. A membership service is intended to keep track of
participating LRCs and RLIs as well as which servers send and
receive soft state updates from one another. The current
implementation does not include a membership service but rather
maintains a static configuration for the RLS.

The RLS is implemented in C and uses the globus_io socket layer
from the Globus Toolkit. The server consists of a multi-threaded
front end server and a back-end relational database, such as
MySQL or PostgreSQL. The front end server can be configured to
act as an LRC server and/or an RLI server. Clients access the
server via a simple string-based RPC protocol. The client APIs
support both C, Java and Python. The implementation supports
two types of soft state updates from LRCs to RLIs: (1) a complete
list of logical names registered in the LRC and (2) Bloom filter
summaries of the contents of an LRC. The implementation also
supports partitioning of the soft state updates based on pattern
matching of logical names.

The distributed RLI index can provide redundancy and/or
partitioning of the index space among RLI index nodes. LRCs can
be configured to send soft state updates summarizing their
contents to one or more RLIs. When these updates are sent to
multiple RLIs, we avoid having performance bottlenecks or single
points of failure in the index space. In the framework design as
well as the Globus Toolkit 3 implementation, RLS also supports
the capability of limiting the size of soft state updates based on a
partitioning of the logical namespace. With partitioning, we
perform pattern matching of logical names and send only
matching updates to a specified RLI index. The concept of
partitioning was considered important to reduce the network and
memory requirements for sending soft state updates. In practice,
however, the use of Bloom filter compression is so efficient at
reducing the size of updates that partitioning is rarely used.

While the current implementation of the RLS is being used
effectively in several Grid production deployments and systems
[3, 7-9], we are interested in applying peer-to-peer ideas to the
distributed RLI index to produce an index that is self-
configurable, highly fault tolerant and scalable.

2.2 Peer to Peer Systems and Chord
Peer-to-peer (P2P) systems can be categorized as either
unstructured or structured networks. These systems provide
failure tolerant approaches to looking up the location of an object.
The Gnutella [10] peer-to-peer file sharing system uses an
unstructured network among peers; each query for an object
location is flooded to the whole network. However, measurement
studies show that this approach does not scale well because of the
large volume of query messages generated by flooding [11-13].
By contrast, structured P2P networks such as those using

distributed hash tables (DHTs) [14] maintain a structured overlay
network among peers and use message routing instead of
flooding. The basic functionality they offer is lookup (key), which
returns the identity of the node storing the object with that key.
Recent proposed DHT systems include Tapestry [15], Pastry
[16], Chord [5], CAN [17] and Koorde [18]. In these DHT
systems, objects are associated with a key that can be produced by
hashing the object name. Nodes have identifiers that share the
same space as keys. Each node is responsible for storing a range
of keys and corresponding objects. The DHT nodes maintain an
overlay network, with each node having several other nodes as
neighbors. When a lookup (key) request is issued from one node,
the lookup message is routed through the overlay network to the
node responsible for the key. Different DHT systems construct a
variety of overlay networks and employ different routing
algorithms. They can guarantee to finish a lookup operation in
O(log N) or)(/1 ddNO hops, and each node only maintains the
information of O(log N) or d neighbors for an N node network
(where d is the dimension of the hypercube organization of the
network). Therefore, these DHT systems provide good scalability
as well as failure resilience.

Our design of the P-RLS is based on the Chord system. Next, we
briefly describe the basic Chord algorithm proposed by Stoica, et
al. [5]. Chord uses a one-dimensional circular identifier space
with modulo m2 for both node identifiers and object keys. Every
node in Chord is assigned a unique m-bit identifier by hashing
their IP address and port number, and all nodes self-organize into
a ring topology based on their node identifiers in the circular
space. Each object is also assigned a unique m-bit identifier called
its object key. Object keys are assigned to nodes by using
consistent hashing, i.e., key k is assigned to the first node whose
identifier is equal to or follows the identifier of k in the circular
space. This node is responsible for storing the object with key k
and is called its successor node, denoted by successor(k).

Each Chord node maintains two sets of neighbors, its successors
and its fingers. The successor nodes immediately follow the node
in the identifier space, while the finger nodes are spaced
exponentially around the identifier space. Each node has a
constant number of successors and at most m fingers. The i-th
finger for the node with identity n is the first node that succeeds n
by at least 12 −i on the identifier circle, where mi ≤≤1 . The first
finger node is the immediate successor of n, where i=1. When
node n wants to lookup the object with key k, it will route a
lookup request to the successor node of key k. If the successor
node is far away from n, node n forwards the request to the finger
node whose identifier most immediately precedes the successor
node of key k. By repeating this process, the request gets closer
and closer to the successor node. Eventually, the successor node
receives the lookup request for the object with key k, finds the
object locally and sends the result back to node n. Because the
fingers of each node are spaced exponentially around the
identifier space, each hop from one node to the next node covers
at least half the identifier space (clockwise) between that node and
the successor node of key k. So the number of routing hops for a
lookup is O(log N) for a Chord network with N nodes. In addition,
each node only needs to maintain pointers to O(log N) neighbors.

Chord achieves load balancing of nodes by using consistent
hashing and virtual nodes. Consistent hashing assigns each object

key to the first node whose identifier is equal to or follows the
object key in the circular space, so the number of keys stored on
each node is determined by the distance of the node to its
immediate predecessor in the circular space. However, the node
identifiers generated by SHA1 hashing do not uniformly cover the
entire space. Chord solves this problem by associating object keys
to virtual nodes, and mapping multiple virtual nodes to each real
node. Each virtual node has its own node identifier in the circular
space and maintains the separated neighborhood information of
other virtual nodes.

To maintain the ring topology correctly when nodes join and
leave, each Chord node also runs a stabilization protocol
periodically in the background that ensures each node’s successor
pointer is up to date and improves the finger table for better
lookup performance. Chord achieves fault tolerance for its ring
topology and routing by maintaining a constant number of
successors for each node. However, Chord does not provide fault
tolerance for the data stored on its nodes; this data maybe be lost
when a node fails. Section 3.1 discusses our approach to
providing greater fault tolerance by adaptively replicating
mappings on multiple P-RLS nodes. Our scheme leverages the
membership information provided by Chord to perform this
adaptive replication.

