
Multi-Hop Path Splitting and Multi-Pathing Optimizations
for Data Transfers over Shared Wide-Area Networks using

GridFTP

Gaurav Khanna 1, Umit Catalyurek 2, Tahsin Kurc 2, Rajkumar Kettimuthu 3,
P. Sadayappan 1, Joel Saltz 2, Ian Foster 3

1Department of Computer Science and Engineering, The Ohio State University
2Department of Biomedical Informatics, The Ohio State University

3 Mathematics and Computer Science Division, Argonne National Laboratory

ABSTRACT
In this paper, we propose to employ two optimizations –
multi-hop path splitting and multi-pathing – to improve
the performance of data transfers over shared public net-
works. We present a path determination algorithm which
integrates the aforesaid optimizations in order to improve
the performance of single file transfers. Finally, we develop
a file transfer scheduling algorithm based on this framework,
and evaluate its effectiveness on a wide-area testbed.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Miscellaneous

General Terms
Performance

Keywords
Multi-Hop Path Splitting, Multi-Pathing, Wide-area net-
works, GridFTP

1. INTRODUCTION
As data continues to be collected and generated at an

increasing rate, scientific research is becoming data driven.
High-end Grid computing involves use of distributed col-
lections of computational systems to analyze, process and
visualize data resident in data repositories. For example,
with the Large Haldron Collider (LHC) [1] at CERN, data
generated by a CMS [3] experiment must be transferred
to the Tier-1 site in USA, where it is processed and then
multi-cast onto many domestic Tier-2 sites. Apart from a
few high-bandwidth optical network deployments, most of
the scientific experiments involve the transfer of data over
public, shared network infrastructure. The dynamic nature
of shared wide-area networks and the existence of overlay
routes to transfer files makes it imperative to design a file
transfer mechanism which leverages these characteristics to
to maximize the achievable bandwidth.

GridFTP [2] is widely accepted as a secure, reliable and
high performance data transfer protocol. It employs TCP

Copyright is held by the author/owner(s).
HPDC’08, June 23–27, 2008, Boston, Massachusetts, USA.
ACM 978-1-59593-997-5/08/06.

as the underlying protocol and creates multiple streams be-
tween the source and the destination in order to offset the
network congestion. It, however, does not account for the
existence of overlay paths.

In this work, we seek to explore the effects of multi-hop
path splitting and multi-pathing to improve the file transfer
performance in GridFTP. Multi-hop path splitting improves
performance by replacing a direct TCP connection between
the source and destination by a multi-hop chain through
some intermediate nodes. Multi-pathing involves striping
the data at the source and sending it across multiple over-
lay paths. We propose a path determination heuristic which
incorporates these optimizations for efficient transfer of a
single file. To optimize performance for batch file trans-
fer requests, we extend a collective file-transfer scheduling
heuristic implemented in an earlier work [4]. We experimen-
tally evaluate the optimizations and their GridFTP imple-
mentation on a wide-area testbed.

2. DATA TRANSPORT OPTIMIZATIONS

2.1 Multi-Hop Path Splitting
A split-TCP connection involves dividing a TCP connec-

tion into a set of shorter connections by splitting it at multi-
ple intermediate points with the goal of improving the over-
all throughput. It reduces the round-trip time on each in-
termediate hop as compared to the direct end-to-end path,
thereby sensing the maximum TCP throughput on each hop
quickly. In this work, as an alternative to a direct TCP con-
nection between a source and destination, we explore the use
of multi-hop pipelined transfers using intermediate nodes.
If the bandwidth on each of the intermediate hops is higher
than the direct path, the overall throughput can be expected
to improve.

2.2 Multi-Pathing
Striping the data at the source and sending it across multi-

ple overlay paths can also lead to a better achievable through-
put by simultaneously transferring disjoint chunks of a file
to its destination. However, seemingly independent over-
lay paths may share bottlenecks due to physical sharing of
links and routers. Therefore, an approach that finds multi-
ple parallel links, but does not consider the physical “under-
lay” network, will find suboptimal solutions. This is key to
maximizing the effective aggregate bandwidth.



