
Homeostatic and Tendency-based CPU Load Predictions

Lingyun Yang1 Ian Foster1,2 Jennifer M. Schopf2
1Department of Computer Science, University of Chicago, Chicago, IL 60637

2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
 [lyang, foster]@cs.uchicago.edu jms@mcs.anl.gov

Abstract
The dynamic nature of a resource-sharing environment

means that applications must be able to adapt their
behavior in response to changes in system status.
Predictions of future system performance can be used to
guide such adaptations. In this paper, we present and
evaluate several new one-step-ahead and low-overhead
time series prediction strategies that track recent trends by
giving more weight to recent data. We present results that
show that a dynamic tendency prediction model with
different ascending and descending behavior performs
best among all strategies studied. A comparative study
conducted on a set of 38 machine load traces shows that
this new predictor achieves average prediction errors that
are between 2% and 55% less (36% less on average) than
those incurred by the predictors used within the popular
Network Weather Service system.

1 Introduction

In multi-user time-shared systems, applications are in
active competition with unknown background workloads
introduced by other users. The contention that results from
the resource sharing tends to cause load and resource
availability to vary over time. The impact can be
particularly significant on a computational Grid [1], which
links interconnected but geographically distributed
computing resources as a cooperating set of resources.
Clearly, predictions of system performance are necessary
for efficient use of such resources. Performance
predictions can be useful to both applications and
schedulers. Applications can use predictions to adapt their
behavior in response to changes in system status to get
better performance[2, 3]. Schedulers can use predictions to
guide their scheduling strategies and thus to achieve
higher application performance and more efficient
resource use[4-6].

Varying CPU load has a significant effect on the
running time of CPU-bound applications. Indeed, for
certain types of applications the running time of a
compute-bound task is linearly proportional to the average

CPU load it encountered during the execution [4, 7]. The
focus of this paper is predicting the CPU load of shared
computing resources. Our contribution is to introduce a
new time series prediction technique that behaves better
than other techniques used previously. Rather than giving
the same consideration to the history data within a “sliding
window” as do traditional linear models and mean- or
median-based models, our one-step-ahead time series
prediction strategies give more weight to more recent
measurements than to other history data. We also allow for
the use of different behaviors when “ascending” and
“descending.” Our experimental results show that, on a
range of host load measurement datasets, our dynamic
tendency strategy with different ascending and descending
behavior consistently outperforms the nine predictors used
within the Network Weather Service (NWS) [8-11], a
widely used performance prediction system.

The rest of the paper is structured as follows. Section 2
introduces background and related work. Section 3 gives a
detailed description of the prediction strategies we studied.
Section 4 describes the experimental results when our
prediction strategies are applied to actual measurements
and compared with those of other researchers. Section 5
presents our conclusions and notes directions for further
work.

2 Background and related work

Previous efforts [9, 12] indicate that CPU load is
strongly correlated over time, which implies that history-
based load prediction schemes are feasible. We believe
that the key to making accurate predictions is to correctly
model the relationship of the history data with the future
values.

Time series modeling has been studied widely in many
areas, including financial data prediction [13-15], earth
and ocean sciences [16], biomedical signal processing
[17], and networking [18, 19]. In the area of CPU load
prediction, the Network Weather Service [8-11] provides
one-step-ahead predictions for any time-series fed to its
predictor module. NWS is a distributed system that
periodically monitors and dynamically forecasts the

performance of various network and computational
resources. NWS applies a collection of one-step-ahead
prediction strategies to time series and chooses the
strategy used for the “next” prediction dynamically
according to which strategy has been most accurate over
recent measurements. The prediction strategies used by
NWS currently include running average, sliding window
average, last measurement, adaptive window average,
media filter, adaptive window media, α-trimmed mean,
stochastic gradient, and autoregressive [8, 9]. Dynamical
selection of the best prediction strategy on the fly has
resulted in predictions equivalent to, or slightly better
than, the best predictor in the set. We note that while for
the purposes of comparison we measure the improvements
achieved by our new prediction relative to those used
within NWS, our new strategies could easily be included
as predictors within the NWS framework. Thus, our work
does not invalidate the NWS approach but rather shows
that its choice of predictors can be improved.

Dinda et al. evaluated multiple linear models, including
autoregressive (AR), moving average (MA),
autoregressive moving average (ARMA), autoregressive
integrated moving average (ARIMA), and autoregressive
fractionally integrated moving average (ARFIMA) models
[7]. Their results show that the simple AR model (also
used in NWS) is the best model of this class because of its
good predictive power and low overhead. More complex
liner models are expensive to fit and hence difficult to use
in a dynamic or real-time setting. Our approach, as shown
in Section 4, performs better and has less overhead than
these approaches.

