
Identifying Dynamic Replication Strategies for a High-
Performance Data Grid

Kavitha Ranganathan and Ian Foster

Department of Computer Science, The University of Chicago
1100 E 58th Street, Chicago, IL 60637

krangana@cs.uchicago.edu, foster@mcs.anl.gov

Abstract. Dynamic replication can be used to reduce bandwidth consumption
and access latency in high performance “data grids” where users require remote
access to large files. Different replication strategies can be defined depending
on when, where, and how replicas are created and destroyed. We describe a
simulation framework that we have developed to enable comparative studies of
alternative dynamic replication strategies. We present preliminary results ob-
tained with this simulator, in which we evaluate the performance of five differ-
ent replication strategies for three different kinds of access patterns. The data in
this scenario is read-only and so there are no consistency issues involved. The
simulation results show that significant savings in latency and bandwidth can
be obtained if the access patterns contain a small degree of geographical local-
ity.

1 Introduction

A data grid connects a collection of geographically distributed computer and storage
resources [6] that may be located in different parts of a country or even in different
countries, and enables users to share data and other resources. Research projects such
as GriPhyN [11], PPDG, and the EU DataGrid aim to build scientific data grids that
enable scientists sitting at various universities and research labs to collaborate with
one another and share data sets and computational power.

 Physics experiments such as CMS, ATLAS, LIGO and SDSS [11] will churn out
large amounts of scientific data (in some cases, the scale of petabytes/year). This data
needs to be used by thousands of scientists around the world. The sheer volume of the
data and computation involved poses new problems that deal with data access, proc-
essing and distribution.

 There are two aspects to a grid: sharing of data and sharing of resources. A scien-
tist located at a small university may need to run a time consuming processing job on
a huge data set. She may choose to get the data from where it exists to the local com-
puting resource and run the job there. Alternatively it may be better to transfer the job
to where the data exists or, both the job specification and the data may be sent to a

third location that will perform the computation and return the results to the scientist.
We focus here only on the data distribution aspect of a grid.

The data grid envisioned by the GriPhyN project is hierarchical in nature and is
organized in tiers. The source where the data is produced is denoted as Tier 0 (e.g.
CERN). Next are the Tier 1 national centers, the Tier 2 regional centers (RC), the Tier
3 workgroups and finally Tier 4, which consists of thousands of desktops.

1.1 Replication

When a user generates a request for a file, large amounts of bandwidth could be con-
sumed to transfer the file from the server to the client. Furthermore the latency in-
volved could be significant considering the size of the files involved. Our study
investigates the usefulness of creating replicas to distribute data sets among the
various scientists in the grid. The main aims of using replication are to reduce access
latency and bandwidth consumption. Replication can also help in load balancing and
can improve reliability by creating multiple copies of the same data. Static replication
can be used to achieve some of the above-mentioned gains but has the drawback that
it cannot adapt to changes in user behavior. In our scenario, where the data amounts
to petabytes, and the user community is in the order of thousands around the world,
static replication does not sound feasible. Such a system needs dynamic replication
strategies, where replica creation, deletion and management are done automatically
and strategies have the ability to adapt to changes in user behavior. Our study exam-
ines different dynamic replication strategies for a grid. There are many related ques-
tions of resource discovery (so that the request goes to the nearest replica) and fur-
thermore how to distribute these requests among replicas to archive best results. In
this study however we shall concentrate on the replica placement issue.

The three fundamental questions any replica placement strategy has to answer are:
When should replicas be created? Which files should be replicated? Where should
replicas be placed? The answers to these questions lead us to different replication
strategies.

We use simulation to evaluate the performance of each different strategy. Since
most datasets in the scientific data grid scenario are read-only, we do not consider the
overhead of updates. This paper describes a grid simulator framework and also re-
ports the preliminary results obtained using our simulator.

The rest of the paper is organized as follows. Section 2 describes the specific grid
scenario that we use for our simulations. Section 3 discusses the simulator we built to
conduct our experiments. Section 4 describes the replication and caching strategies
that we evaluate. Section 5 presents the results of the experiments and we interpret the
results of the experiments in Section 6. We end the paper with our conclusions and
future directions in Section 7.

