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Abstract 
The dynamic nature of a resource-sharing environment 

means that applications must be able to adapt their 
behavior in response to changes in system status. 
Predictions of future system performance can be used to 
guide such adaptations. In this paper, we present and 
evaluate several new one-step-ahead and low-overhead 
time series prediction strategies that track recent trends by 
giving more weight to recent data. We present results that 
show that a dynamic tendency prediction model with 
different ascending and descending behavior performs 
best among all strategies studied. A comparative study 
conducted on a set of 38 machine load traces shows that 
this new predictor achieves average prediction errors that 
are between 2% and 55% less (36% less on average) than 
those incurred by the predictors used within the popular 
Network Weather Service system. 
 
 
1 Introduction 
 

In multi-user time-shared systems, applications are in 
active competition with unknown background workloads 
introduced by other users. The contention that results from 
the resource sharing tends to cause load and resource 
availability to vary over time. The impact can be 
particularly significant on a computational Grid [1], which 
links interconnected but geographically distributed 
computing resources as a cooperating set of resources. 
Clearly, predictions of system performance are necessary 
for efficient use of such resources. Performance 
predictions can be useful to both applications and 
schedulers. Applications can use predictions to adapt their 
behavior in response to changes in system status to get 
better performance[2, 3]. Schedulers can use predictions to 
guide their scheduling strategies and thus to achieve 
higher application performance and more efficient 
resource use[4-6]. 

Varying CPU load has a significant effect on the 
running time of CPU-bound applications. Indeed, for 
certain types of applications the running time of a 
compute-bound task is linearly proportional to the average 

CPU load it encountered during the execution [4, 7]. The 
focus of this paper is predicting the CPU load of shared 
computing resources. Our contribution is to introduce a 
new time series prediction technique that behaves better 
than other techniques used previously. Rather than giving 
the same consideration to the history data within a “sliding 
window” as do traditional linear models and mean- or 
median-based models, our one-step-ahead time series 
prediction strategies give more weight to more recent 
measurements than to other history data. We also allow for 
the use of different behaviors when “ascending” and 
“descending.”  Our experimental results show that, on a 
range of host load measurement datasets, our dynamic 
tendency strategy with different ascending and descending 
behavior consistently outperforms the nine predictors used 
within the Network Weather Service (NWS) [8-11], a 
widely used performance prediction system.    

The rest of the paper is structured as follows. Section 2 
introduces background and related work. Section 3 gives a 
detailed description of the prediction strategies we studied. 
Section 4 describes the experimental results when our 
prediction strategies are applied to actual measurements 
and compared with those of other researchers. Section 5 
presents our conclusions and notes directions for further 
work.  
 
2 Background and related work 
 

Previous efforts [9, 12] indicate that CPU load is 
strongly correlated over time, which implies that history-
based load prediction schemes are feasible. We believe 
that the key to making accurate predictions is to correctly 
model the relationship of the history data with the future 
values.  

Time series modeling has been studied widely in many 
areas, including financial data prediction [13-15], earth 
and ocean sciences [16], biomedical signal processing 
[17], and networking [18, 19]. In the area of CPU load 
prediction, the Network Weather Service [8-11] provides 
one-step-ahead predictions for any time-series fed to its 
predictor module. NWS is a distributed system that 
periodically monitors and dynamically forecasts the 



performance of various network and computational 
resources. NWS applies a collection of one-step-ahead 
prediction strategies to time series and chooses the 
strategy used for the “next”  prediction dynamically 
according to which strategy has been most accurate over 
recent measurements. The prediction strategies used by 
NWS currently include running average, sliding window 
average, last measurement, adaptive window average, 
media filter, adaptive window media, α-trimmed mean, 
stochastic gradient, and autoregressive [8, 9]. Dynamical 
selection of the best prediction strategy on the fly has 
resulted in predictions equivalent to, or slightly better 
than, the best predictor in the set. We note that while for 
the purposes of comparison we measure the improvements 
achieved by our new prediction relative to those used 
within NWS, our new strategies could easily be included 
as predictors within the NWS framework. Thus, our work 
does not invalidate the NWS approach but rather shows 
that its choice of predictors can be improved. 