3. THE PEER-TO-PEER REPLICA
LOCATION SERVICE DESIGN
Next, we describe the design of our peer-to-peer Replica Location
Service (P-RLS). This design replaces the hierarchical RLI index
from the Globus Toolkit Version 3 RLS implementation with a
self-organizing, peer-to-peer network of P-RLS nodes.

In the P-RLS system, the Local Replica Catalogs (LRCs) are
unchanged. Each LRC has a local P-RLI server associated with it,
and each P-RLI node is assigned a unique m-bit Chord identifier.
The P-RLI nodes self-organize into a ring topology based on the
Chord overlay construction algorithm discussed in Section 2.2.
The P-RLI nodes maintain connections to a small number of other
P-RLI nodes that are their successor nodes and finger nodes.
When P-RLI nodes join or leave, the network topology is repaired
by running the Chord stabilization algorithm. Thus, the Chord
overlay network provides membership maintenance for the P-RLS
system.

Updates to the Replica Location Service begin at the Local
Replica Catalog (LRC), where a user registers or unregisters
replica mappings from logical names to physical locations. LRCs
periodically send soft state updates summarizing their state into
the peer-to-peer P-RLS network. The soft state update
implementation in P-RLS is based on the uncompressed soft state
updates of the original RLS implementation. Just as in that
implementation, our updates contain {logical name, LRC}
mappings. To perform a soft state update in P-RLS, the system
first generates the Chord key identifier for each logical name in
the soft state update by applying an SHA1 hash function to the
logical names. Then the system identifies the P-RLI successor
node of the Chord key of each logical name and stores the
corresponding {logical name, LRC} mapping on that node. We
call this successor node the root node of the mapping. Figure 2
shows how three mapping are placed in a P-RLS network with 8
nodes.

LRC/PRLI - A
(4)

LRC/PRLI - B
(8)

N4+1,
N4+2,
N4+4

N4+32

N4+8,
N4+16

<lfn1000, lrc1000>
lookup(K52

lookup(K52

lookup(K52

Finger Table
N4+1 => N8
N4+2 => N8
N4+4 => N8
N4+8 => N20
N4+16 => N20
N4+32 => N40

<lfn1001, lrc1001>

<lfn1002, lrc1002>

SHA1(“lfn1000”)=18
SHA1(“lfn1001”)=52
SHA1(“lfn1002”)=31

LRC/PRLI - C
(20)

LRC/PRLI - D
(24)

LRC/PRLI - E
(40)

LRC/PRLI - F
(48)

LRC/PRLI - G
(56)

LRC/PRLI - H
(60)

Figure 2: Example of the mapping placement of 3 mappings in
the P-RLS network with 8 nodes.

To locate an object in the P-RLS system, clients can submit
queries to any P-RLS node. When a P-RLS node receives a query
for a particular logical name, it generates the Chord key for that
name and checks whether it is the successor node for that key. If
so, then this node contains the desired {logical name, LRC}; the
node searches its local RLI database and returns the query result
to the client. Otherwise, the node will determine the successor
node for the object using the Chord successor routing algorithm
and will forward the client’s query to the successor node, which
returns zero or more {logical name, LRC} mappings to the client.
Once the the client receives these P-RLS query results, the client
makes a separate query to one or more LRCs to retrieve mappings
from the logical name to one or more physical locations of
replicas. Finally, the client can access the physical replica.

Next, we describe several aspects of our P-RLS design, including
adaptive replication of P-RLI mappings and load balancing.

3.1 Adaptive Replication
The P-RLI nodes in the P-RLS network can join and leave at any
time, and also the network connection between any two nodes can
be broken. In order to resolve queries for {logical name, LRC}
mappings continuously despite node failures, we need to replicate
the mappings on different P-RLI nodes. In the P-RLS network,
the Chord membership maintenance protocol can maintain the
ring topology among P-RLI nodes even when a number of nodes
join and leave concurrently. Thus, it is quite intuitive to replicate
our mappings in the P-RLS network based on the membership
information provided by the Chord protocol.

Based on the above P-RLS design, we know that each mapping
will be stored on the root node of the mapping. The root node
maintains the connections to its k successor nodes in the Chord
ring for successor routing reliability, where k is the replication
factor and is typically O(log N) for a P-RLS network with N
nodes. Thus, the total number of copies of each mapping is k+1.

A simple replication approach is to replicate the mappings stored
on the root node to its k successors. This scheme, called successor
replication, is adaptive when nodes join or leave the system.

When a node joins the P-RLS network, it will take over some of
the mappings and replicas from its successor node. When a node
leaves the system, no explicit handover procedure is required, and
the node does not need to notify its neighbors; the Chord protocol
running on the node’s predecessor will detect its departure, make
another node the new successor, and replicate mappings on the
new successor node adaptively. If, because of membership
changes in the P-RLS network, a particular node is no longer a
successor of a root node, then the mappings from that root node
need to be removed from the former successor node. We solve
this problem by leveraging the soft state replication and the
periodic probing messages of the Chord protocol. Each mapping
has an expiration time, and whenever a node receives a probe
message from its predecessor, it will extend the expiration time of
the mappings belonging to that predecessor, because the node
knows that it is still the successor node of that predecessor.
Expired mappings are timed out to avoid unnecessary replication
of mappings. When a mapping on a root node is updated by an
LRC, the root node updates its successors immediately to
maintain the consistency of replicated mappings. Since the
successor replication scheme adapts to nodes joining and leaving
the system, the mappings stored in the P-RLS network will not be
lost unless all k successors of a particular root node fail
simultaneously.

3.2 Load Balancing
Load balancing is another important problem for a distributed
replication index system, such as P-RLS. Here, we consider two
aspects of the load balancing problem: evenly distributing
mappings among nodes and query load balancing for extremely
popular mappings.

3.2.1 Even Distribution of Mappings among Nodes
The Chord algorithm we discussed in section 2.2 uses consistent
hashing and virtual nodes to balance the number of keys stored on
each node. However, the virtual nodes approach introduces some
extra costs, such as maintaining more neighbors per node and
increasing the number of hops per lookup.