2 Grid Scenario

The particular data grid setup that we are studying in this paper is described below.
There are four tiers in the grid with all data being produced at the top most tier (the

root). Tier 2 consists of the regional centers around the country; in the scenario con-
sidered in the experiments reported here, we have four of them. The next tier is com-
posed of work groups at universities or research labs. The final tier (individual work-
stations) consists of the sources from which the requests arrive. There are a total of 85
nodes in the grid with 64 of them generating requests.

The storage capacity at each tier is given in Table 1. In our experiments, we as-
sume that all network links are 320 Mbytes/sec in bandwidth [13]. In reality network
bandwidths vary widely across tiers. The total data generated at the source is assumed
to be 2.2 petabytes. The data is stored in files of uniform size of two gigabytes each.

Table 1. System parameters. Network performance and node capacity of a node at each tier
in the hierarchy as described in [13].

Tier Network Bandwidth to
Next Tier (MB/s)

Storage Capac-
ity (TB)

1 320 2200
2 320 1000
3 320 120

All requests for files are generated from the leaf nodes. Request patterns for the files
can exhibit various locality properties, including:

Temporal Locality: Recently accessed files are likely to be accessed again.
Geographical locality (Client locality): Files recently accessed by a client are

likely to be accessed by nearby clients.
Spatial Locality (File Locality): Files near a recently accessed file are likely to be

accessed.
In our definition of spatial locality we have to specify what “near” means. This

definition involves a study of the nature of the data in the files and how we can relate
files to each other. Since this paper deals with a general data grid we defer the study
of relationships of data until we model a specific grid.

We yet do not know to what extent file access patterns will exhibit the locality
properties described above and whether there will be any locality. We can only make
educated guesses at this point. The worst-case scenario is when the access patterns do
not exhibit any locality at all, generating random access patterns can simulate this
situation.

3 Methodology of Study

To identify a suitable replication strategy for a high performance data grid we decided
to use a simulator. Since none of the tools currently available exactly fitted our needs,
we built a simulator to model a data grid and data transfers in it. Our simulator uses
PARSEC [15], a discrete event simulation tool to model events like file requests and
data transfers.

3.1 The Simulator

The simulator consists of three parts. The basic core simulates the various nodes in
the different tiers of the data grid, the links between them, and the file transfers from
one tier to another. Various replication strategies are built on top of this core and
compose the next layer. The final component is the driver entity of the program,
which triggers file requests. The driver entity reads an input file, specifying the access
patterns to be simulated.

3.2 How the Simulation Works

Topology specification: Starting a simulation involves first specifying the topology of
the grid, including the number of nodes at each tier, how they are connected to each
other, the bandwidth of each link, and the location of the files across various nodes.

Starting the simulation: Access patterns are read from a file, with each line repre-
senting one access and specifying at what time which node needs a particular file.
The driver reads the data and triggers the corresponding node. When a node receives
a “File needed by me” trigger it needs to locate and request the “nearest” replica of
that file.

Locating nearest replica: There are various proposed methods for locating the
nearest replica; some of these can involve complex algorithms to identify the closest
copy. Location of the best replica is however a related but different topic than what
we are trying to answer. This paper concentrates on designing and isolating the best
replica placement strategy for a grid. However, to show the effectiveness of any dy-
namic replication strategy a node needs to be able to identify the nearest replica. We
solve this problem by using the ‘least number of hops’ heuristic. The nearest replica
is one, which is the least number of steps away from the node. In the case of a tie
between two or more replicas, one of them is selected randomly.

File Transfer: Once the server gets the request for a file, it sends it off to the client.
The tree structure of the grid means that there is only one shortest path that the mes-
sages and files can travel to get to the destination. When a file is being transferred
through a link, the link is busy and cannot transport any other file for the duration of
the transfer. The delay incurred in transferring a file depends on the size of the file,
the bandwidth of the link and the number of pending requests. A node is busy for the

duration it transfers its file to the network and any incoming data has to wait for the
current transaction to finish.

Record Keeping: Each node keeps a record of how much time it took for each file
that it requested to be transported to it. This time record forms a basis to compare
various replication strategies. The same series of file request are run through different
strategies and the one that has a lower average response time is considered better than
the others. The various replication strategies are described in the next section.

Scaling: The amount of data in the system is in the order of petabytes. To enable
simulation of such large data values, a scale of 1:10,000 was used. That is, the num-
ber of files in the system was reduced by a factor of 10,000. Accordingly the storage
capacity at each tier was also reduced. Table 2 below illustrates this fact.

