
Predicting Application Run Times

Using Historical Information

Warren Smith ∗† Ian Foster ∗ Valerie Taylor †

{wsmith, foster}@mcs.anl.gov
taylor@ece.nwu.edu

∗Mathematics and Computer Science Division †Electrical and Computer Engineering Department
Argonne National Laboratory Northwestern University

Argonne, IL 60439 Evanston, IL 60208
http://www.mcs.anl.gov http://www.ece.nwu.edu

Abstract

We present a technique for deriving predictions for the run
times of parallel applications from the run times of “simi-
lar” applications that have executed in the past. The novel
aspect of our work is the use of search techniques to deter-
mine those application characteristics that yield the best
definition of similarity for the purpose of making predic-
tions. We use four workloads recorded from parallel com-
puters at Argonne National Laboratory, the Cornell The-
ory Center, and the San Diego Supercomputer Center to
evaluate the effectiveness of our approach. We show that
on these workloads our techniques achieve predictions that
are between 14 and 60 percent better than those achieved
by other researchers; our approach achieves mean predic-
tion errors that are between 41 and 65 percent of mean
application run times.

1 Introduction

Predictions of application run time can be used to improve
the performance of scheduling algorithms [8] and to predict
how long a request will wait for resources [4]. We believe
that run-time predictions can also be useful in metacom-
puting environments in several different ways. First, they
are useful as a means of estimating queue times and hence
guiding selections from among various resources. Second,
they are useful when attempting to gain simultaneous ac-
cess to resources from multiple scheduling systems [2].

The problem of how to generate run time estimates has
been examined by Downey [4] and Gibbons [8]. Both
adopt the approach of making predictions for future jobs
by applying a “template” of job characteristics to identify
“similar” jobs that have executed in the past. Unfortu-
nately, their techniques are not very accurate, with errors

frequently exceeding execution times.

We believe that the key to making more accurate pre-
dictions is to be more careful about which past jobs are
used to make predictions. Accordingly, we apply greedy
and genetic algorithm search techniques to identify tem-
plates that perform well when partitioning jobs into cate-
gories within which jobs are judged to be similar. We also
examine and evaluate a number of variants of our basic
prediction strategy. We look at whether it is useful to use
linear regression techniques to exploit node count informa-
tion when jobs in a category have different node counts.
We also look at the effect of varying the amount of past
information used to make predictions, and we consider the
impact of using user-supplied maximum run times on pre-
diction accuracy.

We evaluate our techniques using four workloads
recorded from supercomputer centers. This study shows
that the use of search techniques makes a significant dif-
ference to prediction accuracy: our prediction algorithm
achieves prediction errors that are 14 to 49 percent lower
than those achieved by Gibbons, depending on the work-
load, and 23 to 60 percent lower than those achieved by
Downey. The genetic algorithm search performs better
than greedy search.

The rest of the paper is structured as follows. Section 2
describes how we define application similarity, perform
predictions, and use search techniques to identify good
templates. Section 3 describes the results when our algo-
rithm is applied to supercomputer workloads. Section 4
compares our techniques and results with those of other
researchers. Section 5 presents our conclusions and notes
directions for further work. An appendix provides details
of the statistical methods used in our work.

2 Prediction Techniques

Both intuition and previous work [6, 4, 8] indicate that
“similar” applications are more likely to have similar run
times than applications that have nothing in common.
This observation is the basis for our approach to the pre-
diction problem, which is to derive run-time predictions
from historical information of previous similar runs.

In order to translate this general approach into a specific
prediction method, we need to answer two questions:

1. How do we define “similar”? Jobs may be judged
similar because they are submitted by the same user,
at the same time, on the same computer, with the
same arguments, on the same number of nodes, and so
on. We require techniques for answering the question:
Are these two jobs similar?

2. How do we generate predictions? A definition of sim-
ilarity allows us to partition a set of previously exe-
cuted jobs into buckets or categories within which all
are similar. We can then generate predictions by, for
example, computing a simple mean of the run times
in a category.

We structure the description of our approach in terms of
these two issues.

2.1 Defining Similarity

In previous work, Downey [4] and Gibbons [8] demon-
strated the value of using historical run-time information
for “similar” jobs to predict run times for the purpose
of improving scheduling performance and predicting wait
times in queues. However, both Downey and Gibbons re-
stricted themselves to relatively simple definitions of simi-
larity. A major contribution of the present work is to show
that more sophisticated definitions of similarity can lead
to significant improvements in prediction accuracy.

A difficulty in developing prediction techniques based
on similarity is that two jobs can be compared in many
ways. For example, we can compare the application name,
submitting user name, executable arguments, submission
time, and number of nodes requested. We can conceivably
also consider more esoteric parameters such as home direc-
tory, files staged, executable size, and account to which the
run is charged. We are restricted to those values recorded
in workload traces obtained from various supercomputer
centers. However, because the techniques that we propose
are based on the automatic discovery of efficient similar-
ity criteria, we believe that they will apply even if quite
different information is available.