3 Prediction strategies study

This section defines our prediction strategies. Each
strategy predicts the one-step-ahead value based on a fixed
number of immediately preceding history data measured at
a constant-width time interval. We present two families of
strategies: (1) homeostatic prediction strategies, Section
3.1, and (2) tendency-based prediction strategies, Section
3.2.

We use the following notation in the descriptions of the
prediction strategies:
 VT: the measured value at the Tth measurement,
 PT+1: the predicted value for measurement value VT+1,
 N: the number of data points of history data used in the
prediction, also called the window size.

3.1 Homeostatic prediction strategies

What we term homeostatic prediction strategies work
on the assumption that if the current value is greater (less)
than the mean of history values, then the next value is
likely to decrease (increase). The basis of this approach is
to be “self-correcting” so that they return to the mean of

the history value. More formally, this kind of strategy can
be expressed as following:
 if (VT > MeanT) then
 PT+1 = VT – DecrementValue;
 [Optional DecrementValue adaptation process]
 else if (VT < MeanT) then
 PT+1 = VT + IncrementValue;
 [Optional IncrementValue adaptation process]
 else
 PT+1 = VT;

where MeanT is the mean of the N history data points.
It can be calculated by the following formula:

 MeanT = (Σi=1..N V i)/N (1)
At every prediction step, the increment value or

decrement value can be an independent value or a relative
value that is proportional to the current measurement. The
increment or decrement value can be “static” such that it is
fixed for all prediction steps, or “dynamic” such that it is
adapted to the time series at each step. The different
combinations of the above configurations result in four
homeostatic prediction strategies: independent static,
independent dynamic, relative static, and relative dynamic.
We present the detailed description of these strategies
next.

3.1.1 Independent static homeostatic prediction
strategy. The independent static homeostatic strategy
generates a prediction by changing the current value by a
fixed amount, without any adaptation process. For this
strategy, the decrement (increment) value remains fixed
for the run of the experiment, and the increment or
decrement value can be expressed by the following
formula:
 DecrementValue=DecrementConstant (2)
 IncrementValue=IncrementConstant

The decrement (increment) constant may change
depending on the training set. Values between 0.05 and 1
are reasonable. Our selection for this value is discussed in
Section 4.1.

3.1.2 Independent dynamic homeostatic prediction
strategy. The independent dynamic homeostatic strategy
dynamically adjusts the amount of the increment or
decrement value by means of an adaptation process:

DecrementValue adaptation process:
 Measure VT+1;

 RealDecValueT = VT - VT+1;

 DecConstantT+1 = DecConstantT + (RealDecValueT –
 DecConstantT) * AdaptDegree;

IncrementValue adaptation process:
 Measure VT+1;

 RealIncValueT = VT+1 - VT;

 IncConstantT+1 =IncConstantT + (RealIncValueT -
 IncConstantT) * AdaptDegree;

At each time step, after we measure the real data
(VT+1), we calculate the difference between the current

measured value and the last measured value, thus
determining the real decrement (increment) we should
have used in the last prediction in order to get the actual
value. We adapt the value of the decrement (increment)
value accordingly and use the adapted IncrementConstant
(or DecrementConstant) to predict the next data point. The
parameter AdaptDegree can range from 0 to 1 and
expresses the adaptation degree of the variation. If
AdaptDegree is equal to 0, the DecConstantT
(IncConstantT) is not adapted at all, and we have
nonadaptation (or a static approach). If AdaptDegree is
equal to 1, the DecConstantT (IncConstantT) is equal to
RealDecValueT (RealIncValueT), or full adaptation.

We define the value of AdaptDegree by using an
experimental method described in Section 3.3. The value
that results in minimal average error rate is considered as
suitable and the AdaptDegree will change depending on
the training set. Values between 0.05 and 1 are reasonable.
Our selection for this value is discussed in Section 4.1.

3.1.3 Relative static homeostatic prediction strategy.
The relative static homeostatic strategy assumes that a
larger load value has more potential to change than does a
smaller load value. Thus, this strategy modifies the
independent static homeostatic prediction strategy so that
the increment or decrement applied to a prediction is
proportional to the current value instead of a constant
value. For this strategy, the increment or decrement value
can be expressed by the following formula:
 DecrementValue= VT* DecrementFactor (3)
 IncrementValue= VT* IncrementFactor

Increment or decrement factors between 0.05 and 1 are
reasonable. Our selection for these values is discussed in
Section 4.1.

3.1.4 Relative dynamic homeostatic prediction strategy.
The relative dynamic homeostatic strategy alters the
prediction value by a relative amount, as does the relative
static homeostatic strategy, but allows the value of
IncrementFactor and DecrementFactor to be adapted
dynamically, using the same method as in the independent
dynamic homeostatic prediction strategy. Again, the
methodology for selecting the constants is described in
Section 4.1.