Table 2. Grid parameters before and after scaling

 Actual Size After Scaling

Number of files 1,000,000 100
Storage at Tier 1 2200 Terabytes 220 Gigabytes
 Tier 2 1000 Terabytes 100 Gigabytes
 Tier 3 120 Terabytes 12 Gigabytes

The link bandwidths and file sizes remained the same. The reason we use a scaling
factor is to make the simulation of such a system feasible on a single machine. The
meta-data for a million files would be very memory intensive. Since we need to scale
the number of files, the storage capacity at each tier needs to be scaled accordingly.
This is because the performance of replication strategies is directly dependent on the
percentage of files that can be stored at each node. Scaling both the number of files in
the system and the capacity at each node achieves this. We do not scale the file sizes
also as that would have an increasing effect on the percentage of files that can be
stored at each node. Since the file sizes are not scaled, the bandwidths also remain
unscaled so that the transport latency is modeled correctly. Individual workstations
are assumed to be able to cache one file of size 2 Gigabytes.

Access Patterns: Since the physics data grid is not yet functional there are no ac-
tual file access patterns available as of now, and we must work with artificial traces.
We derive three such traces. The simulation was first run on random access patterns.
This being the worst-case scenario, more realistic access patterns that contained vary-
ing amounts of temporal and geographical locality were also generated The three
different kinds of traces are described below:

P-random: Random access patterns. No locality in patterns.
P1: Data that contained a small degree of temporal locality
P2: Data containing a small degree of geographical and temporal locality
The index used to measure the amount of locality in the patterns is denoted by ‘q’,

where 0<q< 1. If q = 0, it means that requests are completely random and there is no
locality. At the other end of the spectrum, when q =1 it means all requests are for the

same file. We used q = 0.05 to generate data with a small degree of tempo-
ral/geographical locality, using geometric distribution for file popularity.

 3.3 Performance Evaluation

We compare different replication strategies by measuring the average response time
and the total bandwidth consumed.

Response Time: This is the time that elapses from when a node sends a request for
a file until it receives the complete file. If a local copy of the file exists, the response
time is assumed to be zero. The average of all response times for the length of the
simulation is calculated.

Bandwidth Consumption: This includes the bandwidth consumed for data transfers
occurred when a node requests a file and when a server creates a replica at another
node.

4 Replication/Caching Strategies

We implemented and evaluated six different strategies. This work and our results
both demonstrate what the simulator is capable of doing, and also help us understand
the dynamics of a grid system.

In this paper we distinguish between caching and replication. Replication is as-
sumed to be a server side phenomenon. A server decides when and where to create a
copy of one of its files. It may do this randomly or by recording client behavior or by
some other means. But the decision to make a copy (replica) and send it to some other
node is taken solely by the server. Caching is defined as a client side phenomenon. A
client requests a file and stores a copy of the file locally for future use. Any other
nearby node can also request that cached copy. The different strategies are discussed
below.

Strategy 1: No Replication or Caching: The base case against which we compare
the various strategies is when no replication takes place. The entire data set is avail-
able at the root of the hierarchy when the simulation starts. We then run the set of
access patterns and calculate the average response time and bandwidth consumed
when there is no replication involved

Strategy 2: Best Client: Each node maintains a detailed history for each file that it
contains [12] indicating the number of requests for that file and the nodes that each
request came from. The replication strategy then works as follows: At a given time
interval each node checks to see if the number of requests for any of its file has ex-
ceeded a threshold. If so, the best client for that file is identified. The best client is the
one that has generated the most requests for that file. The node then creates a replica
of that file at the best client. Thus all files that exceed the threshold of the number of
requests are replicated elsewhere. Once a replica is created, the ‘request details’ for
the file at the server node are cleared. After this, the recording process begins again

The file replacement algorithm at each node is discussed later and is the same for
all of the replication strategies to facilitate a common ground for comparing them.

Strategy 3: Cascading Replication: The best analogy for this strategy is a three-

tiered fountain. The water originates at the top. When it fills the top ledge it over-
flows to the next level. When this level also overflows the water reaches down to the
lowest part.