The workload traces that we consider are described in
Table 1; they originate from Argonne National Labora-
tory (ANL), the Cornell Theory Center (CTC), and the

San Diego Supercomputer Center (SDSC). Table 2 sum-
marizes the information provided in these traces: text in
a field indicates that a particular trace contains the infor-
mation in question; in the case of “Type,” “Queue,” or
“Class” the text specifies the categories in question. The
characteristics described in rows 1–9 are physical charac-
teristics of the job itself. Characteristic 10, “maximum
run time,” is information provided by the user and is used
by the ANL and CTC schedulers to improve scheduling
performance. Rows 11 and 12 are temporal information,
which we have not used in our work to date; we hope
to evaluate the utility of this information in future work.
Characteristic 13 is the run time that we seek to predict.

The general approach to defining similarity taken by
ourselves, Downey, and Gibbons is to use characteristics
such as those presented in Table 2 to define templates that
identify a set of categories to which jobs can be assigned.
For example, the template (q, u) specifies that jobs are
to be partitioned by queue and user; on the ANL SP, this
template generates categories such as (night,wsmith),
(day,wsmith), and (night,foster).

We find that using discrete characteristics 1–8 in the
manner just described works reasonably well. On the other
hand, the number of nodes is an essentially continuous
parameter, and so we prefer to introduce an additional
parameter into our templates, namely a “node range size”
that defines what ranges of requested number of nodes
are used to decide whether applications are similar. For
example, the template (u, n=4) specifies a node range
size of 4 and generates categories (wsmith, 1-4 nodes)
and (wsmith, 5-8 nodes).

Once a set of templates has been defined (see Sec-
tion 2.4) we can categorize a set of jobs (e.g., the workloads
of Table 1) by assigning each job to those categories that
match its characteristics. Categories need not be disjoint,
and hence the same job can occur in several categories. If
two jobs fall into the same category, they are judged simi-
lar; those that do not coincide in any category are judged
dissimilar.

2.2 Generating Predictions

We now consider the question of how we generate run-time
predictions. The input to this process is a set of templates
T and a workload W for which run-time predictions are
required. In addition to the characteristics described in
the preceding section, a maximum history, type of data,
and prediction type are also defined for each template.
The maximum history indicates the maximum number of
data points to store in each category generated from a
template. The type of data is either an actual run time,
denoted by act, or a relative run time, denoted by rel.
A relative run-time incorporates information about user-
supplied run time estimates by storing the ratio of the

Table 1: Characteristics of the workloads used in our studies. Because of an error when the trace was recorded, the
ANL trace does not include one-third of the requests actually made to the system.

Mean
Workload Number of Number of Run Time

Name System Nodes Location When Requests (minutes)
ANL IBM SP2 80 ANL 3 months of 1996 7994 97.40
CTC IBM SP2 512 CTC 11 months of 1996 79302 182.18

SDSC95 Intel Paragon 400 SDSC 12 months of 1995 22885 107.76
SDSC96 Intel Paragon 400 SDSC 12 months of 1996 22337 166.48

Table 2: Characteristics recorded in workloads. The column “Abbr” indicates abbreviations used in subsequent
discussion.

Abbr Characteristic Argonne SP Cornell SP SDSC Paragon
1 t Type batch/interactive serial/parallel/pvm3
2 q Queue day/night 29 to 35 queues
3 c Class DSI/PIOFS
4 u User Y Y Y
5 s Loadleveler script Y
6 e Executable Y
7 a Arguments Y
8 na Network adaptor Y
9 n Number of nodes Y Y Y
10 Maximum run time Y Y
11 Submission time Y Y Y
12 Start time Y Y Y
13 Run time Y Y Y

actual run time to the user-supplied estimate (as described
in Section 2.3). The prediction type determines how a run-
time prediction is made from the data in each category
generated from a template. We use a mean, denoted by
mean, or a linear regression, denoted by lr, to compute
estimates.

The output from this process is a set of run-time pre-
dictions and associated confidence intervals. (As discussed
in the appendix, a confidence interval is an interval cen-
tered on the run-time prediction within which the actual
run time is expected to appear some specified percentage
of the time.) The basic algorithm comprises three phases:
initialization, prediction, and incorporation of historical
information:

1. Define T , the set of templates to be used, and initial-
ize C, the (initially empty) set of categories.

2. At the time each application a begins to execute:

(a) Apply the templates in T to the characteristics
of a to identify the categories Ca into which the

application may fall.

(b) Eliminate from Ca all categories that are not in
C or that cannot provide a valid prediction, as
described in the appendix.

(c) For each category remaining in Ca, compute a
run-time estimate and a confidence interval for
the estimate.

(d) If Ca is not empty, select the estimate with the
smallest confidence interval as the run-time pre-
diction for the application.

3. At the time each application a completes execution:

(a) Identify the set Ca of categories into which the
application falls. These categories may or may
not exist in C.

(b) For each category ci ∈ Ca

i. If ci 6∈ C, then create ci in C.
ii. If |ci| = maximum history(ci), remove the

oldest point in ci.

iii. Insert a into ci.

Note that steps 2 and 3 operate asynchronously, since
historical information for a job cannot be incorporated un-
til the job finishes. Hence, our algorithm suffers from an
initial ramp-up phase during which there is insufficient in-
formation in C to make predictions. This deficiency could
be corrected by using a training set to initialize C.