We adaptively replicate mappings on multiple P-RLS nodes for
fault tolerance purpose. At the same time, mapping replication can
improve the distribution of mappings among nodes without using
virtual nodes. In P-RLS, the number of {logical name, LRC}
mappings stored on each P-RLI node is determined by the
distance of the node to its immediate predecessor in the circular
space, i.e. the “owned region” of the P-RLI node. In Chord [5],
the distribution of the owned region of each node is tightly
approximated by an exponential distribution with mean Nm /2 ,
where m is the number of bits of the Chord identifier space and N
is the number of nodes in the network. With adaptive replication
using replication factor k, each P-RLI node not only stores the
mappings belonging to its owned region, but also replicates the
mappings belonging to its k predecessors. Therefore, the number
of mappings stored on each P-RLI node is determined by the sum
of k+1 continuous owned regions before the node. Since the node
identifiers are generated randomly, there is no dependency among
those continuous owned regions. Intuitively, when the replication
factor k increases, the sum of k+1 continuous owned regions will
be more normally distributed. Therefore, we can achieve a better
balance of mappings per node when we replicate more copies of
each mapping. This hypothesis is verified by the simulation

results in Section 0. Moreover, we can still use virtual nodes to
distribute mappings among heterogeneous nodes with different
capacities.

3.2.2 Query Load Balancing
Although successor replication can achieve better distribution of
the mappings stored on P-RLI nodes, it does not solve the hotspot
problem for extremely popular mappings. Consider a mapping
{“popular-object”, rlsn://pioneer.isi.edu:8000} that is queried
10,000 times from different P-RLI nodes. All the queries will be
routed to the root node of the mapping, say node Ni, and it will be
a query hotspot in the P-RLS network. The successor replication
scheme does not solve the problem because all replicas of the
mapping are placed on successor nodes that are after the root
node (clockwise) in the circular space. The virtual nodes scheme
does not solve this problem either because the physical node that
hosts the virtual root node will be a hotspot.

iN

xN

1+iN

2+iN

1−iN

2−iN

yN
rli_get_lrc(“popular-object”)

rli_get_lrc(“popular-object”)

{“popular-object”,
 rlsn://pioneer.isi.edu:8000}

Figure 4: P-RLI Queries for logical name “popular-object”
traverse the predecessors of the root node Ni.

However, recall that in the Chord successor routing algorithm,
each hop from one node to the next node covers at least half of the
identifier space (clockwise) between that node and the destination
successor node, i.e. the root node of the mapping. When the query
is closer to the root node, there are fewer nodes in the circular
space being skipped for each hop. Therefore, before the query is
routed to its root node, it will traverse one of the predecessors of
the root node with very high probability, as shown in Figure 4.

Therefore, we can improve our adaptive replication scheme and
balance the query load for popular mappings by replicating
mappings in the predecessor nodes of the root node. When a

predecessor node of the root node receives a query to that root
node, it will resolve it locally by looking up the replicated
mappings and then return the query results directly without
forwarding the query to the root node. We call this approach
predecessor replication.

The predecessor replication scheme does not introduce extra
overhead for Chord membership maintenance because each P-RLI
node has information about its predecessors, since it receives
probe messages from its predecessors. Also, this scheme has the
same effect of evenly distributing mappings as the successor
replication scheme because now each node stores its own
mappings and those of its k successors.

4. THE P-RLS IMPLEMENTATION
We implemented a prototype of the P-RLS system by extending
the RLS implementation in Globus Toolkit 3.0 with Chord
protocols. Figure 3 shows the architecture of our P-RLS
implementation. In this implementation, each P-RLS node
consists of a LRC server and a P-RLI server. The LRC server
implements the same LRC protocol in original RLS, but uses
Chord protocol to update {logical name, LRC} mappings. The P-
RLI server implements both original RLI protocol and the Chord
protocol. Messages in the Chord protocol include SUCCESSOR,
JOIN, UPDATE, QUERY, PROBING, and STABILIZATION
messages. The SUCCESSOR message is routed to the successor
node of the key in the message, and the node identifier and
address of the successor node are returned to the message
originator. When a P-RLI node joins the P-RLS network, it first
finds its immediate successor node by sending a SUCCESSOR
message, and then it sends the JOIN message directly to the
successor node to join the network. The UPDATE message is used
to add or delete a mapping, and the QUERY message is used to
lookup matched mappings for a logical name. The P-RLI nodes
also periodically send PROBING and STABILIZATION messages
to detect node failures and repair the network topology.

We implemented the Chord successor lookup algorithm using the
recursive mode rather than the iterative mode. In iterative mode,
when a node receives a successor request for an object key, it will
send information about the next hop to the request originator if it
is not the successor node of the key. The originator then sends the
request to the next node directly. By contrast, in recursive mode,
after a node finds the next hop, it will forward the request to that
node on behalf of the request originator. There are two
approaches for the successor node to send the reply to the request

SUCCESSOR,
JOIN,

UPDATE,
QUERY,

PROBING
STABILIZATION

Chord Network
RRPC Layer

LRC
Protocol

Chord
Protocol

P-RLS

RLI
Protocol

LRC
Server

P-RLI
 Server R

L
S

 C
lien

t A
P

I

RRPC Layer

LRC
Protocol

Chord
Protocol

P-RLS

RLI
Protocol

R
L

S

C
lien

t
A

P
I

P-RLI
 Server

LRC
Server

Figure 3: The P2P Replica Location Service Architecture

originator. The first approach is simply to send the reply to the
request originator. This approach might introduce a large number
of TCP connections on the request originator from many different
repliers. The second approach is to send the reply to its upstream
node (the node where this node receives the successor request)
and let the upstream node route the reply back to the request
originator. In our P-RLS implementation, we implemented the
second approach to avoid too many open TCP connections. All
LRC, RLI and Chord protocols are implemented on top of the
RLS RPC layer called RRPC.

5. P-RLS PERFORMANCE
In this section, we present performance measurements for a P-
RLS system deployed in a 16-node cluster as well as analytical
and simulation results for a P-RLS system ranging in size from 10
to 10,000 nodes with 500,000 {logical name, LRC} mappings.

5.1 Scalability Measurements
First, we present performance measurements for update operations
(add or delete) and query operations in a P-RLS network running
on our 16-node cluster. The cluster nodes are dual Pentium III
547MHz processors with 1.5 gigabytes of memory running
Redhat Linux 9 and connected via a 1-Gigabit Ethernet switch.
Figure 5 shows that update latency increases O(log N) with
respect to the network size N. This result is expected, since in the
Chord overlay network, each update message will be routed
through at most O(log N) nodes. The error bar in the graph shows
the standard deviation of the update latency. These results are
measured for a P-RLS network that contains no mappings at the
beginning of the test. Our test performs 1000 updates on each
node, and the mean update latency and standard deviation are
calculated. The maximum number of mappings in the P-RLS
network during this test is 1000, with subsequent updates
overwriting earlier ones for the same logical names.