Dinda et al. evaluated multiple linear models, including 
autoregressive (AR), moving average (MA), 
autoregressive moving average (ARMA), autoregressive 
integrated moving average (ARIMA), and autoregressive 
fractionally integrated moving average (ARFIMA) models 
[7].  Their results show that the simple AR model (also 
used in NWS) is the best model of this class because of its 
good predictive power and low overhead.  More complex 
liner models are expensive to fit and hence difficult to use 
in a dynamic or real-time setting. Our approach, as shown 
in Section 4, performs better and has less overhead than 
these approaches.  

 
3  Prediction strategies study 
 

This section defines our prediction strategies. Each 
strategy predicts the one-step-ahead value based on a fixed 
number of immediately preceding history data measured at 
a constant-width time interval. We present two families of 
strategies: (1) homeostatic prediction strategies, Section 
3.1, and (2) tendency-based prediction strategies, Section 
3.2. 

We use the following notation in the descriptions of the 
prediction strategies: 
  VT: the measured value at the Tth measurement, 
  PT+1:  the predicted value for measurement value VT+1, 
     N:  the number of data points of history data used in the 
prediction, also called the window size.  
 
3.1 Homeostatic prediction strategies 
 

What we term homeostatic prediction strategies work 
on the assumption that if the current value is greater (less) 
than the mean of history values, then the next value is 
likely to decrease (increase). The basis of this approach is 
to be “self-correcting”  so that they return to the mean of 

the history value. More formally, this kind of strategy can 
be expressed as following: 
          if (VT > MeanT) then 
              PT+1 = VT – DecrementValue; 
              [Optional DecrementValue adaptation process]     
         else if (VT < MeanT) then 
              PT+1 = VT + IncrementValue; 
              [Optional IncrementValue adaptation process] 
         else 
              PT+1 = VT; 

where MeanT is the mean of the N history data points. 
It can be calculated by the following formula: 

    MeanT = (Σi=1..N V i)/N                                          (1)       
At every prediction step, the increment value or 

decrement value can be an independent value or a relative 
value that is proportional to the current measurement. The 
increment or decrement value can be “static”  such that it is 
fixed for all prediction steps, or  “dynamic”  such that it is 
adapted to the time series at each step. The different 
combinations of the above configurations result in four 
homeostatic prediction strategies: independent static, 
independent dynamic, relative static, and relative dynamic. 
We present the detailed description of these strategies 
next.  
 
3.1.1 Independent static homeostatic prediction 
strategy.  The  independent   static   homeostatic   strategy 
generates a prediction by changing the current value by a 
fixed amount, without any adaptation process.  For this 
strategy, the decrement (increment) value remains fixed 
for the run of the experiment, and the increment or 
decrement value can be expressed by the following 
formula: 
          DecrementValue=DecrementConstant             (2) 
          IncrementValue=IncrementConstant 

The decrement (increment) constant may change 
depending on the training set. Values between 0.05 and 1 
are reasonable. Our selection for this value is discussed in 
Section 4.1. 
 
3.1.2 Independent dynamic homeostatic prediction 
strategy.  The  independent  dynamic homeostatic strategy 
dynamically adjusts the amount of the increment or 
decrement value by means of an adaptation process: 

DecrementValue adaptation process: 
     Measure VT+1;  

          RealDecValueT = VT - VT+1; 

          DecConstantT+1 = DecConstantT + (RealDecValueT –  
                                       DecConstantT) * AdaptDegree; 

IncrementValue adaptation process: 
     Measure VT+1; 

          RealIncValueT = VT+1 - VT; 

          IncConstantT+1 =IncConstantT + (RealIncValueT -         
                                     IncConstantT) * AdaptDegree;    