We now discuss how a prediction is generated from the
contents of a category in step 2(c) of our algorithm. We
consider two techniques in this paper. The first simply
computes the mean of the run times contained in the cat-
egory. The second attempts to exploit the additional in-
formation provided by the node counts associated with
previous run times by performing a linear regression to
compute coefficients a and b for the equation R = aN + b,
where N is node count and R is run time. This equation is
then used to make the prediction. The techniques used to
compute confidence intervals in these two cases, which we
term mean and linear regression predictors, respectively,
are described in the appendix.

The use of maximum histories in step 3(b) of our al-
gorithm allows us to control the amount of historical in-
formation used when making predictions and the amount
of storage space needed to store historical information. A
small maximum history means that less historical infor-
mation is stored, and hence only more recent events are
used to make predictions.

2.3 User Guidance

Another approach to obtaining accurate run-time predic-
tions is to ask users for this information at the time of
job submission. This approach may be viewed as com-
plementary to the prediction techniques discussed previ-
ously, since historical information presumably can be used
to evaluate the accuracy of user predictions.

Unfortunately, none of the systems for which we have
workload traces ask users to explicitly provide informa-
tion about expected run times. However, all of the work-
loads provide implicit user estimates. The ANL and CTC
workloads include user-supplied maximum run times. This
information is interesting because users have some incen-
tive to provide accurate estimates. The ANL and CTC
systems both kill a job after its maximum run time has
elapsed, so users have incentive not to underestimate this
value. Both systems also use the maximum run time to
determine when a job can be fit into a free slot, so users
also have incentive not to overestimate this value.

Users also provide implicit estimates of run times in the
SDSC workloads. The scheduler for the SDSC Paragon
has many different queues with different priorities and dif-
ferent limits on application resource use. When users pick
a queue to submit a request to, they are providing a pre-
diction of the resource use of their application. Queues

Table 3: Templates used by Gibbons for run-time predic-
tion.

Number Template Predictor
1 (u,e,n,age) mean
2 (u,e) linear regression
3 (e,n,age) mean
4 (e) linear regression
5 (n,age) mean
6 () linear regression

that have lower resource limits tend to have higher pri-
ority, and applications in these queues tend to begin exe-
cuting quickly, so users are motivated to submit to queues
with low resource limits. Also, the scheduler will kill ap-
plications that go over their resource limits, so users are
motivated not to submit to queues with resource limits
that are too low.

A simple approach to exploiting user guidance is to base
predictions not on the run times of previous applications,
but on the relationship between application run times and
user predictions. For example, a prediction for the ratio
of actual run time to user-predicted run time can be used
along with the user-predicted run time of a particular ap-
plication to predict the run time of the application. We
use this technique for the ANL and CTC workloads by
storing relative run times, the run times divided by the
user-specified maximum run times, as data points in cat-
egories instead of the actual run times.

2.4 Template Definition and Search

We have not yet addressed the question of how we define
an appropriate set of templates. This is a nontrivial prob-
lem. If too few categories are defined, we group too many
unrelated jobs together, and obtain poor predictions. On
the other hand, if too many categories are defined, we have
too few jobs in a category to make accurate predictions.

Downey and Gibbons both selected a fixed set of tem-
plates to use for all of their predictions. Downey uses only
a single template containing only the queue name; predic-
tion is based on a conditional probability function. Gib-
bons uses the six templates/predictor combinations listed
in Table 3. The age characteristic indicates how long an
application has been executing when a prediction is made.
Section 4 discusses further details of their approaches and
a comparison with our work.

We use search techniques to identify good templates for
a particular workload. While the number of application
characteristics included in our traces is relatively small,
the fact that effective template sets may contain many
templates means that an exhaustive search is impractical.

Hence, we consider alternative search techniques. Results
for greedy and genetic algorithm search are presented in
this paper.

The greedy and genetic algorithms both take as input a
workload W from Table 1 and produce as output a tem-
plate set; they differ in the techniques used to explore
different template sets. Both algorithms evaluate the ef-
fectiveness of a template set T by applying the algorithm
of Section 2.2 to workload W . Predicted and actual values
are compared to determine for W and T both the mean
error and the percentage of predictions that fall within the
90 percent confidence interval.

2.4.1 Greedy Algorithm

The greedy algorithm proceeds iteratively to construct a
template set T = {ti} with each ti of the form

{ () (h1,1) (h2,1, h2,2), . . . , (hi,1, hi,2, . . . , hi,i) },
where every hj,k is one of the n characteristics
h1, h2 . . . , hn from which templates can be constructed for
the workload in question. The search over workload W is
performed with the following algorithm:

1. Set the template set T = {()}
2. For i = 1 to n

(a) Set Tc to contain the
(

n
i

)
different templates

that contain i characteristics.

(b) For each template tc in Tc

i. Create a candidate template set Xc = T ∪
{tc}

ii. Apply the algorithm of Section 2.2 to W and
Xc, and determine mean error

(c) Select the Tc with the lowest mean error, and
add the associated template tc to T

Our greedy algorithm can search over any set of charac-
teristics. Here, however, because of time constraints we
do not present searches over maximum history sizes. This
restriction reduces the size of the search space, but poten-
tially also results in less effective templates.