3.2 Tendency-based prediction strategies

Unlike the homeostatic strategies that predict the future
value according to the current value and the mean of the
history value. Our second family of prediction strategies
predicts the next value according to the tendency of the
time series change. This approach assumes that if the
current value increases, the next value will also increase
and that if the current value decreases, the next value will

also decrease. Formally, tendency based prediction
strategies can be expressed as follows:

 //Determine Tendency
 if ((VT - VT-1)<0)
 Tendency=”Decrease”;

 else if ((VT-1 - VT)<0)
 Tendency=”Increase”;

 if (Tendency=”Decrease”) then
 PT+1 = VT – DecrementValue;
 DecrementValue adaptation process
 else if (Tendency=”Increase”) then
 PT+1 = VT + IncrementValue;
 IncrementValue adaptation process

Like the homeostatic prediction strategies, the variation
(DecrementValue and IncrementValue) can be an
independent or relative value that is proportional to the
current value. Since the static prediction strategies always
give worse results than does a simple last-value prediction
strategy in the initial experiments, we exclude the static
case from this discussion.

Tendency-based strategies have an additional possible
source of error. It is impossible to predict when a time
series is going to “change direction” – that is, when an
increasing time series will become a decreasing one, or
vice versa. Because of this, a large error can occur at the
turning point, or that value when the time series changes
direction. For example, if the time series value begins to
drop after several successive increases, the tendency
prediction strategy will still predict the value to increase at
this turning point, when the value has actually decreased.
In this case, the prediction error is the sum of the predicted
increasing variation and the actually decreasing variation.
If the increment variation is adapted to a very big value, a
large error can occur.

To minimize this kind of error, we need to reduce the
variation at the possible turning points. The basic idea is
that if the current value increases to a very high value (or
decreases to a very low value), it is possible that a turning
point is about to occur. In this case, instead of adapting the
variation according to the measured value as usual, we
would like to adapt it to a smaller degree to minimize
possible errors.

In our implementation, we use the mean of the history
data as the threshold value. In the increase phase, if the
current data is smaller than the threshold value, the
variation will be adapted normally; if the time series
increases to a value that is bigger than the threshold value,
it is possible that the next step is a turning point. We
calculate the percentage of the history data that is greater
than the current data and use this value as the possibility of
current data not to be a turning point. The larger the
current value is, the more possible that it is the turning
point, and the less the percentage of the history data bigger
than it is. So the IncrementValue adaptation process can
be expressed in the following way:

 MeanT = (Σi=1..N Vi)/N;

 RealIncValueT = VT+1 - VT;
 NormalInc = IncValueT+(RealIncValueT- IncValueT)*
 AdaptDegree;
 if (VT+1 < MeanT) // normal adaptation
 IncrementValueT+1 = NormalInc;
 else
 PastGreaterT=(the number of past data points

greater than VT) /N;
 TurningPointInc = IncValueT*PastGreaterT;
 IncrementValueT+1=Min(abs(NormalInc),
 abs(TurningPointInc));
NormalInc is the value of the IncrementValueT+1 in the

case of normal adaptation. When the current value is
higher than MeanT, it may be a turning point, and the value
of PastGreaterT (the percentage of the past time series
values greater than the current value) will be small (<0.5).
Hence, the possibility that the current value is not the
turning point is small, so we adjust the increment value
accordingly. If we predict the value to go in the wrong
direction, the error is still small.

Similarly, the DecrementValue can be adapted in the
same way by using the percentage of the history data
smaller than current value when the current value
decreases to a value that is smaller than the threshold
value.

3.2.1 Independent dynamic tendency prediction
strategy. The independent dynamic tendency strategy
predicts the next step value by adding or subtracting an
independent increment or decrement value from the
current value according to the tendency of the value
change. For this strategy, we determined the increment
and decrement values just as we determined them for the
static and dynamic independent homeostatic prediction
approaches, discussed in Sections 3.1.1 and 3.1.2.

3.2.2 Relative dynamic tendency prediction strategy.
The relative dynamic tendency strategy is similar to the
independent dynamic tendency prediction strategy except
that the increment value or decrement value is in
proportion with the current value. The increment and
decrement values are determined in the same way as for
the relative static or dynamic homeostatic approaches,
discussed in Sections 3.1.3 and 3.1.4.