The data in this strategy flows in a similar way. Once the threshold for a file is ex-
ceeded at the root, a replica is created at the next level, but on the path to the best
client. Hence the new site for the replica is an ancestor of the best client. Once the
threshold for the file is exceeded at Level 2 it is then replicated at the next lower tier
and so on. A popular file may ultimately be replicated at the client itself.

The advantage of this strategy is that storage space at all tiers is used. Another ad-
vantage is that if the access patterns do not exhibit a high degree of temporal locality,
geographical locality is exploited by this strategy. By not replicating at the very
source of requests but at a higher level the data is brought closer to other nodes in the
same sub-tree.

Fig.1.Cascading Replication. At the root the number of requests for F1 exceed the threshold
and a copy is sent to the next layer. Eventually the threshold is exceeded at the next layer and a
copy is sent to Client C.

Strategy 4: Plain Caching: The client that requests a file stores a copy locally.
Since these files are large (2 Gigabytes each) and a client has enough space to store
only one file at a time, the files get replaced quickly.

Strategy 5: Caching plus Cascading Replication: This combines strategy three and
four. The client caches files locally. The server periodically identifies the popular
files and propagates them down the hierarchy. Note that the clients are always located
at the leaves of the tree but any node in the hierarchy can be a server. Specifically, a
Client can act as a Server to its siblings. (Siblings are nodes that have the same par-
ent).

Strategy 6: Fast Spread: In this method a replica of the file is stored at each node
along its path to the client [14]. That is, when a client requests a file, a copy is stored

Root
F1 exceeds threshold

A B

F1 Exceeds thresh-
old

F1

C

F1

at each tier on the way. This leads to a faster spread of data. The generic file replace-
ment strategy used for all the cases is discussed below.

File Replacement Strategy: The storage spaces at all levels eventually fill up. An
efficient file replacement strategy is needed so that popular files are retained and not
displaced as and when new files arrive. Initially we decided to expunge the least
popular file from the list. But this might delete a relatively new file that has just come
in and not yet been requested that might become popular in the future. Thus there
needs to be a measure of time and hence the age of each file in that cache. The re-
placement strategy we employed takes care of both these aspects and is a combination
of least popular and the age of the file. If more than one file are equally unpopular,
the oldest file is deleted

We clear the popularity logs at a given time interval in order to capture the dynam-
ics of the access patterns. Over time users may shift from using one group of files to
another group etc. We can thus expect that the effectiveness of the strategy will de-
pend on how well the time interval is tuned to the access behavior. Another parameter
that has to be tuned for each scenario is the threshold. Only if the number of requests
exceeds this threshold is the file replicated. We can imagine refining the algorithm so
that the “time_to_check” interval and threshold automatically change according to
user behavior. However, this is left for future work.

5 Experimental Results

We present the results for five strategies, no replication, plain Caching, Best Client,
Caching+Cascading, and Fast Spread. We do not discuss pure Cascading as its results
can be found in strategy 5, Cascading+Caching. The experiments were run on the
three access patterns defined earlier: P-random, P1, and P2 and each simulation was
run for a thousand requests.

Random patterns are the worst-case scenario and it seems sensible to assume the
patterns will exhibit some amount of geographical and temporal locality, as scientists
tend to work in groups on projects. That said we proceed to discuss the results ob-
tained from the experiments.

When P-random data was used, all strategies except for Best-Client and Cascading
show significant improvement in the access latency as compared to the case of no
replication. Best-Client does not seem to work well for random access patterns, as the
average response time is four times more than when no replication/caching policy is
used. Again, in terms of bandwidth savings, Best Client utilizes almost the same
amount of bandwidth as the base case of no replication. In the case of P1 access pat-
terns (patterns with a small amount of temporal locality) all strategies except for Best-
Client yield positive savings in both access latency and bandwidth consumption. Only
in the case of P2 (patterns with both temporal and geographical locality) does Best-
Client show any savings. Even in this case the bandwidth savings by using Best-
Client are marginal (10% savings as compared to the base case of no replica-
tion/caching) although the latency savings are significant (40% when compared to the

base case). However Best Client consistently performs much worse than Plain Cach-
ing.

 We next discuss the results obtained by the other three strategies as Best-Client
does not seem a good candidate for a replication strategy for a grid. The two graphs
below contain results for Cascading+Caching, Fast Spread, and Plain Caching. The
first two strategies are compared, with Plain Caching being the standard of compari-
son. Thus the graphs illustrate the savings achieved by Fast Spread and Cascading,
beyond those achieved by only caching the files.