Update latency as a function of network size

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of nodes

U
p

d
at

e
la

te
n

cy
 (m

s)

Figure 5: Shows update latency in milliseconds for performing
an update operation in the P-RLS network.

Figure 6 shows that the query latency also increases on a log scale
with the number of nodes in the system. These results are
measured for two P-RLS networks that preload 100,000 and 1
million mappings respectively at the beginning of the test. Our
test performs 1000 queries on each node, and the mean query
latency and standard deviation are calculated. The results show
that there is only slight latency increase when we increase the
number of mappings in the P-RLS network from 100,000 to 1

million. This is because all the mappings on each node are stored
in a hash table and the local lookup cost is nearly constant with
respect to the number of mappings.

Next, Figure 7 shows the number of RPC calls that are required to
perform a fixed number of updates as the size of the network
increases. This test uses 15 clients with 10 requesting threads per
client, where each thread performs 1000 update operations. For
each configuration, the clients are distributed among the available
P-RLI nodes. For a P-RLS network consisting of a single node,
the number of RPC calls is zero. The number of RPC calls
increases on a log scale with the number of nodes in the system.
Since the queries are routed to the root node, the number of RPC
calls for each query should increase logarithmically with the
number of nodes in the system.

Query latency as a function of network size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of nodes

Q
u

er
y

la
te

n
cy

 (m
s)

100,000 preloaded mappings 1,000,000 preloaded mappings

Figure 6: Shows query latency in milliseconds for performing
a query operation in the P-RLI network

The number of RRPC requests as a function of network size
(15 clients, 10 threads per client, 1000 mappings per thread)

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of nodes

N
u

m
b

er
 o

f
R

R
P

C
 r

eq
u

es
ts

Figure 7: Number of RPC Calls performed for a fixed number
of update operations as the size of the P-RLS network
increases.

In the Chord overlay network, each P-RLI node must maintain
pointers to its successors and to its finger nodes. The number of
successors maintained by each node is determined by the
replication factor k that is part of the P-RLI configuration. Figure
8 shows the rate at which the number of pointers to neighbors
maintained by a P-RLI node increases. In this experiment, we set
the replication factor to be two, i.e. each P-RLI node maintains
the pointers to two successors. The number of neighbor pointers

maintained by a node increases logarithmically with the size of
the network. The error bars shows the minimum and maximum
number of neighbor pointers maintained by each P-RLI node.

Next, we show the amount of overhead required to maintain the
Chord overlay network. To maintain the Chord ring topology, P-
RLS nodes periodically send probe messages to one another to
determine that nodes are still active in the network. P-RLI nodes
also send Chord stabilization messages to their immediate
successors; these messages ask nodes to identify their predecessor
nodes. If the node’s predecessor has changed because of the
addition of new P-RLI nodes, this allows the ring network to
adjust to those membership changes. Finally, additional messages
are sent periodically to maintain an updated finger table, in which
each P-RLI node maintains pointers to nodes that are
logarithmically distributed around the Chord identifier space. We
refer collectively to these three types of messages for P-RLI
membership maintenance as stabilization traffic.

Number of neighbors as a function of network size

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Network size

N
um

be
r

of
 n

ei
gh

bo
rs

Figure 8: Rate of increase in pointers to neighbor nodes
maintained by each P-RLI node as the network size increases,
where the replication factor k equals to two.

Membership maintenance traffic as a function of network size

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of nodes

M
em

be
rs

hi
p

m
ai

nt
en

an
ce

 tr
af

fic

(b
yt

es
/s

ec
)

5 seconds stabilizing interval 10 seconds stabilizing interval

Figure 9: Stabilization Traffic for a P-RLS network of up to
16 nodes with stabilization intervals of 5 and 10 seconds.

Figure 9 shows the measured overhead in bytes per second for
stabilization traffic as the number of nodes in the P-RLS network
increases. The two lines show different periods (5 seconds and 10
seconds) at which the stabilization messages are sent. For both
update intervals, the stabilization traffic is quite low (less than 1.5
Kbytes/second for 16 nodes). The stabilization traffic increases at

a rate of O(N log N) for a network of size N. The graph shows the
tradeoff between frequent updates of the Chord ring topology and
stabilization traffic. If the stabilization operations occur more
frequently, then the Chord overlay network will react more
quickly to node additions or failures. In turn, this will result in
better performance, since the finger tables for routing will be more
accurate. The disadvantage of more frequent stabilization
operations is the increase in network traffic for these messages.

5.2 Analytical Model for Stabilization Traffic
Next, we developed an analytical model for stabilization traffic in
a P-RLS network to estimate the traffic for larger networks than
we could measure directly.

Suppose we have a P-RLS network of N nodes with stabilization
interval I and replication factor k. The average sizes of messages
sent by a node to probe its neighbors, stabilize its immediate
successor, and update its fingers are pS ,

sS , and
fS

respectively. In our implementation, over the course of three
stabilization intervals, each P-RLS node sends messages of these
three types. Thus, the total membership maintenance traffic T for a
stable network is:

N
I

SSNSkN
T sfp

3

)log())(log(+×+×+
=

We measured the average message sizes in our P-RLS
implementation. These values are shown in Table 1.

Table 1: Measured message sizes for our P-RLS
implementation

pS 96.00

fS 164.73

sS 255.78

Based on this analytical model, we computed the membership
traffic for networks ranging from 10 to 10000 nodes, where the
replication factor is 2. These values are shown in Table 2. To
validate our analytical model, we compared the calculated
stabilization traffic with the traffic we measured in our 16-node
cluster (shown in Figure 9 of the previous section). Figure 10
shows that the analytical model does a good job in predicting the
stabilization traffic for a network of up to 16 P-RLI nodes.

Table 2: Stabilization traffic (bytes per second) predicted by
our analytical model

Stabilization Interval
Network size

5 seconds 10 seconds

10 876 bytes/sec 438 bytes/sec

100 14533 7267

1000 203077 101538

10,000 2608190 1304095

5.3 Simulations for Adaptive Replication
In this section, we present simulation results for a larger network
of P-RLI nodes. We simulate P-RLS networks ranging in size
from 10 to 10,000 nodes with 500,000 mappings in the system.
We picked 500,000 unique mappings as a representative number

for a medium size RLS system. RLS deployments to date have
ranged from a few thousand to tens of millions of mappings.