At each time step, after we measure the real data 
(VT+1), we calculate the difference between the current 



measured value and the last measured value, thus 
determining the real decrement (increment) we should 
have used in the last prediction in order to get the actual 
value. We adapt the value of the decrement (increment) 
value accordingly and use the adapted IncrementConstant 
(or DecrementConstant) to predict the next data point. The 
parameter AdaptDegree can range from 0 to 1 and 
expresses the adaptation degree of the variation. If 
AdaptDegree is equal to 0, the DecConstantT  
(IncConstantT) is not adapted at all, and we have 
nonadaptation (or a static approach). If AdaptDegree is 
equal to 1, the DecConstantT (IncConstantT) is equal to 
RealDecValueT (RealIncValueT), or full adaptation.   

We define the value of AdaptDegree by using an 
experimental method described in Section 3.3. The value 
that results in minimal average error rate is considered as 
suitable and the AdaptDegree will change depending on 
the training set. Values between 0.05 and 1 are reasonable. 
Our selection for this value is discussed in Section 4.1. 

 
3.1.3 Relative static homeostatic prediction strategy. 
The relative static homeostatic strategy assumes that a 
larger load value has more potential to change than does a 
smaller load value. Thus, this strategy modifies the 
independent static homeostatic prediction strategy so that 
the increment or decrement applied to a prediction is 
proportional to the current value instead of a constant 
value. For this strategy, the increment or decrement value 
can be expressed by the following formula: 
         DecrementValue= VT* DecrementFactor           (3) 
         IncrementValue= VT* IncrementFactor 

Increment or decrement factors between 0.05 and 1 are 
reasonable. Our selection for these values is discussed in 
Section 4.1. 
 
3.1.4 Relative dynamic homeostatic prediction strategy.   
The relative dynamic homeostatic strategy alters the 
prediction value by a relative amount, as does the relative 
static homeostatic strategy, but allows the value of 
IncrementFactor and DecrementFactor to be adapted 
dynamically, using the same method as in the independent 
dynamic homeostatic prediction strategy. Again, the 
methodology for selecting the constants is described in 
Section 4.1. 
 
3.2 Tendency-based prediction strategies 
 

Unlike the homeostatic strategies that predict the future 
value according to the current value and the mean of the 
history value.  Our second family of prediction strategies 
predicts the next value according to the tendency of the 
time series change. This approach assumes that if the 
current value increases, the next value will also increase 
and that if the current value decreases, the next value will 

also decrease. Formally, tendency based prediction 
strategies can be expressed as follows: 

   //Determine Tendency 
    if ((VT - VT-1)<0)  
            Tendency=”Decrease”;  

    else if ((VT-1 - VT )<0)  
  Tendency=”Increase”;    

         if (Tendency=”Decrease”) then 
                 PT+1 = VT – DecrementValue; 
                 DecrementValue adaptation process 
         else if (Tendency=”Increase”) then 
                 PT+1 = VT + IncrementValue; 
                IncrementValue adaptation process 

Like the homeostatic prediction strategies, the variation 
(DecrementValue and IncrementValue) can be an 
independent or relative value that is proportional to the 
current value. Since the static prediction strategies always 
give worse results than does a simple last-value prediction 
strategy in the initial experiments, we exclude the static 
case from this discussion.  

Tendency-based strategies have an additional possible 
source of error. It is impossible to predict when a time 
series is going to “change direction”  – that is, when an 
increasing time series will become a decreasing one, or 
vice versa. Because of this, a large error can occur at the 
turning point, or that value when the time series changes 
direction. For example, if the time series value begins to 
drop after several successive increases, the tendency 
prediction strategy will still predict the value to increase at 
this turning point, when the value has actually decreased. 
In this case, the prediction error is the sum of the predicted 
increasing variation and the actually decreasing variation. 
If the increment variation is adapted to a very big value, a 
large error can occur. 

