
Appropriateness of Transport
Mechanisms in Data Grid

Middleware
Rajkumar Kettimuthu1,3, Sanjay Hegde1,2, William Allcock1, John Bresnahan1

1Mathematics and Computer Science Division, Argonne National Laboratory, 2Department of Computer Science, Illinois Institute of Technology, 3Department of Computer and Information Science, The Ohio State University

Introduction

• Bulk data transfer has become one of the key requirements in many Grid applications

• GridFTP has been widely deployed for high-speed data transport services

• These services normally require reliable data transfer resulting in TCP as the preferred

common base protocol

• Unfortunately TCP performs sub optimally in achieving maximum throughput on the

currently available “long fat networks” over the Internet

• This work involves two phases of investigation on the impact of transport protocol on bulk

data transfer:

• Appropriate instrumentation and study of standard Linux TCP stack, incorporating the

recently proposed modifications for high-speed transport

• Evaluation the non-TCP based reliable transport mechanisms such as NETBLT,

Tsunami from Indiana University, RBUDP from the Electronic Visualization Lab at

University of Illinois - Chicago

Congestion Control in TCP
TCP uses two algorithm for congestion control: slow start and congestion avoidance

• Maximum data in flight is min(congestion window, advertised window)

• Slow start: Congestion window is initialized to one segment. Each time an acknowledgment
is received, the congestion window is increased by one segment

• Congestion avoidance: increase in congestion window should be at most one segment each
round-trip time (regardless of the number of acknowledgments that are received in that
round-trip time)

• Slow-start threshold is used to switch between slow-start and congestion avoidance. Exit
slow-start and enter congestion avoidance when the congestion window goes above slow-
start threshold

• Fast retransmit and recovery are proposed to improve the performance of TCP by
retransmitting without waiting for the retransmit timer to expire

References: RFC 2001, RFC 2581, RFC 2582, RFC 2914

Limited Slow-Start
• The Problem:

• The current slow-start procedure effectively doubles the congestion window in the

absence of delayed acknowledgments.

• For TCP connections that are able to use congestion windows of thousands of

segments, such an increase can easily result in thousands of packets being dropped in

one round-trip time.

• This is often counterproductive for the TCP flow itself and is also hard on the rest of

the traffic sharing the congested link.

• The Solution – Limited Slow-Start:

• Limits the number of segments by which the congestion window is increased during

slow-start, in order to improve performance for TCP connections with large congestion

windows.

• Introduces another threshold called “limited slow start threshold”

• Enter limited slow-start when the congestion window goes above this threshold

• During limited slow-start, the congestion window is increased by at most half of

the maximum segment size for each arriving acknowledgment

• Exit limited slow-start and enter congestion avoidance when the congestion

window goes above the “slow-start threshold”

Reference: Internet draft draft-floyd-tcp-slow-start-01.txt

High Speed TCP

• Current standard TCP places a serious constraint on the congestion windows that can be
achieved by TCP in realistic environments

• High-speed TCP is a modification to TCP's current congestion control mechanism for
high-delay, bandwidth networks

• It introduces a threshold value. If the congestion window is less than the threshold, it uses
the normal AIMD algorithm where the additive value is 1 and the decrease factor is 0.5

• If the congestion window is greater than the threshold, it uses High Speed response
function to calculate alternate values for AIMD

• Benefits:

• Achieves high per connection throughput without requiring unrealistically low
packet loss rates

• Reaches high throughput without long delays when recovering from multiple
retransmit timeouts

• The proposed change to the AIMD algorithm may impose a certain degree of unfairness
as it does not reduce its transfer rate as much as standard TCP

Reference: Internet draft draft-floyd-tcp-highspeed-01.txt

Web100

• Improves TCP instrumentation by providing a simple but elegant means of understanding

the underlying operation of TCP within a host.

• Includes tools for measuring performance and network diagnosis to get a dynamic view of

the behavior of the TCP sessions

• Provides foundation for TCP autotuning performed in process-level code and the process-

level tools designed to locate bottlenecks

• Helped identify the cause of extreme round-trip time variance in a recent bulk data transfer

experiment

• Helped identify the various possible reasons for drop in the congestion window

• Does not provide information about the process id for a TCP stream; dropped packets are

not instrumented

Reference: http://web100.org

• Provides a standard API for the applications

• Drivers are responsible for all file access and data transporting

Other Transport Protocols
• NETBLT (NETwork BLock Transfer):

• Transfer the data in a series of large data aggregates called “buffers”. The sending

NETBLT must inform the receiving NETBLT of the transfer size during connection setup

• RUDP (Reliable UDP)

• Layered on UDP/IP protocols and provides reliable in-order delivery. EACK is used to

specify the out-of-order segments received and unlike TCP the receiver RUDP receiver

cannot discard the out-of-order segments

• RBUDP (Reliable Blast UDP)

• UDP augmented with aggregated acknowledgements to provide reliable bulk data

transmission. Acknowledgements are delivered at the end of the transmission phase using a

bit vector

• Tsunami

• A hybrid TCP/UDP based file transfer protocol. It uses UDP for payload and TCP for

signaling including request for retransmission

Figure 1: Comparison of the congestion window variation in standard TCP and high-speed

TCP

With the modified values for the AIMD, the high-speed TCP is able to reach the bandwidth

delay product much faster than the standard TCP

Figure 2: Comparison of the congestion window variation for various schemes

High-speed TCP schemes achieve higher congestion window than the other schemes

Figure 3: Effect of send stalls on the congestion window for high-speed TCP

Even though there is no congestion in the network, Linux TCP treats the local

resource stalls as congestion signals

Figure 4: Variation of bandwidth with parallel streams for different schemes

High-speed TCP schemes outperform the other schemes

Figure 5: Interaction of multiple streams for high speed TCP with send stalls

Note that some of the streams are not able to achieve a higher congestion

window

Figure 6: Interaction of multiple streams for high-speed TCP with no

send stalls

Conclusion
• Web 100 is a useful tool for TCP instrumentation and trouble shooting

• Current TCP is not suitable for long fat networks.

• High Speed provides better throughput than the standard TCP but the fairness of it needs to be

evaluated

• Local resource stalls imposed by Linux adds additional constrains on throughput

Globus XIO