3.2.3 Dynamic tendency prediction strategy (mixed
variation). During initial experiments, we observed that
the independent tendency prediction strategy resulted in
better predictions during an increase phase and that the
relative tendency prediction strategy generally resulted in
better predictions during a decrease phase. One possible
explanation of this phenomenon is that while a CPU time
series is increasing, the independent tendency strategy
better tracks the behavior due to very small increases that
are independent of the actual value of the prediction, but
that during the decrease phase the relative prediction

strategy applies a value is proportional to the current value
more in keeping with the trend of the load behavior. The
results of our further experiments (Section 4) also
confirmed this tentative explanation. This may suggests
some intrinsic property of CPU load data. The further
explanation is left as an open question.

Because of this initial result, we define a mixed
tendency-based prediction strategy that predicts the next
value for an increase phase using the independent
tendency prediction strategy and for a decrease phase uses
the relative tendency prediction strategy, that is,
 DecrementValue=VT*DecrementFactor (4)
 IncrementValue=IncrementConstant

For completeness, we examined the use of the
independent constant in the decrement phase and a relative
value in the increment phase, but worse predictions
resulted in all cases.

4 Experimental evaluation

We ran a series of experiments using our predictors in

order to validate their effectiveness under a variety of
conditions. We break these experiments into two sets. In
the first set, we ran all of our predictors on a small set of
time series over which we had complete control, and we
evaluated the effect of different collection rates on our
own predictors, on a simple last-value predictor, and on
the Network Weather Service. In the second set of
experiments, we ran a much larger set of 38 load traces
and evaluated only our best predictor and the NWS.

The last-value predictor uses the current measured
value as the predicted value of the next measurement. It
can be expressed by the following formula:
 PT+1 = VT

Harchol-Balter and Downey [20] show that this is a
useful prediction strategy for CPU resources. It has low
computation and storage overhead and is the default
predictor in several current systems because of its
simplicity.

The NWS [8-11] dynamically selects the best predictor
from a set that includes mean-based prediction strategies,
median-based prediction strategies, and AR model-based
prediction strategies. It has been shown to yield forecasts
that are equivalent to, or slightly better than, the best
forecaster in the set. This implies that if our prediction
strategy performs better than NWS predictor, it can
perform better than all the prediction techniques in the set.

We did no model fitting for any of the experiments, as
is commonly needed in linear regression techniques. The
parameters were defined by using training data off-line
before the experiments, as described in Section 4.1, and
were not redefined during the experiments. Thus, we
minimized the run-time cost of these strategies; on
average, this cost is only a few milliseconds per
prediction.

4.1 Input parameters

All of the prediction strategies we defined need certain

input parameters to determine how much to increment or
decrement a value or how strongly to change a prediction
over time. In all cases, we determined these values by
running a set of experiments to exhaustively search the
space of feasible selections. We did this using training
data that was not a part of the data used for our
experiments. We used 25 one-hour-long time series and
evaluated increment and decrement values at intervals of
0.05 between 0 and 1 using the error formula

Average Error Rate= %100*
)(

..1

N

VVPabs
Ni

iii� =
−

 (5)

Where N is the number of data in the time series to be
tested. To avoid the “ division overflow” error, we add a
small value -delta to V i (measured value) in case it is equal
to zero. We set delta equal to 0.01 in our experiment. The
value that results in minimal average error rate is
considered as suitable.

For our experiments, we found the best results with
 IncrementConstant= DecrementConstant = 0.1
 IncrementFactor = DecrementFactor = 0.05
 AdaptDegree = 0.5

These values, while somewhat ad hoc, worked well
over a wide set of traces. We used the same values for all
of our predictions regardless of the characteristics of the
trace each experiment was being run on. It would be
possible to tune these parameters for each trace, or to
change them on the fly to better fit a particular load
behavior, but we felt that was unnecessarily complicated
and would significantly add to the overhead.

We also studied the sensitivity of the mixed variation
prediction strategy to a selection of AdaptDegree
parameter values. We did this by running this strategy on
38 time series collected by Dinda [12], while changing the
value of the AdaptDegree from 0 (nonadaptation) to 1 (full
adaptation), increasing 0.1 at each step. Figure 1 shows
the resulting prediction errors, while Figure 2 shows the
means and standard deviations. We find that no one value
of the parameter is the best for all time series: the average
prediction error shows different varying tendency while
the value of AdaptDegree changes. Moreover, except in
the case of nonadaptation, the variation of the prediction
error for different AdaptDegree values is not a significant
fraction of the total. We conclude that the value of the
parameter does not have a significant influence on
prediction capability of our prediction strategy, as long as
extremes are avoided, and select an intermediate value of
0.5 for future studies.