To minimize this kind of error, we need to reduce the 
variation at the possible turning points. The basic idea is 
that if the current value increases to a very high value  (or 
decreases to a very low value), it is possible that a turning 
point is about to occur. In this case, instead of adapting the 
variation according to the measured value as usual, we 
would like to adapt it to a smaller degree to minimize 
possible errors.   

In our implementation, we use the mean of the history 
data as the threshold value. In the increase phase, if the 
current data is smaller than the threshold value, the 
variation will be adapted normally; if the time series 
increases to a value that is bigger than the threshold value, 
it is possible that the next step is a turning point. We 
calculate the percentage of the history data that is greater 
than the current data and use this value as the possibility of 
current data not to be a turning point. The larger the 
current value is, the more possible that it is the turning 
point, and the less the percentage of the history data bigger 
than it is. So the IncrementValue adaptation process can 
be expressed in the following way:  

   MeanT = (Σi=1..N Vi)/N;                                 



    RealIncValueT = VT+1 - VT; 
    NormalInc = IncValueT+(RealIncValueT- IncValueT)*  
                         AdaptDegree; 
    if (VT+1 < MeanT)   // normal adaptation  
         IncrementValueT+1 = NormalInc;   
    else             
         PastGreaterT=(the number of past data points 

greater than VT) /N; 
         TurningPointInc = IncValueT*PastGreaterT; 
         IncrementValueT+1=Min(abs(NormalInc),        
                                             abs(TurningPointInc)); 
NormalInc is the value of the IncrementValueT+1 in the 

case of normal adaptation. When the current value is 
higher than MeanT, it may be a turning point, and the value 
of PastGreaterT (the percentage of the past time series 
values greater than the current value) will be small (<0.5). 
Hence, the possibility that the current value is not the 
turning point is small, so we adjust the increment value 
accordingly. If we predict the value to go in the wrong 
direction, the error is still small. 

Similarly, the DecrementValue can be adapted in the 
same way by using the percentage of the history data 
smaller than current value when the current value 
decreases to a value that is smaller than the threshold 
value. 
 
3.2.1 Independent dynamic tendency prediction 
strategy.    The  independent  dynamic  tendency  strategy 
predicts the next step value by adding or subtracting an 
independent increment or decrement value from the 
current value according to the tendency of the value 
change. For this strategy, we determined the increment 
and decrement values just as we determined them for the 
static and dynamic independent homeostatic prediction 
approaches, discussed in Sections  3.1.1 and 3.1.2. 

 
3.2.2 Relative dynamic tendency prediction strategy. 
The relative dynamic tendency strategy is similar to the 
independent dynamic tendency prediction strategy except 
that the increment value or decrement value is in 
proportion with the current value. The increment and 
decrement values are determined in the same way as for 
the relative static or dynamic homeostatic approaches, 
discussed in Sections 3.1.3 and 3.1.4. 
 
3.2.3 Dynamic tendency prediction strategy (mixed 
variation).  During  initial  experiments,  we observed that 
the independent tendency prediction strategy resulted in 
better predictions during an increase phase and that the 
relative tendency prediction strategy generally resulted in 
better predictions during a decrease phase. One possible 
explanation of this phenomenon is that while a CPU time 
series is increasing, the independent tendency strategy 
better tracks the behavior due to very small increases that 
are independent of the actual value of the prediction, but 
that during the decrease phase the relative prediction 

strategy applies a value is proportional to the current value 
more in keeping with the trend of the load behavior. The 
results of our further experiments (Section 4) also 
confirmed this tentative explanation. This may suggests 
some intrinsic property of CPU load data. The further 
explanation is left as an open question. 

Because of this initial result, we define a mixed 
tendency-based prediction strategy that predicts the next 
value for an increase phase using the independent 
tendency prediction strategy and for a decrease phase uses 
the relative tendency prediction strategy, that is, 
         DecrementValue=VT*DecrementFactor             (4) 
         IncrementValue=IncrementConstant 

For completeness, we examined the use of the 
independent constant in the decrement phase and a relative 
value in the increment phase, but worse predictions 
resulted in all cases.  