2.4.2 Genetic Algorithm Search

The second search algorithm that we consider uses ge-
netic algorithm techniques to achieve a more detailed ex-
ploration of the search space. Genetic algorithms are a
probabilistic technique for exploring large search spaces,
in which the concept of cross-over from biology is used to
improve efficiency relative to purely random search [10].
A genetic algorithm evolves individuals over a series of
generations. The processing for each generation consists

of evaluating the fitness of each individual in the popula-
tion, selecting which individuals will be mated to produce
the next generation, mating the individuals, and mutating
the resulting individuals to produce the next generation.
The process then repeats until a stopping condition is met.
The stopping condition we use is that a fixed number of
generations have been processed. There are many differ-
ent variations to this process, and we will next describe
the variations we used.

Our individuals represent template sets. Each template
set consists of between 1 and 10 templates, and we encode
the following information in binary form for each template:

1. Whether a mean or linear regression prediction is per-
formed

2. Whether absolute or relative run times are used

3. Whether each of the binary characteristics associated
with the workload in question is enabled

4. Whether node information should be used and, if so,
the range size from 1 to 512 in powers of 2

5. Whether a maximum history should be used and, if
so, the size between 1 and 32,768 in powers of 2

A fitness function is used to compute the fitness of each
individual and therefore its chance to reproduce. The
fitness function should be selected so that the most de-
sirable individuals have higher fitness and therefore have
more offspring, but the diversity of the population must be
maintained by not giving the best individuals overwhelm-
ing representation in succeeding generations. In our ge-
netic algorithm, we wish to minimize the prediction error
and maintain a range of individual fitnesses regardless of
whether the range in errors is large or small. The fitness
function we use to accomplish this goal is

Fmin + Emax−E
Emax−Emin

· (Fmax − Fmin),

where E is the error of the individual Emin and Emax are
the minimum and maximum errors of individuals in the
generation and Fmin and Fmax are the desired minimum
and maximum fitnesses desired. We chose Fmax = 4·Fmin.

We use a common technique called stochiastic sampling
without replacement to select which individuals will mate
to produce the next generation. In this technique, each
individual is selected b F

Favg
c times to be a parent. The

rest of the parents are selected by Bernoulli trials where
each individual is selected, in order, with a probability of
F − Favgb F

Favg
c until all parents are selected.

The mating or crossover process is accomplished by ran-
domly selecting pairs of individuals to mate and replacing
each pair by their children in the new population. The
crossover of two individuals proceeds in a slightly nonstan-
dard way because our chromosomes are not fixed length

but a multiple of the number of bits used to represent each
template. Two children are produced from each crossover
by randomly selecting a template i and a position in the
template p from the first individual T1 = t1,1, . . . , t1,n and
randomly selecting a template j in the second individ-
ual T2 = t2,1, . . . , t2,m so that the resulting individuals
will not have more than 10 templates. The new individ-
uals are then T1 = t1,1, . . . , t1,i−1, n1, t2,j+1, . . . , t2,m and
T2 = t2,1 . . . t2,j−1, n2, t1,i+1, . . . , ti, n. If there are b bits
used to represent each template, n1 is the first p bits of
t1,i concatenated with the last b − p bits of t2, j. and n2

is the first p bits of t2,j concatenated with the last b − p
bits of t1, i.

In addition to using crossover to produce the individuals
of the next generation, we also use a process called elitism
whereby the best individuals in each generation survive
unmutated to the next generation. We use crossover to
produce all but 2 individuals for each new generation and
use elitism to select the last 2 individuals for each new gen-
eration. The individuals resulting from the crossover pro-
cess are mutated to help maintain a diversity in the pop-
ulation. Each bit representing the individuals is flipped
with a probability of 0.001.

3 Experimental Results

In the preceding section we described our basic approach
to run-time prediction. We introduced the concept of tem-
plate search as a means of identifying efficient criteria for
selecting “similar” jobs in historical workloads. We also
noted potential refinements to this basic technique, in-
cluding the use of alternative search methods (greedy vs.
genetic), the introduction of node count information via
linear regression, support for user guidance, and the poten-
tial for varying the amount of historical information used.
In the rest of this paper, we discuss experimental stud-
ies that we have performed to evaluate the effectiveness of
our techniques and the significant of the refinements just
noted.

Our experiments used the workload traces summarized
in Table 1 and are intended to answer the following ques-
tions:

• How effectively do our greedy and genetic search al-
gorithms perform?

• What is the relative effectiveness of mean and linear
regression predictors?

• What is the impact of user guidance as represented
by the maximum run times provided on the ANL and
CTC SPs?

• What is the impact of varying the number of nodes
in each category on prediction performance?

• What are the trends for the best templates in the
workloads?

• How do our techniques compare with those of Downey
and Gibbons?

3.1 Greedy Search

Figure 1 shows the results of performing a greedy search
for the best category templates for all four workloads. Sev-
eral trends can be observed from this data. First, adding a
second template with a single characteristic results in the
most dramatic improvement in performance. The addition
of this template has the least effect for the CTC workload
where performance is improved between 5 and 48 percent
and has the greatest effect for the SDSC workloads which
improve between 34 and 48 percent. The addition of tem-
plates using up to all possible characteristics results in
less improvement than the addition of the template con-
taining a single characteristic. The improvements range
from an additional 1 to 18 percent improvement with the
ANL workload seeing the most benefit and the SDSC96
workload seeing the least.