0.0%

3.0%

6.0%

9.0%

12.0%

15.0%

18.0%

21.0%

24.0%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
AdaptDegree

P
re

di
ct

io
n

E
rr

or

aphrodite argus
asbury-park asclepius
bruce cobain
darryl hawaii
hestia manchester1
manchester2 manchester3
manchester4 manchester5
manchester6 manchester7
manchester8 mojave
newark pryor
rhea rubix
sahara themis
uranus zeno
axp0 axp1
axp2 axp3
axp4 axp5
axp6 axp7
axp8 axp9
axpfea axpfeb

Figure 1: The prediction error of the mixed tendency prediction strategy as a function of the
AdaptDegree parameter on 38 different time series.

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%

ap
hr

od
ite

ar
gu

s
as

bu
ry

-p
ar

k
as

cl
ep

iu
s

br
uc

e
co

ba
in

da
rr

yl
ha

w
ai

i
he

st
ia

m
an

ch
es

te
r1

m
an

ch
es

te
r2

m
an

ch
es

te
r3

m
an

ch
es

te
r4

m
an

ch
es

te
r5

m
an

ch
es

te
r6

m
an

ch
es

te
r7

m
an

ch
es

te
r8

m
oj

av
e

ne
w

ar
k

pr
yo

r
rh

ea
ru

bi
x

sa
ha

ra
th

em
is

ur
an

us
ze

no
ax

p0
ax

p1
ax

p2
ax

p3
ax

p4
ax

p5
ax

p6
ax

p7
ax

p8
ax

p9
ax

pf
ea

ax
pf

eb

Mean

SD

Figure 2:Mean and standard deviation of the prediction errors shown in Figure 1 for each time series.

4.2 Prediction strategy evaluation

We ran a set of experiments to evaluate the six
prediction strategies presented in Section 3 and to
determine what effect, if any, different measurement rates
have on the predictions. Specifically, we evaluated one-
step-ahead time series prediction strategies on CPU load
time series collected from four machines on different time
scales but during the same period of time. For each
machine, we collected one set of data (spanning roughly
28 hours) and then examined it as three different time
series: 0.1 Hz (measure the data every 10 seconds) with
roughly 10,000 data points; 0.05 Hz (measure the data
every 20 seconds), so throwing out every other data point
from the 0.1 Hz trace, and 0.025Hz (measure the data
every 40 seconds) or throwing out 3 of every 4 data points
from the 0.1 Hz collection.

The four machines show different CPU statistical
properties during our measurement, as illustrated in
Figure 3. We discuss only the 0.1 Hz time series; the
other two resolutions share the similar properties, since the
data were collected during the same period.

abyss.cs.uchicago.edu is a server machine at the
University of Chicago. This machine had very low CPU
load with about 40% data equal to zero and mean equal to
0.08 during our measurement. The time series are
relatively stable. The standard deviations are about 0.1755
for the 0.1 Hz time series.

vatos.cs.uchicago.edu is a server machine at the
University of Chicago. This machine had low mean CPU
load (0.24) during our measurement. On this machine, the
time series are not stable and hence have higher standard
deviations: about 0.3188 for the 0.1 Hz time series.

mystere.ucsd.edu is a server machine at UCSD. This
machine had low CPU load (with occasional peaks) during
our measurement (0.4). As the figure shows, on the left
part of the 0.1Hz resolution time series, there is a dramatic
change, so that the time series is divided into two stages.
But within each stage, the CPU load is relatively stable.

The standard deviations are 0.0755 for the first part of the
time series, 0.1522 for the second part of the time series.

pitcairn.mcs.anl.gov is a server machine at Argonne
National Laboratory (ANL). The CPU load on this
machine was relatively high during our measurement. All
the measurements are more than 1, and the mean CPU
load is greater than 1.2. The time series are relatively
stable, with some occasional peaks. The standard
deviations are 0.1355 for the 0.1 Hz time series.

(1)abyss.cs.uchicago.edu (2) vatos.cs.uchicago.edu

 (3) mystere.ucsd.edu (4) pitcairn.mcs.anl.gov

Figure 3: 0.1 HZ CPU load time series collected
from four machines.

We evaluated our time series prediction strategies on
twelve CPU load time series. The prediction error was
calculated by using Equation 5. The error rates and the
standard deviations of the prediction strategies when tested
against these time series are shown in Table 1, with the
best predictors shown in boldface

Table 1: The error of different prediction strategies, with the best in each case shown in boldface.
(1) Mean and standard deviation of the prediction errors on time series collected from abyss.cs.uchicago.edu