 
4 Experimental evaluation 

 
We ran a series of experiments using our predictors in 

order to validate their effectiveness under a variety of 
conditions. We break these experiments into two sets. In 
the first set, we ran all of our predictors on a small set of 
time series over which we had complete control, and we 
evaluated the effect of different collection rates on our 
own predictors, on a simple last-value predictor, and on 
the Network Weather Service.  In the second set of 
experiments, we ran a much larger set of 38 load traces 
and evaluated only our best predictor and the NWS.  

The last-value predictor uses the current measured 
value as the predicted value of the next measurement. It 
can be expressed by the following formula: 
               PT+1 = VT     

Harchol-Balter and Downey [20] show that this is a 
useful prediction strategy for CPU resources. It has low 
computation and storage overhead and is the default 
predictor in several current systems because of its 
simplicity. 

The NWS [8-11] dynamically selects the best predictor 
from a set that includes mean-based prediction strategies, 
median-based prediction strategies, and AR model-based 
prediction strategies. It has been shown to yield forecasts 
that are equivalent to, or slightly better than, the best 
forecaster in the set. This implies that if our prediction 
strategy performs better than NWS predictor, it can 
perform better than all the prediction techniques in the set. 

We did no model fitting for any of the experiments, as 
is commonly needed in linear regression techniques. The 
parameters were defined by using training data off-line 
before the experiments, as described in Section 4.1, and 
were not redefined during the experiments.  Thus, we 
minimized the run-time cost of these strategies; on 
average, this cost is only a few milliseconds per 
prediction. 



4.1 Input parameters 
 
All of the prediction strategies we defined need certain 

input parameters to determine how much to increment or 
decrement a value or how strongly to change a prediction 
over time. In all cases, we determined these values by 
running a set of experiments to exhaustively search the 
space of feasible selections. We did this using training 
data that was not a part of the data used for our 
experiments. We used 25 one-hour-long time series and 
evaluated increment and decrement values at intervals of 
0.05 between 0 and 1 using the error formula  

Average Error Rate= %100*
)(

..1

N

VVPabs
Ni

iii� =
−

    (5) 

Where N is the number of data in the time series to be 
tested. To avoid the “  division overflow” error, we add a 
small value -delta to V i (measured value) in case it is equal 
to zero. We set delta equal to 0.01 in our experiment. The 
value that results in minimal average error rate is 
considered as suitable.  

For our experiments, we found the best results with  
      IncrementConstant= DecrementConstant  = 0.1 
      IncrementFactor = DecrementFactor = 0.05 
      AdaptDegree = 0.5 

These values, while somewhat ad hoc, worked well 
over a wide set of traces. We used the same values for all 
of our predictions regardless of the characteristics of the 
trace each experiment was being run on. It would be 
possible to tune these parameters for each trace, or to 
change them on the fly to better fit a particular load 
behavior, but we felt that was unnecessarily complicated 
and would significantly add to the overhead.  

We also studied the sensitivity of the mixed variation 
prediction strategy to a selection of AdaptDegree 
parameter values. We did this by running this strategy on 
38 time series collected by Dinda [12], while changing the 
value of the AdaptDegree from 0 (nonadaptation) to 1 (full 
adaptation), increasing 0.1 at each step.  Figure 1 shows 
the resulting prediction errors, while Figure 2 shows the 
means and standard deviations. We find that no one value 
of the parameter is the best for all time series: the average 
prediction error shows different varying tendency while 
the value of AdaptDegree changes. Moreover, except in 
the case of nonadaptation, the variation of the prediction 
error for different AdaptDegree values is not a significant 
fraction of the total. We conclude that the value of the 
parameter does not have a significant influence on 
prediction capability of our prediction strategy, as long as 
extremes are avoided, and select an intermediate value of 
0.5 for future studies. 
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Figure 1: The prediction error of the mixed tendency prediction strategy as a function of the 
AdaptDegree parameter on 38 different time series.
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Figure 2:Mean and standard deviation of the prediction errors shown in Figure 1 for each time series. 