Membership maintenance traffic as a function of network size

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Network size

M
em

b
er

sh
ip

 m
ai

n
te

n
an

ce

tr
af

fic
 (b

yt
es

/s
ec

)

Measured traffic (I=5 sec) Measured traffic (I=10 sec)
Analytical model (I=5 sec) Analytical model (I=10 sec)

Figure 10: Comparison of measured and predicted values for
stabilization traffic.

We used different random seeds and ran the simulation 20 times.
In these simulations, we are interested in evaluating the
distribution of mappings in a P-RLS network. A fairly even
distribution of mappings in the P-RLS network should result in
better load-balancing of queries to the system if those queries are
uniformly distributed on the mappings. We also evaluate the
distribution of queries for extremely popular mappings when we
replicate mappings on the predecessors.

The simulator used in this section is written in Java. It is not a
complete simulation of the P-RLS system, but rather, it focuses on
how keys are mapped to the P-RLI nodes and how queries for
mappings are resolved in the network.

First, we simulate the effect of increasing the number of replicas
for each mapping in the P-RLS network, where k is the replication
factor and there are a total of k+1 replicas of each mapping. As
we increase the replication factor, we must obviously store a
proportionally increasing number of mappings in the P-RLS
network. Table 3 shows the mean number of mappings per node
for P-RLS networks ranging in size from 10 to 10,000 nodes
when the replication factor k ranges from 0 to 12. We simulate a
P-RLS network with a total of 500,000 unique mappings. The
table shows that as the P-RLS network size increases, the average
number of mappings per node decreases proportionally. As the
replication factor increases, the average number of mappings per
node increases proportionally. The mean numbers of mappings
shown in Table 3 would increase proportionally with the total
number of unique mappings in the P-RLS system.

Table 3: Mean number of mappings per node for a given
network size and replication factor.

Replication Factor (Total Replicas) Network
size 0 (1) 1 (2) 4 (5) 12 (13)

10 50000 100000 250000 N/A

100 5000 10000 25000 65000

1000 500 1000 2500 6500

10000 50 100 250 650

While Table 3 shows that the mean number of mappings per node
is proportional to the replication factor and inversely proportional
to the network size, the actual distribution of mappings among the
nodes is not uniform. However, we observe in Figure 11 that as
the replication factor increases, the mappings tends to become
more evenly distributed. Figure 11 shows the distribution of
mappings over a network of 100 P-RLI nodes. On the horizontal
axis, we show the number of nodes ordered from the largest to the
smallest number of mappings per node. On the vertical axis, we
show the cumulative percentage of the total mappings that are
stored on some percentage of the P-RLI nodes. For a replication
factor of zero (i.e., a single copy of each mapping), the 20% of the
nodes with the most mappings contain approximately 50% of the
total mappings. By contrast, with a replication factor of 12 (or 13
total replicas), the 20% of nodes with the most mappings contain
only about 30% of the total mappings. Similarly, in the case of a
single replica, the 50% of nodes with the most mappings contain
approximately 85% of the total mappings, while for 13 total
replicas, 50% of the nodes contain only about 60% of the total
mappings.

Distribution of mappings over nodes:
percentage of mappings vs. percentage of nodes (100 nodes)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percentage of nodes ordered in decending order of mappings
contained (%)

P
er

ce
n

ta
g

e
o

f
to

ta
l m

ap
p

in
g

s
(%

)

no replication 1 replica per mapping
4 replicas per mapping 12 replicas per mapping

Figure 11: Shows the distribution of mappings among nodes in
a P-RLS network. The vertical axis shows cumulative
percentage of total mappings stored. The horizontal axis shows
the percentage of total nodes, where the nodes are ordered
from the most to least number of mappings per node. The
replication factor varies from 0 to 12. There are 100 nodes in
the P-RLS network and 500,000 unique mappings.

Figure 12 also provides evidence that as we increase the number
of replicas for each mapping, the mappings are more evenly
distributed among the P-RLI nodes. The vertical axis shows the
cumulative density functions for the number of mappings stored
per P-RLI node versus the number of mappings per node. The
replication factor for P-RLI mappings ranges from 0 to 12, and
the P-RLS network size is 100 nodes. The left-most line shows
the case where P-RLI mappings are not replicated at all. This line
shows a skewed distribution, in which most nodes store few
mappings but a small percentage of nodes store thousands of
mappings. By contrast, the line representing a replication factor of
12 is less skewed and resembles a Normal distribution. The ratio
between the nodes with the least and greatest number mappings is
approximately 3, with most nodes containing 40,000 to 100,000
mappings.

Cumulative density function of the number of mappings per node
(100 nodes)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20000 40000 60000 80000 100000 120000 140000 160000

Number of mappings per node

C
D

F

no replication 1 replica per mapping
4 replicas per mapping 12 replicas per mapping

Figure 12: Cumulative distribution of mappings per node as
the replication factor increases in a P-RLS network of 100
nodes with 500,000 unique mappings.

Distribution of mappings over nodes:
percentage of mappings vs. percentage of nodes (10,000 nodes)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percentage of nodes ordered in decending order of mappings
contained (%)

P
er

ce
n

ta
g

e
o

f
to

ta
l m

ap
p

in
g

s
(%

)

no replication 1 replica per mapping
4 replicas per mapping 12 replicas per mapping

Figure 13: Shows the distribution of mappings among nodes in
a P-RLS network. There are 10,000 nodes in the P-RLS
network and 500,000 unique mappings.

Figure 11 and Figure 12 show a P-RLS network of 100 nodes. We
ran the same simulations for network sizes of 1,000 and 10,000
nodes and found very similar results. For example, Figure 13 and
Figure 14 show that a network of 10,000 P-RLS nodes has almost
exactly the same shape as the previous graphs. The main
difference between Figure 12 and Figure 14 is that the values on
the horizontal axis showing the number of mappings per node
differ by a factor of 100, corresponding to the difference in total
nodes between the two P-RLS networks.