0.1 Hz 0.05 Hz 0.025 Hz
Mean SD Mean SD Mean SD

Independent Static Homeostatic 496.10% 4.2855 492.26% 4.3583 488.90% 4.4384
Independent Dynamic Homeostatic 12.50% 0.2369 25.51% 0.4153 56.70% 0.9756
Relative Static Homeostatic 13.40% 0.2115 24.85% 0.2771 44.37% 0.3960
Relative Dynamic Homeostatic 13.53% 0.2585 28.67% 0.6984 59.57% 1.5305
Independent Dynamic Tendency 11.42% 0.2097 21.45% 0.2742 40.44% 0.3949
Relative Dynamic Tendency 11.54% 0.2338 20.40% 0.3203 36.15% 0.4799
Mixed Tendency 11.13% 0.2094 19.48% 0.2741 34.23% 0.3941
Last Value 14.40% 0.2068 25.84% 0.2742 45.62% 0.3984
NWS 13.43% 0.2071 25.08% 0.2760 45.89% 0.4315

(2) Mean and standard deviation of the prediction errors on time series collected from vatos.cs.uchicago.edu
0.1 Hz 0.05 Hz 0.025 Hz

Mean SD Mean SD Mean SD
Independent Static Homeostatic 333.75% 4.0129 340.31% 4.0151 360.14% 3.9996
Independent Dynamic Homeostatic 12.76% 0.2067 26.19% 0.3531 66.62% 1.0480
Relative Static Homeostatic 16.46% 0.1929 30.16% 0.2561 57.52% 0.3906
Relative Dynamic Homeostatic 15.48% 0.4531 33.73% 0.8334 102.55% 3.5787
Independent Dynamic Tendency 12.38% 0.1926 22.78% 0.2583 43.16% 0.3699
Relative Dynamic Tendency 11.77% 0.2722 20.25% 0.3735 36.85% 0.5569
Mixed Tendency 10.78% 0.1947 18.74% 0.2607 34.31% 0.3628
Last Value 16.50% 0.1879 29.40% 0.2510 57.14% 0.3874
NWS 15.53% 0.1883 25.00% 0.2515 57.33% 0.3913

(3) Mean and standard deviation of the prediction errors on time series collected from mystere.ucsd.edu
0.1 Hz 0.05 Hz 0.025 Hz
Mean SD Mean SD Mean SD

Independent Static Homeostatic 158.09% 1.9350 167.71% 1.9891 185.06% 2.1680
Independent Dynamic Homeostatic 21.24% 0.2655 38.47% 0.3867 70.20% 0.5989
Relative Static Homeostatic 22.21% 0.1929 37.94% 0.2329 63.09% 0.3731
Relative Dynamic Homeostatic 43.81% 1.5344 85.09% 2.2558 156.26% 4.3681
Independent Dynamic Tendency 18.38% 0.2097 34.96% 0.2632 62.10% 0.4109
Relative Dynamic Tendency 29.01% 0.8312 55.81% 1.2062 103.45% 2.0504
Mixed Tendency 17.31% 0.2639 32.21% 0.3773 55.81% 0.5749
Last Value 19.86% 0.2045 35.56% 0.2270 99.47% 0.3445

NWS 18.88% 0.1945 34.92% 0.2288 96.96% 1.4816

(4) Mean and standard deviation of the prediction errors on time series collected from pitcairn.mcs.anl.gov
0.1 Hz 0.05 Hz 0.025 Hz
Mean SD Mean SD Mean SD

Independent Static Homeostatic 6.94% 0.0352 6.29% 0.0425 7.83% 0.0482
Independent Dynamic Homeostatic 2.54% 0.0262 4.23% 0.0407 7.70% 0.0568
Relative Static Homeostatic 2.73% 0.0248 4.45% 0.0364 7.17% 0.0462
Relative Dynamic Homeostatic 2.68% 0.0242 4.48% 0.0371 7.29% 0.0515
Independent Dynamic Tendency 2.43% 0.0239 4.11% 0.0365 7.07% 0.0476
Relative Dynamic Tendency 2.29% 0.0237 3.91% 0.0409 7.39% 0.0575
Mixed Tendency 2.29% 0.0237 3.91% 0.0409 7.38% 0.0574
Last Value 2.69% 0.0242 4.46% 0.0364 7.24% 0.0473
NWS 2.69% 0.0242 4.49% 0.0365 7.47% 0.0479

From the experimental results we observe that all the
prediction strategies gave less accurate prediction on
average for the traces with lower frequency. We attribute
this result to (a) data points being more widely spaced in
time, so the last data points are not as “current” as the
traces where there is more data, and (b) the prediction
point being farther in the future. We also see that the
independent static homeostatic strategy, without any
dynamic adjustment, always gives worse results than the
other strategies. Tendency prediction strategies outperform
other prediction strategies almost in all cases. Moreover,
the strategy using mixed variation gives better
performance on average than the other two tendency
prediction strategies for time series collected from
different machines; specifically, it gives an average error
rate of 21.64% for time series collected from abyss,
21.28% for time series collected from vatos, 35.11% for

time series collected from mystere, and 4.53% for time
series collected from pitcairn. It also achieves the smallest
or near smallest standard deviation of prediction error on
twelve time series.