4.2 Prediction strategy evaluation 
 

We ran a set of experiments to evaluate the six 
prediction strategies presented in Section 3 and to 
determine what effect, if any, different measurement rates 
have on the predictions. Specifically, we evaluated one-
step-ahead time series prediction strategies on CPU load 
time series collected from four machines on different time 
scales but during the same period of time. For each 
machine, we collected one set of data (spanning roughly 
28 hours) and then examined it as three different time 
series: 0.1 Hz (measure the data every 10 seconds) with 
roughly 10,000 data points; 0.05 Hz (measure the data 
every 20 seconds), so throwing out every other data point 
from the 0.1 Hz trace, and 0.025Hz (measure the data 
every 40 seconds) or throwing out 3 of every 4 data points 
from the 0.1 Hz collection.   

The four machines show different CPU statistical 
properties during our measurement, as illustrated in 
Figure 3. We discuss only the 0.1 Hz time series; the 
other two resolutions share the similar properties, since the 
data were collected during the same period. 

abyss.cs.uchicago.edu is a server machine at the 
University of Chicago. This machine had very low CPU 
load with about 40% data equal to zero and mean equal to 
0.08 during our measurement. The time series are 
relatively stable. The standard deviations are about 0.1755 
for the 0.1 Hz time series. 

vatos.cs.uchicago.edu is a server machine at the 
University of Chicago. This machine had low mean CPU 
load (0.24) during our measurement. On this machine, the 
time series are not stable and hence have higher standard 
deviations: about 0.3188 for the 0.1 Hz time series. 

mystere.ucsd.edu is a server machine at UCSD. This 
machine had low CPU load (with occasional peaks) during 
our measurement (0.4). As the figure shows, on the left 
part of the 0.1Hz resolution time series, there is a dramatic 
change, so that the time series is divided into two stages. 
But within each stage, the CPU load is relatively stable. 

The standard deviations are 0.0755 for the first part of the 
time series, 0.1522 for the second part of the time series.   

pitcairn.mcs.anl.gov is a server machine at Argonne 
National Laboratory (ANL). The CPU load on this 
machine was relatively high during our measurement. All 
the measurements are more than 1, and the mean CPU 
load is greater than 1.2. The time series are relatively 
stable, with some occasional peaks. The standard 
deviations are 0.1355 for the 0.1 Hz time series. 

 

 
(1)abyss.cs.uchicago.edu      (2) vatos.cs.uchicago.edu 

 

 (3) mystere.ucsd.edu             (4) pitcairn.mcs.anl.gov 

Figure 3: 0.1 HZ CPU load time series collected 
from four machines. 

We evaluated our time series prediction strategies on 
twelve CPU load time series. The prediction error was 
calculated by using Equation 5. The error rates and the 
standard deviations of the prediction strategies when tested 
against these time series are shown in Table 1, with the 
best predictors shown in boldface 

Table 1: The error of different prediction strategies, with the best in each case shown in boldface. 
(1) Mean and standard deviation of the prediction errors on time series collected from abyss.cs.uchicago.edu 

0.1 Hz 0.05 Hz 0.025 Hz  
Mean SD Mean SD Mean SD 

Independent Static Homeostatic  496.10% 4.2855 492.26% 4.3583 488.90% 4.4384 
Independent Dynamic Homeostatic 12.50% 0.2369 25.51% 0.4153 56.70% 0.9756 
Relative Static Homeostatic 13.40% 0.2115 24.85% 0.2771 44.37% 0.3960 
Relative Dynamic Homeostatic 13.53% 0.2585 28.67% 0.6984 59.57% 1.5305 
Independent Dynamic Tendency  11.42% 0.2097 21.45% 0.2742 40.44% 0.3949 
Relative Dynamic Tendency 11.54% 0.2338 20.40% 0.3203 36.15% 0.4799 
Mixed Tendency  11.13% 0.2094 19.48% 0.2741 34.23% 0.3941 
Last Value 14.40% 0.2068 25.84% 0.2742 45.62% 0.3984 
NWS 13.43% 0.2071 25.08% 0.2760 45.89% 0.4315 