Second, the graphs show that the mean is a better pre-
dictor than linear regression except when a single template
is used with the SDSC workloads. The final predictors ob-
tained by using means are between 2 and 33 percent more
accurate than those based on linear regressions. The im-
pact of the choice of predictor on accuracy is greatest in
the ANL and least in the SDSC96 workload.

A third trend, evident in the ANL and CTC results, is
that using the relative run times gives a significant im-
provement in performance. When this information is in-
corporated, prediction accuracy increases between 23 and
43 percent with the ANL workload benefiting most.

Table 4 lists for each workload the accuracy of the best
category templates found by the greedy search. In the
last column, the mean error is expressed as a fraction of
mean run time. Mean errors of between 42 and 70 percent
of mean run times may appear high; however, as we will
see later, these figures are comparable to those achieved by
other techniques, and genetic search performs significantly
better.

Looking at the templates listed in Table 4, we observe
that for the ANL and CTC workloads, the executable and
user name are both important characteristics to use when
deciding whether applications are similar. Examination
of other data gathered during the experiments shows that
these two characteristics are highly correlated: substitut-
ing u for e or s or vice versa in templates results in similar
performance in many experiments. This observation may
imply that users tend to run a single application on these
parallel computers.

The templates selected for the SDSC workloads indi-
cate that the user who submits an application is more

40

50

60

70

80

90

100

110

120

130

140

1 2 3 4 5 6

M
ea

n
E

rr
or

 (
m

in
ut

es
)

Number of Templates

Workload ANL

Linear Regression, Run Time
Mean, Run Time

Linear Regression, Run Time/Max Run Time
Mean, Run Time/Max Run Time

100

120

140

160

180

200

220

240

1 2 3 4 5 6

M
ea

n
E

rr
or

 (
m

in
ut

es
)

Number of Templates

Workload CTC

Linear Regression, Run Time
Mean, Run Time

Linear Regression, Run Time/Max Run Time
Mean, Run Time/Max Run Time

70

80

90

100

110

120

130

140

150

1 2 3

M
ea

n
E

rr
or

 (
m

in
ut

es
)

Number of Templates

Workload SDSC95

Linear Regression
Mean

80

90

100

110

120

130

140

150

160

170

1 2 3

M
ea

n
E

rr
or

 (
m

in
ut

es
)

Number of Templates

Workload SDSC96

Linear Regression
Mean

Figure 1: Mean errors of greedy searches

important in determining application similarity than the
queue to which an application is submitted. Furthermore,
Figure 1 shows that adding the third template results
in performance improvements of only 2 to 12 percent on
the SDSC95 and SDSC96 workloads. Comparing this re-
sult with the greater improvements obtained when relative
run times are used in the ANL and CTC workloads sug-
gests that SDSC queue classes are not good user-specified
run-time estimates. It would be interesting to use the
resource limits associated with queues as maximum run
times. However, this information was not available to us
when this paper was being written.

Figure 2 shows for the ANL workload the percentage of
actual run times that fall within the 90 percent confidence
interval. We see that the confidence intervals generated
when using a linear regression predictor are not accurate.
Similar results are obtained for the other workloads.

We next perform a second series of greedy searches to
identify the impact of using node information when defin-
ing categories. We use node ranges when defining cate-
gories as described in Section 2.1. The results of these
searches are shown in Table 5. Because of time constraints,
no results are available for the CTC workload.

The table shows that using node information improves
prediction performance by 2 and 10 percent with the
largest improvement for the San Diego workloads. This
information and the fact that characteristics such as ex-
ecutable, user name, and arguments are selected before
nodes when searching for templates indicates that the im-
portance of node information to prediction accuracy is
only moderate.

Further, the greedy search selects relatively small node
range sizes coupled with user name or executable. This
fact indicates, as expected, that an application executes
for similar times on similar numbers of nodes.

3.2 Genetic Algorithm Search

Figure 3 shows the progress of the genetic algorithm search
of the ANL workload. While the average and maximum
errors tend to decrease significantly as evolution proceeds,
the minimum error decreases only slightly. This behavior
suggests that the genetic algorithm is working correctly
but that it is not difficult to find individual templates with
low prediction errors.

As shown in Table 6, the best templates found during
the genetic algorithm search provide mean errors that are
2 to 12 percent less than the best templates found during
the greedy search. The largest improvements are obtained
on the CTC and SDSC95 workloads. These results indi-
cate that the genetic search performs slightly better than
the greedy search. This difference in performance may
increase if the search space becomes larger by, for exam-
ple, including the maximum history characteristic while

searching.
The template sets identified by the genetic search pro-

cedure are listed in Table 7. Studying these and other
template sets produced by genetic search, we see that the
mean is not uniformly used as a predictor. From the re-
sults of the greedy searches, the mean is clearly a better
predictor in general but these results indicate that com-
bining mean and linear regression predictors does provide
a performance benefit. Similarly to the greedy searches of
the ANL and CTC workloads, using relative run times as
data points provides the best performance.