As Fig.3 indicates, Cascading does not work well when the access patterns contain
no locality. For random data, the response time is far better when Plain Caching is
used rather than Cascading. Fast spread works much better than Plain Caching for
random data. There is almost a 50% reduction in response times in the case of Fast
Spread.

-60

-40

-20

0

20

40

60

P-random P1 P2

Access Patterns

Casc. + Cach.

Fast Spread

-5

0

5

10

15

20

25

30

P-random P1 P2

Access Patterns

Casc. +
Cach.
Fast Spread

Fig.3. Percentage savings in response time (left) and bandwidth consumption (right) as com-
pared to Plain Caching for all three kinds of access patterns

In the case of P1 patterns, the advantage of Fast-Spread over Caching decreases
and Cascading works almost as well as Caching. Once the data contains more locality
(as is the case with P2) Cascading has a significant improvement in performance, its
average response time is almost 30% less than that for Plain Caching. Fast Spread
however has less than 15% improvement over Caching for patterns that contain geo-
graphical locality. These results are interpreted further in Section 6.

We now discuss the amount of bandwidth savings for the different cases. As
shown in Fig.3, Cascading does not differ significantly from Caching in terms of
bandwidth consumption. The difference between the two strategies falls with the
range of plus or minus 2% for all the access patterns. Fast Spread on the other hand
leads to large savings in bandwidth usage, up to 25% when the access patterns con-
tain locality.

6 Discussions

Among the methods of replication that we consider in the paper, Best-Client performs
the worst. In many cases the overheads it creates are more than the advantages of the
strategy and it performs worse than the base case of no replication.

Considering the remaining candidates Plain Caching, Cascading + Caching and
Fast Spread there is no sure best strategy for all scenarios. Fast Spread consistently
performs better than Caching both in terms of response time and bandwidth savings.
In spite of the overhead Fast Spread has, in terms of excessive creation of replicas its
advantages over Caching are plainly evident. The bandwidth savings of Fast Spread
are up to 25% more than that of Caching [refer to Fig.3]. The disadvantage is that it
has high storage requirements. The entire storage space at each tier is fully utilized by
Fast-Spread.

Cascading on the other hand utilizes less then 50% of the storage space at each tier
since it involves a judicious creation of replicas. The bandwidth requirements of Cas-
cading however are greater than that for Fast Spread. This is because every replica
that is created has to be sent separately to the new location as opposed to Fast Spread
where a copy is created in the process of transferring the requested file.

Cascading, moreover does not work well when the access patterns are totally ran-
dom. In fact it does not even work as well as Caching for random user patterns. This
can be attributed to the fact that the overhead in creating these extra copies of files is
not offset by the advantage of moving them closer to the users. The copied files are
not asked for often enough to justify the increased data movement. However, when
the patterns contain a small amount of locality, the performance of Cascading im-
proves significantly. It even performs better than Fast Spread for P2 patterns, with an
average response time almost 18% better than that for Fast-Spread. There are how-
ever no significant bandwidth savings in using Cascading over Caching when we
assume only a small amount of geographical locality.

These results lead us to conclude that if grid users exhibit total randomness in ac-
cessing data then the strategy that would work best is Fast Spread. If however there
are sufficient amount of geographical locality in the access patterns, Cascading as a
replication policy would work better than the others. With more or less the same
amount of bandwidth utilization as Caching, Cascading lowers response times signifi-
cantly, while judiciously using storage space.

The above results also indicate that depending on what is more important in the
grid scenario, lower response times or lesser bandwidth consumption, a tradeoff be-
tween Cascading and Fast Spread can be made. If the chief aim is to elicit faster re-
sponses from the system, Cascading might work better. On the other hand if conserv-
ing bandwidth is of top priority, Fast Spread is a better grid replication strategy.

7 Conclusions and Future Work

We have presented and evaluated dynamic replication strategies for managing large
data sets in a high performance data grid. Replication enables faster access to files,
decreases bandwidth consumption, and distributes server load. In contrast to static
replication, dynamic replication automatically creates and deletes replicas according
to changing access patterns, and thus ensures that the benefits of replication continue
even if user behavior changes.