From the experimental results we also see that tendency
prediction with the mixed variation method outperforms
the NWS predictor on all time series with different
frequency. Our prediction strategy achieves a prediction
error that is 20.68% less than that of the NWS predictor on
average. We also observe that, for time series with lower
frequency (and thus less information), the benefits gained
by using our prediction strategy rather than the NWS
predictor are as significant as those for time series with
similar properties but higher frequency. In particular, our
prediction strategy outperforms the NWS predictor by
17.73% on average on four time series with 0.1 Hz
frequency, by 17.01% on average on four time series with

0.05 Hz frequency, and by 27.3% on average on four time
series with 0.025 Hz frequency.

4.3 Varied time-series comparison

To show that our mixed tendency prediction strategy
performs better than NWS in the context of CPU load
prediction, we compared the techniques on an much larger
set of CPU load time series collected by Dinda [12].

These week-long, 1 Hz resolution time series (available
at www.cs.nwu.edu/~pdinda/LoadTraces) represent 38
different machines, including production and research
cluster machines, computer servers, and desktop
workstations. The series exhibit very high standard

deviation and maxima. The standard deviation is typically
at least as large as the mean, while the maxima are as
much as two orders of magnitude larger. The time series
have complex, rough, and often multimodal distributions
that are not well fitted by analytic distributions such as the
normal or exponential distributions. All of the time series
exhibit a high degree of self-similarity and epochal
behavior. Detailed statistical properties of these CPU load
time series can be found in [12].

For our experiments, we selected 38 one-day time
series collected on August 18, 1997. The prediction errors
of our prediction strategy and NWS strategies on this set
of time series are shown in Figure 4.

0%
5%

10%
15%
20%
25%
30%
35%

ap
hr

od
ite

ar
gu

s
as

bu
ry

-p
ar

k
as

cl
ep

iu
s

br
uc

e
co

ba
in

da
rr

yl
ha

w
ai

i
he

st
ia

m
an

ch
es

te
r1

m
an

ch
es

te
r2

m
an

ch
es

te
r3

m
an

ch
es

te
r4

m
an

ch
es

te
r5

m
an

ch
es

te
r6

m
an

ch
es

te
r7

m
an

ch
es

te
r8

m
oj

av
e

ne
w

or
k

pr
yo

r
rh

ea
ru

bi
x

sa
ha

ra
th

em
is

ur
an

us
ze

no
ax

p0
ax

p1
ax

p2
ax

p3
ax

p4
ax

p5
ax

p6
ax

p7
ax

p8
ax

p9
ax

pf
ea

ax
pf

eb

Tendency(mixed variation) NWS

Figure 4: Prediction error of our predictor and NWS predictor on 38 time series collected from a variety of machines

and with different statistical properties.

The experimental results show that the mixed tendency

prediction strategy outperforms the NWS predictors on all
of the 38 time series with different properties. It achieves a
prediction error that is 36% lower on average than that
achieved by NWS.

5 Conclusion and future work

Applications and schedulers each can benefit from
accurate predictions of future resource availability when
making decisions concerning how to use time-shared
resources. In this paper, we have presented and evaluated
two families of novel one-step-ahead time series
prediction strategies that weight recent data in various
ways. We presented experimental results that allow us to
identify one such strategy as the best of the two families
and to demonstrate that this strategy outperforms the
widely used NWS predictor by 36% on average. While not
every prediction is better, performance is clearly better on
average. Comparison of prediction results on over 50 CPU
load time series demonstrated that giving more weight to
the most recent values significantly affects prediction
accuracy.

Although our prediction strategy has been described
and evaluated in the context of CPU load, we expect that it
will also prove effective in other contexts. We plan to

extend its use to network bandwidth and latency
predictions. In addition, we are using this information to
guide a scheduler designed to make efficient data
placement approaches on a wide area network, where good
predictions determine how well an application can run.

Acknowledgments

We thank Peter Dinda for the use of his set of time
series. Thanks also to our colleagues within the GrADS
project for providing access to testbed resources. This
work was supported in part by the Grid Application
Development Software (GrADS) project of the NSF Next
Generation Software program, under Grant No. 9975020,
and in part by the Mathematical, Information, and
Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under contract W-31-109-Eng-38.