A third observation is that node information is used in
the templates of Table 7 and throughout the best tem-
plates found during the genetic search. This confirms the
observation made during the greedy search that using node
information when defining templates results in improved
prediction performance.

4 Related Work

Gibbons [8, 9] also uses historical information to predict
the run times of parallel applications. His technique differs
from ours principally in that he uses a fixed set of tem-
plates and different characteristics to define templates.

Gibbons produces predictions by examining categories
derived from the templates listed in Table 3, in the order
listed, until a category that can provide a valid prediction
is found. This prediction is then used as the run time
prediction.

The set of templates listed in Table 3 results because
Gibbons uses templates of (u,e), (e), and () with sub-
templates in each template. The subtemplates use the
characteristics n and age (how long an application has ex-
ecuted). In our work we have used the user, executable,
and nodes characteristics. We do not use the age of appli-
cations in this discussion, although this characteristic has
value [4, 3]. Gibbons also uses the requested number of
nodes slightly differently from the way we do: rather than
having equal-sized ranges specified by a parameter, as we
do, he defines the fixed set of exponential ranges 1, 2-3,
4-7, 8-15, and so on.

Another difference between Gibbons’s technique and
ours is how he performs a linear regression on the data
in the categories (u,e), (e), and (). These categories
are used only if one of their subcategories cannot provide
a valid prediction. A weighted linear regression is per-
formed on the mean number of nodes and the mean run
time of each subcategory that contains data, with each
pair weighted by the inverse of the variance of the run
times in their subcategory.

Table 8 compares the performance of Gibbons’s tech-
nique with our technique. Using code supplied by Gib-
bons, we applied his technique to our workloads. We see
that our greedy search results in templates that perform

Table 4: Best predictions found during greedy first search.

Data Template Mean Error Percentage of
Workload Predictor Point Set (minutes) Mean Run Time

relative / (),(e),(u,a),(t,q,u),
ANL mean run time (t,q,u,e), (t,q,u,e,a) 40.46 41.54

relative / (), (u), (u,s), (t,c,s),
CTC mean run time (t,u,s,ni), (t,c,u,s,ni) 118.89 65.25

SDSC95 mean run time (),(u), (q,u) 75.56 70.12
SDSC96 mean run time (),(u),(q,u)) 82.40 49.50

75

80

85

90

95

100

1 2 3 4 5 6

%
 in

 c
on

fi
de

nc
e

in
te

rv
al

Number of Templates

Mean, Run Time/Max Run Time
Mean, Run Time

Linear Regression, Run Time
Linear Regression, Run Time/Max Run Time

Figure 2: Percentage of actual run times that fall within the 90 percent confidence interval, for workload ANL.

Table 5: Best predictions found during second greedy search.

Data Template Mean Error Percentage of
Workload Predictor Point Set (minutes) Mean Run Time

relative (),(e),(u,a),(t,u,n=2),
ANL mean run time (q,u,e,n=32), (t,u,e,a,n=16), 39.66 40.72

(t,q,u,e,a,n=4)
SDSC95 mean run time (),(u),(u,n=1),(q,u,n=1) 67.63 62.76
SDSC96 mean run time (),(u),(u,n=4),(q,u,n=8) 76.20 45.77

30

40

50

60

70

80

90

100

110

120

130

140

0 5 10 15 20 25 30

M
ea

n
E

rr
or

 (
m

in
ut

es
)

Generation

Maximum
Average

Minimum

Figure 3: Errors during genetic algorithm search of workload ANL

Table 6: Performance of the best templates found during genetic algorithm search. Results for greedy search are also
presented, for comparison.

Genetic Algorithm Greedy
Workload Mean Error Percentage of Mean Error Percentage of

(minutes) Mean Run Time (minutes) Mean Run Time
ANL 38.33 39.35 39.66 40.72
CTC 106.73 58.58 118.89 65.25

SDSC95 59.65 55.35 67.63 62.76
SDSC96 74.56 44.79 76.20 45.77

Table 7: The best templates found during genetic algorithm search

Workload Best Template Set
ANL (q,e,a,n=4,mean,rel), (q,u,n=4,lr,rel), (q,u,e,n=32,lr,rel)

(q,u,e,a,n=32,mean,rel), (t,u,a,n=4,lr,rel), (t,u,a,n=4,mean,rel)
(t,u,e,a,n=64,lr,rel) (t,q,u,e,a,n=128,mean,rel)

CTC (u,n=512,mean,rel), (c,e,a,ni,n=4,mean,rel)
SDSC95 (q,u,n=1,mean,act), (q,n=16,lr,act)

(q,u,n=16,lr,act), (q,u,n=4,lr,act)
SDSC96 (u,n=1,mean,act), (q,n=4,lr,act), (q,u,n=4,lr,act),

(q,u,n=128,mean,act), (q,u,n=16,mean,act), (q,u,n=2,mean,act),
(q,u,n=4,mean,act)

between 2 percent worse for the SDSC95 workload to 46
percent better than Gibbons’s technique. This table also
shows that our genetic algorithm search finds template
sets that have between 14 and 49 percent lower mean er-
ror than the template sets Gibbons selected.