 



(2) Mean and standard deviation of the prediction errors on time series collected from vatos.cs.uchicago.edu 
0.1 Hz 0.05 Hz 0.025 Hz  

Mean SD Mean SD Mean SD 
Independent Static Homeostatic  333.75% 4.0129 340.31% 4.0151 360.14% 3.9996 
Independent Dynamic Homeostatic 12.76% 0.2067 26.19% 0.3531 66.62% 1.0480 
Relative Static Homeostatic 16.46% 0.1929 30.16% 0.2561 57.52% 0.3906 
Relative Dynamic Homeostatic 15.48% 0.4531 33.73% 0.8334 102.55% 3.5787 
Independent Dynamic Tendency  12.38% 0.1926 22.78% 0.2583 43.16% 0.3699 
Relative Dynamic Tendency 11.77% 0.2722 20.25% 0.3735 36.85% 0.5569 
Mixed Tendency  10.78% 0.1947 18.74% 0.2607 34.31% 0.3628 
Last Value 16.50% 0.1879 29.40% 0.2510 57.14% 0.3874 
NWS 15.53% 0.1883 25.00% 0.2515 57.33% 0.3913 

(3) Mean and standard deviation of the prediction errors on time series collected from mystere.ucsd.edu 
0.1 Hz 0.05 Hz 0.025 Hz  
Mean SD Mean SD Mean SD 

Independent Static Homeostatic  158.09% 1.9350 167.71% 1.9891 185.06% 2.1680 
Independent Dynamic Homeostatic 21.24% 0.2655 38.47% 0.3867 70.20% 0.5989 
Relative Static Homeostatic 22.21% 0.1929 37.94% 0.2329 63.09% 0.3731 
Relative Dynamic Homeostatic 43.81% 1.5344 85.09% 2.2558 156.26% 4.3681 
Independent Dynamic Tendency  18.38% 0.2097 34.96% 0.2632 62.10% 0.4109 
Relative Dynamic Tendency 29.01% 0.8312 55.81% 1.2062 103.45% 2.0504 
Mixed Tendency  17.31% 0.2639 32.21% 0.3773 55.81% 0.5749 
Last Value 19.86% 0.2045 35.56% 0.2270 99.47% 0.3445 

NWS 18.88% 0.1945 34.92% 0.2288 96.96% 1.4816 

(4) Mean and standard deviation of the prediction errors on time series collected from pitcairn.mcs.anl.gov  
0.1 Hz 0.05 Hz 0.025 Hz  
Mean SD Mean SD Mean SD 

Independent Static Homeostatic     6.94%    0.0352     6.29% 0.0425     7.83% 0.0482 
Independent Dynamic Homeostatic    2.54% 0.0262    4.23% 0.0407    7.70% 0.0568 
Relative Static Homeostatic    2.73% 0.0248    4.45% 0.0364    7.17% 0.0462 
Relative Dynamic Homeostatic    2.68% 0.0242    4.48% 0.0371    7.29% 0.0515 
Independent Dynamic Tendency     2.43% 0.0239    4.11% 0.0365    7.07% 0.0476 
Relative Dynamic Tendency    2.29% 0.0237    3.91% 0.0409    7.39% 0.0575 
Mixed Tendency     2.29% 0.0237    3.91% 0.0409    7.38% 0.0574 
Last Value    2.69% 0.0242    4.46% 0.0364    7.24% 0.0473 
NWS    2.69% 0.0242    4.49% 0.0365    7.47% 0.0479 