References

[1] I. Foster and C. Kesselman, "The Grid: Blueprint for a New
Computing Infrastructure," Morgan Kufmann, 1998, pp. 701.
[2] M. Faerman, A. Su, R. Wolski, and F. Berman, "Adaptive
Performance Prediction for Distributed Data-Intensive
Applications," presented at Proceedings of the ACM/IEEE SC99

Conference on High Performance Networking and Computing,
Portland, OR, 1999.
[3] S. V. Adve, A. F. Harris, C. J. Hughes, D. L. Jones, R. H.
Kravets, K. Nahrstedt, D. G. Sachs, R. Sasanka, J. Srinivasan,
and W. Yuan, "The Illinois GRACE Project: Global Resource
Adaptation through Cooperation," presented at in the
Proceedings of the Workshop on Self-Healing, Adaptive, and
self-MANaged Systems (SHAMAN), 2002.
[4] C. Liu, L. Yang, I. Foster, and D. Angulo, "Design and
Evaluation of a Resource Selection Framework for Grid
Applications," presented at Proceedings of the 11th IEEE
International Symposium on High-Performance Distributed
Computing (HPDC 11), Edinburgh, Scotland, 2002.
[5] H. Dail, G. Obertelli, F. Berman, R. Wolski, and A.
Grimshaw, "Application-Aware Scheduling of a
Magnetohydrodynamics Application in the Legion Metasystem,"
presented at Proceedings of the 9th Heterogeneous Computing
Workshop, 2000.
[6] P. A. Dinda, "A Prediction-based Real-time Scheduling
Advisor," presented at Proceedings of the 16th International
Parallel and Distributed Processing Symposium (IPDPS 2002),
2002.
[7] P. A. Dinda and D. R. O'Hallaron, "An Evaluation of Linear
Models for Host Load Prediction," presented at Proceedings of
the 8th IEEE International Symposium on High-Performance
Distributed Computing (HPDC-8), Redondo Beach, CA, 1999.
[8] R. Wolski, "Dynamically Forecasting Network Performance
Using the Network Weather Service," Journal of Cluster
Computing, 1998.
[9] R. Wolski, N. Spring, and J. Hayes, "Predicting the CPU
availability of Time-shared Unix Systems," presented at
Proceedings of 8th IEEE High Performance Distributed
Computing Conference (HPDC8), 1999.
[10] R. Wolski, N. Spring, and J. Hayes, "The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing," Journal of Future Generation
Computing Systems, pp. 757-768, 1998.
[11] R. Wolski, N. Spring, and C. Peterson, "Implementing a
Performance Forecasting System for Metacomputing: The

Network Weather Service," presented at Proceedings of SC97,
1998.
[12] P. A. Dinda and D. R. O'Hallaron, "The Statistical
Properties of Host Load," presented at Fourth Workshop on
Languages, Compilers, and Run-time Systems for Scalable
Computers (LCR 98), Pittsburgh, PA, 1998.
[13] F. Virili and B. Freisleben, "Neutral Network Model
Selection for Financial Time Series Prediction," Computational
Statistics, vol. 16, pp. 451-463, 2001.
[14] A. Lendasse, E. d. Bodt, V. Wertz, and M. Verleysen, "Non-
linear Financial Time Series Forecasting-Application to the Bel
20 Stock Market Index," European Journal of Economic and
Social Systems, vol. 14, pp. 81-91, 2000.
[15] P. d. Almeida and L. Torgo, "The Use of Domain
Knowledge in Feature Construction for Financial Time Series
Prediction," presented at Portuguese Conference on Artificial
Intelligence(EPIA 2001), Porto, Portugal, 2001.
[16] L. M. Lawson, E. E. Hofmann, and Y. H. Spitz, "Time
Series Sampling and Data Assimilation in a Simple Marine
Ecosystems Model," in Deep Sea Research, vol. 43, 1996, pp.
625-651.
[17] H. Kato and H. Kawahara, "An Application of the Bayesian
Time Series Model and Statistical System Analysis for F0
Control," Speech Communication, vol. 24, pp. 325-339, 1998.
[18] N. K. Groschwitz and G. C. Polyzos, "A Time Series Model
of Long-Term NSFNET Backbone Traffic," presented at
Proceedings of the IEEE International Conference on
Communications(ICC'94), 1994.
[19] H.-W. Braun, B. Chinoy, K. C. Claffy, and G. C. Polyzos,
"Analysis and Modeling of High Speed Networks: 1993 Annual
Status Report," San Diego Supercomputer Center and University
of Californina, San Diego CS92-237, 1993.
[20] M. Harchol-Balter and A. Downey, "Exploiting Process
Lifetime Distributions for Dynamic Load Balancing," presented
at Proceedings of ACM Sigmetrics' 96 Conference on
Measurement and Modeling of Computer Systems, Philadelphia,
PA, 1996.