In his original work, Gibbons did not have access to
workloads that contained the maximum run time of appli-
cations, so he could not use this information to refine his
technique. In order to study the potential benefit of this
data on his approach, we reran his predictor while using
application run time divided by the user-specified maxi-
mum run time. Table 9 shows our results. Using max-
imum run times improves the performance of Gibbons’s
prediction technique on both workloads, although not to
the level of the predictions found during our genetic algo-
rithm search.

Downey [4] uses a different technique to predict the ex-
ecution time of parallel applications. His technique is to
model the applications in a workload and then use these
models to predict application run times. His procedure is
to categorize all applications in the workload, then model
the cumulative distribution functions of the run times in
each category, and finally use these functions to predict
application run times. Downey categorizes applications
using the queues that applications are submitted to, al-
though he does state that other characteristics can be used
in this categorization.

Downey observed that the cumulative distributions can
be modeled by using a logarithmic function: β0 + β1 ln t,
although this function is not completely accurate for all
distributions he observed. Once the distribution functions
are calculated, he uses two different techniques to produce
a run-time prediction. The first technique uses the median
lifetime given that an application has executed for a time
units. Assuming the logorithmic model for the cumulative
distribution, this equation is

a

√
e

1.0−β0
β1 .

The second technique uses the conditional average lifetime

tmax − 1
log tmax − log a

with tmax = e(1.0−β0)/β1 .
The performance of both of these techniques are shown

in Table 10. We have reimplemented Downey’s technique
as described in [4] and used his technique on our work-
loads. The predictions are made assuming that the appli-
cation being predicted has executed for one second. The
data shows that of Downey’s two techniques, using the
median has better performance in general and the tem-
plate sets found by our genetic algorithm perform 23 to 60
percent better than the Downey’s best predictors. There
are two reasons for this performance difference. First, our

techniques use more characteristics than just the queue
name to determine which applications are similar. Sec-
ond, calculating a regression to the cumulative distribution
functions minimizes the error for jobs of all ages while we
concentrate on accurately predicting jobs of age 0.

5 Conclusions

We have described a novel technique for using historical in-
formation to predict the run times of parallel applications.
Our technique is to derive a prediction for a job from the
run times of previous jobs judged similar by a template of
key job characteristics. The novelty of our approach lies
in the use of search techniques to find the best templates.
We experimented with the use of both a greedy search and
a genetic algorithm search for this purpose, and we found
that the genetic search performs better for every workload
and finds templates that result in prediction errors of 40 to
60 percent of mean run times in four supercomputer center
workloads. The greedy search finds templates that result
in prediction errors of 41 to 65 percent of mean run times.
Furthermore, these templates provide more accurate run-
time estimates than the techniques of other researchers:
we achieve mean errors that are 14 to 49 percent lower er-
ror than those obtained by Gibbons and 23 to 60 percent
lower error than Downey.

We find that using user guidance in the form of user-
specified maximum run times when performing predictions
results in a significant 23 percent to 43 percent improve-
ment in performance for the Argonne and Cornell work-
loads. We used both means and linear regressions to pro-
duce run-time estimates from similar past applications and
found that means provide more accurate predictions in
general. For the best templates found in the greedy search,
using the mean for predictions resulted in between 2 per-
cent and 33 percent smaller errors. The genetic search
shows that combining templates that use both mean and
linear regression improves performance.

Our work also provides insights into the job character-
istics that are most useful for identifying similar jobs. We
find that the names of the submitting user and the appli-
cation are the most useful and that the number of nodes
is also valuable.

In future work, we hope to use search techniques to ex-
plore yet more sophisticated prediction techniques. For
example, we are interested in understanding whether it is
useful to constrain the amount of history information used
to make predictions. We are also interested in understand-
ing the potential benefit of using submission time, start
time, and application age when making predictions. We
may also consider more sophisticated search techniques
and more flexible definitions of similarity. For example,
instead of applications being either similar or disimilar,
there could be a range of similarities. A second direction

Table 8: Comparison of our prediction technique with that of Gibbons

Our Mean Error
Gibbons’s Mean Error Greedy Search Genetic Algorithm

Workload (minutes) (minutes) (minutes)
ANL 75.26 40.46 38.33
CTC 124.06 118.89 106.73

SDSC95 74.05 75.56 59.65
SDSC96 122.55 82.40 74.56

Table 9: Comparison of our prediction technique to that of Gibbons, when Gibbons’s technique is modified to use run
times divided by maximum run times as data points

Our Mean Error
Gibbons’s Mean Error Greedy Search Genetic Algorithm

Workload (minutes) (minutes) (minutes)
ANL 49.47 40.46 38.33
CTC 107.41 118.89 106.73

Table 10: Comparison of our prediction technique with that of Downey

Downey’s Mean Error Our Mean Error
Conditional Median Conditional Average Greedy Search Genetic Algorithm

Workload Lifetime (minutes) Lifetime (minutes) (minutes) (minutes)
ANL 96.90 204.24 40.46 38.33
CTC 180.13 222.14 118.89 106.73

SDSC95 104.80 171.78 75.56 59.65
SDSC96 96.90 102.73 82.40 74.56

for future work is to apply our techniques to the problem
of selecting and co-allocating resources in metacomputing
systems [1, 7, 2]

Acknowledgments

We thank the Mathematics and Computer Science Divi-
sion of Argonne National Laboratory, the Cornell Theory
Center, and the San Diego Supercomputer Center for pro-
viding us with the trace data used in this work. We also
thank Gene Rackow for helping to record the ANL trace,
Allen Downey for providing the SDSC workloads, Jerry
Gerner for providing the CTC workload, and Richard Gib-
bons for providing us with the code used for the compar-
ative analysis.