We discussed the components of the simulator we built and explained how we
used the simulator to study the performance of different replication strategies within a
grid environment We generated three different kinds of access patterns, random,
temporal, and geographical and showed how the bandwidth savings and latency differ
with access patterns. Two strategies performed the best in our tests: Cascading and
Fast Spread. While Fast Spread worked well for random request patterns, Cascading
worked better when there was a small amount of locality. We analyzed why we
thought these were the best strategies and the pros and cons of each method.

In future work, we want to use the simulator to test the performance of some more
advanced replication strategies. We also have plans to extend the simulator so that we
can plug in different algorithms for selecting the best replica.

In our work so far, the replication strategies we discussed exploit both temporal
and geographical locality of the request patterns. What we put off for later is consid-
ering the spatial locality of the requests. Once we better understand the relationship
among various files in a scientific data set, some amount of pre-fetching is possible.

Another area for further research is to study the movement of code towards data.
We have assumed here that clients ask for files and locally run the data through their
code to analyze the data. Thus we have only considered moving data towards code.
Another option is to move code towards where data resides and communicate only
the result of the computation back to the client. This is a feasible option considering
that in the data grid scenario the data may be tens of thousands of times larger than
either the code or the result.

A data grid enables thousands of scientists sitting at various universities and re-
search centers to collaborate and share their data and resources. The sheer volume of
the data and computation calls for sophisticated data management and resource allo-
cation. This paper is one step into better understanding the dynamics of such a system
and the issues involved in increasing the overall efficiency of a grid by intelligent
replica creation and movement.

Acknowledgements

This research was supported by the National Science Foundation’s “GriPhyN” project
under contract ITR-0086044.

References

1. Acharya, S., Zdonik, S.B.: An efficient scheme for dynamic data replication: Technical
report CS-93-94-43, Brown University

2. Baentsc, M., et al.: Quantifying the overall impact of caching and replication in the web.
University of Kaiserslautern February (1997)

3. Bestavros, A., Cunha, C.: Server-initiated document dissemination for the WWW. IEEE
Data Engineering Bulletin, Vol. 19 (1996) 3 –11

4. Bestavros, A.: Demand-based document dissemination to reduce traffic and balance load in
distributed information systems. IEEE symposium on Parallel and Distributed Processing,
San Antonio, TX (1995)

5. Bhatacharjee, S., Calvert, K.L., Zegura, E.: Self-organizing wide-area network caches.
Georgia Institute of Technology GIT-CC-97/31(1997)

 6. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The Data Grid: To-
wards an Architecture for the Distributed Management and Analysis of Large Scientific
Data Sets. J. Network and Computer Applications (2000)

7. Chuang, J.C.I., Sirbu, M.A.: Distributed Network Storage with Quality-of-Service Guaran-
tees. Proc. INET'99 (1999)

8. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache
sharing protocol. ACM SIGCOMM (1998)

9. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann (1999)

10. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Intl. J. Supercomputer Applications, (to appear).

11. GriPhyN: The Grid Physics Network Project http://www.griphyn.org
12. Gwertzman, J., Seltzer, M.: The case for geographical push-caching. 5th Annual Work-

shop on Hot Operating Systems (1995)
13. Holtman, K.: HEPGRID2001: A Benchmark for Virtual Data Grid Schedulers.

http://kholtman.home.cern.ch/kholtman/tmp/benchv3.ps
14. Michel, S., Nguyen, K., Rosenstein, A., Zhang, L., Floyd, L., Jacobson, V.: Adaptive Web

Caching: Towards a New Global Caching Architecture. Proceedings of the 3rd Interna-
tional WWW Caching Workshop (1998)

15. Parsec home page http://pcl.cs.ucla.edu/projects/parsec
16. Rabinovich, M., Aggarwal, A.: RaDaR: A scalable architecture for a global Web hosting

service. The 8th Int. World Wide Web Conf, May (1999)
17. Samar, A., Stockinger, H.: Grid Data Management Pilot (GDMP): A Tool for Wide Area

Replication. IASTED International Conference on Applied Informatics, Innsbruck, Austria
(2001)

18. Wolfson, O., Jajodia, S., Huang, Y.: An Adaptive Data Replication algorithm. ACM trans-
actions on Database Systems (1997)