2.3 Path Determination Algorithm
The path determination algorithm is an iterative algo-

rithm that computes a set of paths which can be collectively
used to transfer a file from its source node(s) to its desti-
nation node. At each step, algorithm invokes a variant of
the Dijsktra’s shortest path algorithm to find a path that
will yield minimum transfer time for the requested file. It
then modifies the overlay network graph to reflect the cur-
rent transfer, and continues it search for another path. The
weighting function employed for weight assignment to an
edge is the the ratio of the round-trip time of the path cor-
responding to the edge to its bandwidth. The motivation be-
hind this is to give preference to low-latency high-bandwidth
edges. The other difference is the calculation of the distance
function to measure the goodness of a path. Since the trans-
fer of a file from a source node to a destination node through
a multi-hop path occurs in a pipelined fashion, therefore, the
distance function of a path is computed as the maximum
of the weights on each of its constituent edges. Note that
the traditional shortest path algorithm employs the distance
function to be the sum of weights instead of the maximum.
The proposed algorithm chooses a set of independent paths
to collectively transfer a file. However, one or more selected
paths can possibly share bottleneck links, which means that
the overall bandwidth would not necessarily increase by em-
ploying multiple paths. In some cases, the aggregate band-
width might sometimes even decrease by employing multiple
paths. We model the shared bottlenecks by performing an
offline characterization of the network and using it to figure
out if the two edges share a common bottleneck. This char-
acterization is then used to avoid choosing multiple overlay
paths where in the aggregate bandwidth would not increase.

2.4 Scheduling a Batch of File Transfers
In a recent work [4], we proposed a dynamic scheduling al-

gorithm which schedules a set of file transfer requests made
by a batch of data-intensive tasks in a wide-area environ-
ment. The scheduling algorithm is iterative, employs adap-
tive replica selection, and makes use of multiple sources for
simultaneously transferring multiple pieces of the same file,
i.e., non-overlapping portions of a chunk, sub-chunks, can
be retrieved simultaneously from multiple file replicas. In
this paper, we build upon the algorithm proposed in our
previous work by incorporating the ideas of multi-hop path
splitting and multi-pathing. The scheduling policy is based
on MinMin.

3. EXPERIMENTAL RESULTS
We compare our dynamic scheduling approach against our

previously proposed work [4] as well as a baseline strategy
that we refer to as Naive Scheduling. In this approach, each
destination site picks a randomly chosen replica source for
retrieving a file instead of employing dynamic bandwidth
information or multiple replicas. Here onwards, we refer to
our previously proposed scheduling algorithm [4] as GDS
(Global Dynamic Scheduler), the scheduling variant that
incorporates path-splitting and multi-pathing optimizations
as GDS-MHMP, and the scheduling variant that incorpo-
rates the modeling of shared bottleneck on top of these
two as GDS-MHMP-SB. The experiments were carried out
across five sites: BMI, a memory/storage cluster at the Ohio
State University; ST, the Starlight site in Chicago; JA site
in Japan which is a part of the Japan Gigibit Network II

Figure 1: Performance of all the algorithms under the

1-to-all communication pattern in terms of the Average

throughput

(JGN2) project; ORNL, which consists of 28 dual proces-
sor 3.06 GHz Intel Xeon sites; and ANL, a IA-32 Linux
cluster which consists of 96 dual-processor Intel Xeon sites.
Figure 1 shows the performance of the scheduling schemes
under a 1-to-all communication pattern. In this experiment,
only one of the 5 sites acts as a source initially. Each of the
file needs to be transferred to all the other sites. The results
show that GDS-MHMP leads to significant improvements in
the achieved throughput over the GDS. This is because it
exploits path splitting and multi-pathing. GDS-MHMP-SB
performs similar or better in comparison to GDS-MHMP.
The results also show that the proposed schemes are able
to consistently outperform the Naive Scheduling scheduling
approach, as expected.

4. CONCLUSIONS
In this paper, we explored two optimizations, namely,

multi-hop path splitting and multi-pathing to improve the
performance of file transfers over wide-area networks. We
presented a path determination algorithm which integrates
the aforesaid optimizations in order to improve the perfor-
mance of single file transfers. We incorporated these opti-
mizations within our previously proposed wide-area schedul-
ing algorithm and experimentally showed its effectiveness on
a wide-area testbed.

5. REFERENCES
[1] The Large Haldron Collider (LHC) .

http://lhc.web.cern.ch/lhc/.

[2] W. Allcock. Gridftp: Protocol extensions to ftp for the
grid. In Global Grid ForumGFD-R-P.020, 2003.

[3] K. Holtman. Cms data grid system overview and
requirements. In Computing in High Energy and
Nuclear Physics (CHEP), 2001.

[4] G. Khanna, T. Kurc, U. Catalyurek, R. Kettimuthu,
P. Sadayappan, and J. Saltz. A dynamic scheduling
approach for coordinated wide-area data transfers using
gridftp. In Proc. of 22th International Parallel and
Distributed Processing Symposium (IPDPS), Miami,
Florida, 2008. to appear.