This work was supported by the Mathematical, Infor-
mation, and Computational Sciences Division subprogram
of the Office of Computational and Technology Research,
U.S. Department of Energy, under Contract W-31-109-
Eng-38 and a NSF Young Investigator award under Grant
CCR-9215482.

Appendix: Statistical Methods

We use statistical methods [11, 5] to calculate run-time
estimates and confidence intervals from categories. A cat-
egory contains a set of data points called a sample, which
are a subset of all data points that will be placed in the
category, the population. We use a sample to produce an
estimate using either a mean or a linear regression. This
estimate includes a confidence interval that is useful as a
measure of the expected accuracy of this prediction. If the
X% confidence interval is of size c, a new data point will be
within c units of the prediction X% of the time. A smaller
confidence interval indicates a more accurate prediction.

A mean is simply the sum of the data points divided by
the number of data points. A confidence interval is com-
puted for a mean by assuming that the data points in our
sample S are an accurate representation of all data points
in the population P of data points that will ever be placed
in a category. The sample is an accurate representation
if they are taken randomly from the population and the
sample is large enough. We assume that the sample is ran-
dom, even though it consists of the run times of a series of
applications that have completed in the recent past. If the
sample is not large enough, the sample mean x will not be
nearly equal to the population mean µ, and the sample
standard deviation s will not be near to the population
standard deviation σ. The prediction and confidence in-
terval we compute will not be accurate in this case. In
fact, the central limit theorem states that a sample size
of at least 30 is needed for x to approximate µ, although

the exact sample size needed is dependent on σ and the
standard deviation desired for x [11].

We used a minimum sample size of 2 when making our
predictions in practice. This is because while a small sam-
ple size may result in x not being nearly equal to µ, we find
that an estimate from a category that uses many charac-
teristics but has a small sample is more accurate than an
estimate from a category that uses few characteristics but
has a larger sample size.

The X% confidence interval can be computed when us-
ing the sample mean as a predictor by applying Cheby-
chev’s theorem. This theorem states that the portion of
data that lies within k standard deviations to either side
of the mean is at least 1 − 1

k2 for any data set. We need
only compute the sample standard deviation and k such
that 1 − 1

k2 = X
100 .

Our second technique for producing a prediction is to
perform a linear regression to a sample using the equation

t = b0 + b1n,

where n is the number of nodes requested and t is the run
time. This type of prediction attempts to use information
about the number of nodes requested. A confidence in-
terval can be constructed by observing how close the data
points are to this line. The confidence interval is computed
by the equation

tα
2

√
MSE

√√√√1 +
1
N

+
(n0 − n̄)2

∑
n2 − (

∑
n)2

N

, where N is the sample size, MSE is the mean squared
error of the sample, n0 is the number of nodes requested
for the application being predicted, and n̄ is the mean
number of nodes in the sample. Alpha is computed with
the equation

α = 1 − X%
100

if the X% confidence interval is desired and tα
2

is the Stu-
dent’s t-distribution with n− 2 degrees of freedom [11, 5].

References

[1] C. Catlett and L. Smarr. Metacomputing. Commu-
nications of the ACM, 35(6):44–52, 1992.

[2] K. Czajkowski, I. Foster, C. Kesselman, S. Martin,
W. Smith, and S. Tuecke. A Resource Management
Architecture for Metasystems. In The IPPS’98 Work-
shop on Job Scheduling Strategies for Parallel Pro-
cessing, 1998.

[3] Murthy Devarakonda and Ravishankar
Iyer. Predictability of Process Resource Usage: A

Measurement-Based Study on UNIX. IEEE Trans-
actions on Software Engineering, 15(12):1579–1586,
December 1989.

[4] Allen Downey. Predicting Queue Times on Space-
Sharing Parallel Computers. In International Parallel
Processing Symposium, 1997.

[5] N. R. Draper and H. Smith. Applied Regression Anal-
ysis, 2nd Edition. John Wiley and Sons, 1981.

[6] Dror Feitelson and Bill Nitzberg. Job Characteristics
of a Production Parallel Scientific Workload on the
NASA Ames iPSC/860. Lecture Nodes on Computer
Science, 949, 1995.

[7] Ian Foster and Carl Kesselman. Globus: A Metacom-
puting Infrastructure Toolkit. International Journal
of Supercomputing Applications, 11(2):115–128, 1997.

[8] Richard Gibbons. A Historical Application Profiler
for Use by Parallel Scheculers. Lecture Notes on Com-
puter Science, pages 58–75, 1997.

[9] Richard Gibbons. A Historical Profiler for Use by
Parallel Schedulers. Master’s thesis, University of
Toronto, 1997.

[10] David E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, 1989.

[11] Neil Weiss and Matthew Hassett. Introductory Statis-
tics. Addison-Wesley, 1982.