Next, we show in Figure 15 that the ratio between the greatest
number of mappings per node and the average number per node
converges as we increase the replication factor. The top line in
Figure 15 shows this ratio, which decreases from approximately
10 to 2 as we increase the total number of replicas per mapping
from 1 to 13. The graph shows the average ratio of 20 simulation
runs. The bottom line in the graph shows that the ratio between
the P-RLI node with the smallest number of mappings and the
average number of mappings increases very slightly from a value
of 0 as the replication factor increases.

Cumulative density function of the number of mappings per node
(10,000 nodes)

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600

Number of mappings per node

C
D

F

no replication 1 replica per mapping
4 replicas per mapping 12 replicas per mapping

Figure 14: Cumulative density function for the number of
mappings per node for a P-RLI network of 10,000 nodes for a
given replication factor.

Ratios of the P-RLI nodes with the greatest and smallest
number of mappings compared to the average number of

mappings per node.

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Replication factor

R
at

io
 t

o
av

er
ag

e
nu

m
be

r
of

m

ap
pi

ng
s

pe
r

no
de

Minimum Ratio Maximum Ratio

Figure 15: Ratios of the P-RLI nodes with the greatest and
smallest number of mappings compared to the average number
of mappings per node.

Nubmer of queries resolved on the root node and its predecessors

0

2000

4000

6000

8000

10000

12000

N-12 N-11 N-10 N-9 N-8 N-7 N-6 N-5 N-4 N-3 N-2 N-1 N

Root node and its predecessors

N
u

m
b

er
 o

f
q

u
er

ie
s

12 replicas 4 replicas 1 replicas no replication

Figure 16: The number of queries resolved on the root node N
and its predecessors becomes more evenly distributed when
the number of replicas per mapping increases.

Finally, we present simulation results for our predecessor
replication scheme, which is designed to reduce query hotspots
for popular mappings. Figure 16 shows simulation results for a P-
RLS network with 10,000 nodes. We randomly choose 100
popular mappings. For each of these popular mappings, we issue
10,000 queries from a randomly selected P-RLI node, and the
average number of queries that are resolved on the root node and
its predecessors is simulated. In Figure 16, node N represents the
root node and node N-i is the i-th predecessor of node N in the
Chord overlay network. Thus, node N-1 is the immediate
predecessor of N, and node N-12 is 12th predecessor of node N.
The results show that if there is no predecessor replication, all
10,000 queries will be resolved by the root node N. However, as
we increase the number of replicas of popular mappings on node
N’s predecessors, the query load is more evenly distributed among
node N and its predecessors.

6. RELATED WORK
6.1 Replica Management in Grids
Related Grid systems include the Storage Resource Broker [19]
and GridFarm [20] projects that register and discover replicas
using a metadata service and the European DataGrid Project [21],
which has implemented a Web Service-based Replica Location
Service that is based on the RLS Framework [1]. Ripeanu et. al
[22] constructed a peer-to-peer overlay network of replica
location services; their work focused on the use of Bloom filter
compression for soft state updates for efficient distribution of
location information. In contrast to P-RLS, which inserts
mappings and routes queries in a structured peer-to-peer network,
Ripeanu’s approach distributes compressed location information
to each node participating in an unstructured peer-to-peer
network. Each node can answer queries locally without
forwarding requests, and thus query latencies are reduced
compared to P-RLS. However, since updates have to be
propagated to the whole network, the cost of creating and deleting
a replica mapping in Ripeanu’s unstructured scheme is higher
than for P-RLS when the network scales to large sizes.

6.2 Replica Management in Distributed File
Systems and Distributed Databases
Data replication has also been studied extensively in the literature
of distributed file systems and distributed databases [23-28]. A
primary focus of much of that work is the tradeoff between the
consistency and availability of replicated data when the network is
partitioned. In distributed file systems, the specific problem of
replica location is known as the replicated volume location
problem, i.e. locating a replica of a volume in the name hierarchy
[29]. NFS [30] solves this problem using informal coordination
and out-of-band communication among system administrators,
who manually set mount points referring to remote volume
locations. Locus [31] identifies volume locations by replicating a
global mounting table among all sites. ASF [32] and Coda [33]
employ a Volume Location Data Base (VLDB) for each local site
and replicate it on the backbone servers of all sites. Ficus [29]
places the location information in the mounted-on leaf, called a
graft point. The graph points need location information since they
must locate a volume replica in the distributed file system. The
graft points may be replicated at any site where the referring
volume is also replicated.

6.3 Structured Peer-to-Peer Networks
Besides Chord, there are many other structured Peer-to-Peer
networks proposed in recent years, such as Tapestry [15], Pastry
[16], CAN [17], Koorde [18], Skip Graphs [34] and SkipNet
[35].

The routing algorithms used in Tapestry and Pastry are both
inspired by Plaxton [36] . The idea of the Plaxton algorithm is to
find a neighboring node that shares the longest prefix with the key
in the lookup message and to repeat this operation until a
destination node is found that shares the longest possible prefix
with the key. Each node has neighboring nodes that match each
prefix of its own identifier but differ in the next digit. For a
system with N nodes, each node has)(log NO neighbors, and
the routing path takes at most)(log NO hops. Tapestry uses a
variant of the Plaxton algorithm and focuses on supporting a more
dynamic environment, with nodes joining and leaving the system.
It maintains neighborhood state through both proactive, explicit
updates and soft-state republishing. To adapt to environment
changes, Tapestry dynamically selects neighbors based on the
latency between the local node and its neighbors. Pastry uses a
prefix-based lookup algorithm similar to Tapestry’s. Each Pastry
node maintains a routing table, a neighborhood set and a leaf set.
Pastry also employs the locality information in its neighborhood
set to achieve topology-aware routing, i.e. to route messages to
the nearest node among the numerically closest nodes [37].

CAN [17] maps its keys to a d-dimensional Cartesian coordinate
space. The coordinate space is partitioned into N zones for a
network with N nodes. Each CAN node owns the zone
corresponding to the mapping of its node identifier in the
coordinate space. The neighbors on each node are the nodes that
own the contiguous zones to its local zone. Routing in CAN is
straightforward: a message is always greedily forwarded to a
neighbor that is closer to the key’s destination in the coordinate
space. Each node in a CAN network with N nodes has)(dO

neighbors, and routing path length is)(/1 ddNO hops. Compared
to Tapstry/Pastry and Chord, CAN keeps less neighborhood state
when d is less than)(log NO . However, CAN has relatively
longer routing paths on lookup operations in this case. If d is
chosen to be)(log NO , it has)(log NO neighbors and

)(log NO routing hops like the above algorithms. CAN trades
off neighborhood state for routing efficiency by adjusting the
number of dimensions.