From the experimental results we observe that all the 
prediction strategies gave less accurate prediction on 
average for the traces with lower frequency. We attribute 
this result to (a) data points being more widely spaced in 
time, so the last data points are not as “current”  as the 
traces where there is more data, and (b) the prediction 
point being farther in the future. We also see that the 
independent static homeostatic strategy, without any 
dynamic adjustment, always gives worse results than the 
other strategies. Tendency prediction strategies outperform 
other prediction strategies almost in all cases.  Moreover, 
the strategy using mixed variation gives better 
performance on average than the other two tendency 
prediction strategies for time series collected from 
different machines; specifically, it gives an average error 
rate of 21.64% for time series collected from abyss, 
21.28% for time series collected from vatos, 35.11% for 

time series collected from mystere, and 4.53% for time 
series collected from pitcairn. It also achieves the smallest 
or near smallest standard deviation of prediction error on 
twelve time series. 

From the experimental results we also see that tendency 
prediction with the mixed variation method outperforms 
the NWS predictor on all time series with different 
frequency. Our prediction strategy achieves a prediction 
error that is 20.68% less than that of the NWS predictor on 
average. We also observe that, for time series with lower 
frequency (and thus less information), the benefits gained 
by using our prediction strategy rather than the NWS 
predictor are as significant as those for time series with 
similar properties but higher frequency. In particular, our 
prediction strategy outperforms the NWS predictor by 
17.73% on average on four time series with 0.1 Hz 
frequency, by 17.01% on average on four time series with 



0.05 Hz frequency, and by 27.3% on average on four time 
series with 0.025 Hz frequency. 

 
4.3 Varied time-series comparison 
 

To show that our mixed tendency prediction strategy 
performs better than NWS in the context of CPU load 
prediction, we compared the techniques on an much larger 
set of CPU load time series collected by Dinda [12].  

These week-long, 1 Hz resolution time series (available 
at www.cs.nwu.edu/~pdinda/LoadTraces) represent 38 
different machines, including production and research 
cluster machines, computer servers, and desktop 
workstations. The series exhibit very high standard 

deviation and maxima. The standard deviation is typically 
at least as large as the mean, while the maxima are as 
much as two orders of magnitude larger.  The time series 
have complex, rough, and often multimodal distributions 
that are not well fitted by analytic distributions such as the 
normal or exponential distributions. All of the time series 
exhibit a high degree of self-similarity and epochal 
behavior. Detailed statistical properties of these CPU load 
time series can be found in [12].  

For our experiments, we selected 38 one-day time 
series collected on August 18, 1997. The prediction errors 
of our prediction strategy and NWS strategies on this set 
of time series are shown in Figure 4. 
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Figure 4:  Prediction error of our predictor and NWS predictor on 38 time series collected from a variety of machines 

and with different statistical properties. 
 
The experimental results show that the mixed tendency 

prediction strategy outperforms the NWS predictors on all 
of the 38 time series with different properties. It achieves a 
prediction error that is 36% lower on average than that 
achieved by NWS.    

 
5 Conclusion and future work 
 

Applications and schedulers each can benefit from 
accurate predictions of future resource availability when 
making decisions concerning how to use time-shared 
resources. In this paper, we have presented and evaluated 
two families of novel one-step-ahead time series 
prediction strategies that weight recent data in various 
ways. We presented experimental results that allow us to 
identify one such strategy as the best of the two families 
and to demonstrate that this strategy outperforms the 
widely used NWS predictor by 36% on average. While not 
every prediction is better, performance is clearly better on 
average. Comparison of prediction results on over 50 CPU 
load time series demonstrated that giving more weight to 
the most recent values significantly affects prediction 
accuracy. 

Although our prediction strategy has been described 
and evaluated in the context of CPU load, we expect that it 
will also prove effective in other contexts. We plan to 

extend its use to network bandwidth and latency 
predictions.  In addition, we are using this information to 
guide a scheduler designed to make efficient data 
placement approaches on a wide area network, where good 
predictions determine how well an application can run. 
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