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Introduction

• Bulk data transfer has become one of the key requirements in many Grid applications

• GridFTP has been widely deployed for high-speed data transport services

• These services normally require reliable data transfer resulting in TCP as the preferred 

common base protocol

• Unfortunately TCP performs sub optimally in achieving maximum throughput on the 

currently available “long fat networks” over the Internet

• This work involves two phases of investigation on the impact of transport protocol on bulk 

data transfer:

• Appropriate instrumentation and study of standard Linux TCP stack, incorporating the 

recently proposed modifications for high-speed transport

• Evaluation the non-TCP based reliable transport mechanisms such as NETBLT,

Tsunami from Indiana University, RBUDP from the Electronic Visualization Lab at

University of Illinois - Chicago

Congestion Control in TCP
TCP uses two algorithm for congestion control: slow start and congestion avoidance

• Maximum data in flight is min(congestion window, advertised window) 

• Slow start: Congestion window is initialized to one segment. Each time an acknowledgment 
is received, the congestion window is increased by one segment 

• Congestion avoidance: increase in congestion window should be at most one segment each 
round-trip time (regardless of the number of  acknowledgments that are received in that 
round-trip time) 

• Slow-start threshold is used to switch between slow-start and congestion avoidance. Exit 
slow-start and enter congestion avoidance when the congestion window goes above slow-
start threshold

• Fast retransmit and recovery are proposed to improve the performance of TCP by 
retransmitting without waiting for the retransmit timer to expire

References: RFC 2001, RFC 2581, RFC 2582, RFC 2914

Limited Slow-Start
• The Problem:

• The current slow-start procedure effectively doubles the congestion window in the 

absence of delayed acknowledgments. 

• For TCP connections that are able to use congestion windows of thousands of

segments, such an increase can easily result in thousands of packets being dropped in

one round-trip time.

• This is often counterproductive for the TCP flow itself and is also hard on the rest of

the traffic sharing the congested link.

• The Solution – Limited Slow-Start:

• Limits the number of segments by which the congestion window is increased during

slow-start, in order to improve performance for TCP connections with large congestion

windows.

• Introduces another threshold called “limited slow start threshold”

• Enter limited slow-start when the congestion window goes above this threshold

• During limited slow-start, the congestion window is increased by at most half of 

the maximum segment size for each arriving acknowledgment

• Exit limited slow-start and enter congestion avoidance when the congestion 

window goes above the “slow-start threshold”

Reference: Internet draft draft-floyd-tcp-slow-start-01.txt

High Speed TCP

• Current standard TCP places a serious constraint on the congestion windows that can be 
achieved by TCP in realistic environments

• High-speed TCP is a modification to TCP's current congestion control mechanism for 
high-delay, bandwidth networks

• It introduces a threshold value. If the congestion window is less than the threshold, it uses     
the normal AIMD algorithm where the additive value is 1 and the decrease factor is 0.5

• If the congestion window is greater than the threshold, it uses High Speed response 
function to calculate alternate values for AIMD

• Benefits:

• Achieves high per connection throughput without requiring unrealistically low 
packet loss rates

• Reaches high throughput without long delays when recovering from multiple 
retransmit timeouts

• The proposed change to the AIMD algorithm may impose a certain degree of unfairness 
as it does not reduce its transfer rate as much as standard TCP

Reference: Internet draft draft-floyd-tcp-highspeed-01.txt

Web100

• Improves TCP instrumentation by providing a simple but elegant means of understanding 

the underlying operation of TCP within a host.

• Includes tools for measuring performance and network diagnosis to get a dynamic view of 

the behavior of the TCP sessions

• Provides foundation for TCP autotuning performed in process-level code and the process-

level tools designed to locate bottlenecks

• Helped identify the cause of extreme round-trip time variance in a recent bulk data transfer 

experiment

• Helped identify the various possible reasons for drop in the congestion window

• Does not provide information about the process id for a TCP stream; dropped packets are 

not instrumented

Reference: http://web100.org

• Provides a standard API for the applications

• Drivers are responsible for all file access and data transporting

Other Transport Protocols
• NETBLT (NETwork BLock  Transfer):

• Transfer the data in a series of large data aggregates called “buffers”. The sending 

NETBLT must inform the receiving NETBLT of the transfer size during connection setup 

• RUDP (Reliable UDP)

• Layered on UDP/IP protocols and provides reliable in-order delivery. EACK is used to 

specify the out-of-order segments received and unlike TCP the receiver RUDP receiver 

cannot discard the out-of-order segments

• RBUDP (Reliable Blast UDP)

• UDP augmented with aggregated acknowledgements to provide reliable bulk data 

transmission. Acknowledgements are delivered at the end of the transmission phase using a 

bit vector

• Tsunami

• A hybrid TCP/UDP based file transfer protocol. It uses UDP for payload and TCP for 

signaling including request for retransmission

Figure 1:  Comparison of the congestion window variation in standard TCP and high-speed 

TCP 

With the modified values for the AIMD, the high-speed TCP is able to reach the bandwidth 

delay product much faster than the standard TCP 

Figure 2:  Comparison of the congestion window variation for various schemes 

High-speed TCP schemes achieve higher congestion window than the other schemes

Figure 3:  Effect of send stalls on the congestion window for high-speed TCP 

Even though there is no congestion in the network, Linux TCP treats the local 

resource stalls as congestion signals

Figure 4: Variation of bandwidth with parallel streams for different schemes

High-speed TCP schemes outperform the other schemes

Figure 5: Interaction of multiple streams for high speed TCP with send stalls

Note that some of the streams are not able to achieve a higher congestion

window

Figure 6: Interaction of multiple streams for high-speed TCP with no 

send stalls

Conclusion
• Web 100 is a useful tool for TCP instrumentation and trouble shooting 

• Current TCP is not suitable for long fat networks.

• High Speed provides better throughput than the standard TCP but the fairness of it needs to be 

evaluated

• Local resource stalls imposed by Linux adds additional constrains on throughput
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