The above DHT algorithms are quite scalable because of their
logarithmic neighborhood state and routing hops. However, these
bounds are close to optimal but not optimal. Kaashoek et al.
proved that for any constant neighborhood state k,)(log NΘ
routing hops is optimal. But in order to provide a high degree of
fault tolerance, a node must maintain)(log NO neighbors. In
that case,)loglog/(log NNO optimal routing hops can be
achieved. Koorde is a neighborhood state optimal DHT based on
Chord and de Bruijn graphs. It embeds a de Bruijn graph on the
identifier circle of Chord for forwarding lookup requests. Each
node maintains two neighbors: its successor and the first node that
precedes its first de Bruijn node. It meets the lower bounds, such
as)(log NO routing hops per lookup request with only 2

neighbors per node. To allow users to trade-off neighbor state for
routing hops, Koorde can use degree-k de Bruijn graphs.
When Nk log= , Koorde can be made fault-tolerant, and the
number of routing hops is)loglog/(log NNO .

Recently, two novel, structured P2P systems based on skip lists
[38] were proposed: Skip Graphs [34] and SkipNet [35]. These
systems are designed for use in searching P2P networks and
provide the ability to perform queries based on key ordering,
rather than just looking up a key. Thus, Skip Graphs and SkipNet
maintain data locality, unlike DHTs. Each node in a Skip Graphs
or SkipNet system maintains)(log NO neighbors in its routing

table. A neighbor that is h2 nodes away from a particular node is
said to be at level h with respect to that node. This scheme is
similar to the fingers in Chord. There are h2 rings at level h with

hn 2/ nodes per ring. A search for a key in Skip Graphs or
SkipNet begins at the top-most level of the node seeking the key.
It proceeds along the same level without overshooting the key,
continuing at a lower level if required, until it reaches level 0. The
number of routing hops required to search for a key is)(log NO .
In addition, these schemes are highly resilient, tolerating a large
fraction of failed nodes without losing connectivity.

7. FUTURE WORK
We plan to conduct further performance experiments for the P-
RLS system, including measuring the throughput of the system for
update and query operations at high request loads and the effect of
adaptive replication on query load balancing. We will also
measure the fault tolerance of the system.

Our current results focus on P-RLS performance in a local area
network, but we plan similar studies in the wide area. One
important issue in the wide area is potentially long latencies for
sending messages among nodes in the P-RLS network. One
concern regarding the use of Chord in a wide area deployment is
that each hop in the Chord overlay might correspond to multiple
hops in the underlying IP network. We plan to experiment with
the algorithm proposed by Zhang et al [39] called lookup-
parasitic random sampling (LPRS) that reduces the IP layer
lookup latency of Chord. The authors proved that LPRS-Chord
can result in lookup latencies proportional to the average unicast
latency of the network, provided the underlying physical topology
has power-law latency expansion. We plan to use their algorithm
to reduce the network latencies experienced by a wide area P-RLS
system.

Providing security in an open peer-to-peer network is an open
problem [40]. Castro et al. [41] combine secure node identifier
assignment, secure routing table maintenance, and secure message
forwarding to tolerate up to 25% malicious nodes in a peer-to-
peer network. However, mechanisms for providing access control
for P-RLS mappings are still needed. We will be addressing this
problem in our future work.

8. CONCLUSIONS
We have described the design of a Peer-to-Peer Replica Location
Service. The goal of our design is to provide a distributed RLI
index with properties of self-organization, fault-tolerance and

improved scalability. The P-RLS design uses the overlay network
of the Chord peer-to-peer system to self-organize P-RLS servers.

We described the P-RLS implementation and presented
performance measurements and simulation results. Our
performance measurements on a 16-node cluster demonstrated
that update and query latencies increase at a logarithmic rate with
the size of the P-RLS network. We also demonstrated that the
overhead of maintaining the P-RLS network is reasonable, with
the number of remote procedure calls and the number of pointers
maintained by each P-RLS node increasing at a logarithmic rate
with respect to the size of the network and the amount of traffic to
stabilize the network topology increasing at a rate of O(N log(N)).

We also presented simulation results for adaptive replication of P-
RLS mappings for network sizes ranging from 10 to 10,000 P-
RLS nodes. We demonstrated that as the replication factor of
these mappings increases, the mappings are more evenly
distributed among the P-RLI nodes when using the adaptive
replication scheme. Also, we showed that the predecessor
replication scheme can more evenly distribute the queries for
extremely popular mappings, thereby reducing the hotspot effect
on a root node.

9. ACKNOWLEDGEMENTS
We are grateful to Mats Rynge for his technical support of our
work on the computing cluster; to Naveen Palavalli and Shishir
Bharathi for helpful discussions on the RLS implementation; and
to Matei Ripeanu for his valuable feedback on this paper. This
work was supported in part by DOE Cooperative Agreements DE-
FC02-01ER25449 (SciDAC- DATA) and AFOSR funding under
grant F49620-01-1-0341.

10. REFERENCES
[1] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek,

A. Iamnitchi, C. Kesselman, P. Kunst, M. Ripeanu, B,
Schwartzkopf, H, Stockinger, K. Stockinger, B. Tierney,
"Giggle: A Framework for Constructing Sclable Replica
Location Services," presented at SC2002 Conference,
Baltimore, MD, November 2002.

[2] A. L. Chervenak, Naveen Palavalli, Shishir Bharathi, Carl
Kesselman, Robert Schwartzkopf, "Performance and
Scalability of a Replica Location Service," presented at High
Performance Distributed Computing Conference (HPDC-13),
Honolulu, HI, June 2004.

[3] "The Earth Systems Grid." http://www.earthsystemsgrid.org.
[4] "LIGO - Laser Interferometer Gravitational Wave

Observatory." http://www.ligo.caltech.edu/.
[5] I. Stoica, Robert Morris, David Karger, M. Frans Kaashoek,

and Hari Balakrishnan, "Chord: A scalable peer-to-peer
lookup service for internet applications," presented at ACM
SIGCOMM, 2001.

[6] B. Bloom, "Space/Time Trade-offs in Hash Coding with
Allowable Errors," Communications of ACM, vol. 13, pp.
422-426.

[7] P. Avery and I. Foster, "The GriPhyN Project: Towards
Petascale Virtual Data Grids," 2001. www.griphyn.org.

[8] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman, "Pegasus:
Planning for Execution in Grids," GriPhyN Project Technical
Report 2002-20.

[9] E. Deelman, et. al, "Mapping Abstract Complex Workflows
onto Grid Environments," Journal of Grid Computing, vol.
1, pp. 25-39.

[10] "Gnutella." http://gnutella.wego.com.
[11] M. Ripeanu, I. Foster, and A. Iamnitchi., "Mapping the

Gnutella network: properties of large-scale peer-to-peer
systems and implications for system design," IEEE Internet
Computing Journal.

[12] S. Saroiu, P. K. Gummadi, and S. D. Gribble, "A
Measurement Study of Peer-to-Peer File Sharing Systems,"
presented at Multimedia Computing and Networking, 2002.

[13] S. Sen, Jia Wong, "Analyzing peer-to-peer traffic across
large networks," presented at Proceedings of the Second
ACM SIGCOMM Workshop on Internet Measurment,,
November 2002.

[14] S. Ratnasamy, S. Shenker, and I. Stoica, "Routing algorithms
for DHTs: Some open questions," presented at IPTPS02,
Cambridge, USA, March 2002.

[15] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, "Tapestry:
An infrastructure for fault-resilient wide-area location and
routing," U.C. Berkeley, Berkeley Technical Report UCB-
CSD-01-1141, April 2001.

[16] A. Rowstron, P. Druschel., "Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems," presented at International Conference on
Distributed Systems Platforms (Middleware), November
2001.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, "A Scalable Content-Addressable Network,"
presented at ACM SIGCOMM, August 2001.

[18] F. Kaashoek, David R. Karger, "Koorde: A Simple Degree-
optimal Hash Table," presented at 2nd International
Workshop on Peer-to-Peer Systems (IPTPS '03), February,
2003.

[19] C. Baru, R. Moore, et al., "The SDSC Storage Resource
Broker," presented at CASCON'98 Conference.

[20] O. Tatebe, et al., "Worldwide Fast File Replication on Grid
Datafarm," presented at 2003 Computing in High Energy and
Nuclear Physics (CHEP03), March 2003.

[21] L. Guy, P. Kunszt, E. Laure, H. Stockinger, K. Stockinger,
"Replica Management in Data Grids," presented at Global
Grid Forum 5.

[22] M. Ripeanu, Ian Foster, "A Decentralized, Adaptive, Replica
Location Mechanism," presented at 11th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-11), Edinburgh, Scotland, June, 2002.

[23] Y. Breitbart, H. Korth, "Replication and Consistency: Being
Lazy Helps Sometimes," presented at 16th ACM
SIGACT/SIGMOD Symposium on the Principles of
Database Systems, Tucson, AZ, 1997.

[24] J. Gray, P. Helland, P. O'Neil, D. Shasha, "The Dangers of
Replication and a Solution," presented at ACM SIGMOD
Conference, 1996.

[25] K. Petersen, et al., "Flexible Update Propagation for Weakly
Consistent Replication," presented at 16th ACM Symposium
on Operating Systems Principles (SOSP-16), Saint Malo,
France, 1997.

[26] D. B. Terry, K. Petersen, M. J. Spreitzer, and M. M.
Theimer, "The Case for Non-transparent Replication:

Examples from Bayou," presented at 14th International
Conference on Data Engineering, 1998.

[27] Wiesmann, M., F. Pedone, A. Schiper, B. Kemme, G.
Alonso, "Database Replication Techniques: A Three
Paramater Classification," presented at 19th IEEE
Symposium on Reliable Distributed Systems, Nuernberg,
Germany, 2000.

[28] J. Sidell, P.M. Aoki, A. Sah, C. Staelin, M. Stonebraker, A.
Yu, "Data Replication in Mariposa, "Data Replication in
Mariposa," presented at 12th International Conference on
Data Engineering, New Orleans, LA, 1996.

[29] J. T. W. Page, R. G. Guy, G. J. Popek, J. S. Heidemann, W.
Mak, and D. Rothmeier, "Management of Replicated Volume
Location Data in the Ficus Replicated File System,"
presented at USENIX Conference, 1991.

[30] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, B. Lyon,
"Design and implementation of the Sun Network File
System," presented at USENIX Conference, June 1985.

[31] G. Popek, The Locus Distributed System Architecture: The
MIT Press, 1986.

[32] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, D. C. Steere, "Coda: A Highly Available
System for a Distributed Workstation Environment," IEEE
Transactions on Computers, vol. 39(4), pp. 447-459, April
1990.

[33] E. R. Zayas, C. F. Everhart, "Design and Specification of the
Cellular Andrew Environment," Carnegie-Mellon University
Technical Report CMU-ITC-070, August 1988.

[34] J. Aspnes, Gauri Shah, "Skip Graphs," presented at
Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 2003.

[35] N. Harvey, M. Jones, S. Saroiu, M.Theimer, and A. Wolman,
"SkipNet: A Scalable Overlay Network with Practical
Locality Properties," presented at Fourth USENIX
Symposium on Internet Technologies and Systems (USITS
'03), Seattle, WA, March 2003.

[36] C. Plaxton, R. Rajaraman, A. Richa, "Accessing nearby
copies of replicated objects in a distributed environment,"
presented at ACM SPAA, Newport, Rhode Island, June
1997.

[37] M. Castro, P. Druschel, Y. C. Hu, A. Rowstron, "Topology-
aware routing in structured peer-to-peer overlay networks,"
presented at Intl. Workshop on Future Directions in
Distributed Computing, June 2002.

[38] W. Pugh, "Skip Lists: A Probabilistic Alternative to
BalancedTrees," presented at Workshop on Algorithms and
Data Structures, 1989.

[39] H. Zhang, A. Goel, R. Govindan, "Incremental Optimization
In Distributed Hash Table Systems," presented at ACM
SIGMETRICS, 2003.

[40] E. Sit, R. Morris, "Security considerations for peer-to-peer
distributed hash tables," presented at 1st International
Workshop on Peer-to-Peer Systems (IPTPS '02), Cambridge,
MA, March 2002.

[41] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D.
Wallach, "Secure routing for structured peer-to-peer overlay
networks," presented at 5th Usenix Symposium on Operating
Systems Design and Implementation (OSDI), Boston, MA,
2002.

