
Secure, Efficient Data Transport and Replica Management for
High-Performance Data-Intensive Computing

_

Bill Allcock1 Joe Bester1 John Bresnahan1 Ann L. Chervenak2 Ian Foster1,3
Carl Kesselman2 Sam Meder1 Veronika Nefedova1 Darcy Quesnel1 Steven
Tuecke1

1 Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

{allcock, bester, foster, nefedova, quesnel, tuecke}@mcs.anl.gov

2 Information Sciences Institute
University of Southern California

Los Angeles, CA 90292
{annc, carl}@isi.edu

3 Department of Computer Science & The Computation Institute

The University of Chicago
Chicago, IL 60637

Abstract

After studying data-intensive, high-performance computing applications such as high-
energy physics and climate modeling, we conclude that these applications require two
fundamental data management services: secure, reliable, efficient transfer of data in
wide area environments and the ability to register and locate multiple copies of data sets.
In this paper, we present our design of these services in the Globus grid computing
environment. We also describe the performance of our current implementation.

1 Introduction

Data-intensive, high-performance computing applications require the efficient
management and transfer of terabytes or petabytes of information in wide-area,
distributed computing environments. Examples of data-intensive applications include
experimental analyses and simulations in several scientific disciplines, such as high-
energy physics, climate modeling, earthquake engineering and astronomy. These
applications share several requirements. Massive data sets must be shared by a large
community of hundreds or thousands of researchers who are distributed around the
world. These researchers need efficient transfer of large data sets to perform analyses at
their local sites or at other remote resources. In many cases, the researchers create local
copies or replicas of the experimental data sets to overcome long wide-area data transfer
latencies. The data management environment must provide security services such as
authentication of users and control over who is allowed to access the data. In addition,
once multiple copies of files are distributed at multiple locations, researchers would need

the ability to find all existing copies of the data set and determine whether to access an
existing copy or create a new one to meet the performance needs of their applications.

The needs of these data-intensive computing applications rest on two fundamental data
management services: secure, reliable, efficient transfer of data in wide area
environments and the ability to register and locate multiple copies of data sets.

This paper presents our approach to providing these fundamental data management
services in the Globus grid computing environment. We begin by describing in more
detail the needs of two data-intensive applications. After briefly introducing the Globus
grid computing environment, we present the design and initial performance
measurements of our GridFTP protocol for efficient, secure data transfers as well as the
Globus Replica Management architecture.

2 Data-Intensive Computing Requirements

We focus on two data-intensive computing applications: high-energy physics
experiments and climate modeling applications. Important parameters required to
characterize an application include: average file sizes, total data volume, rate of data
creation, types of file access (write-once, write-many), expected access rates, type of
storage system (file system or database), and consistency requirements for multiple
copies of data.

2.1 High-energy Physics applications

First, we consider the data requirements of high-energy particle physics experiments.
These experiments are characterized by the need to perform analysis over large amounts
of data. Experiments that use the Large Hadron Collider at the European physics center
CERN will produce large amounts of raw and derived experimental results. Beginning in
2005, these experiments will produce several petabytes of data per year for
approximately 15 years. We are working with several physics experiments (ATLAS,
CMS) that will produce LHC data as well as other physics data sets (BaBar).

There are two types of data generated by physics experiments:

• Experimental data represents the information collected by the experiment. There
is a single creator of this data, and once created, it is not modified. However, data
may be collected incrementally over a period of weeks.

• Metadata captures information about the experiment (such as the number of
events) and the results of analysis. Multiple individuals may create
metadata[CFK1]. The volume of metadata is typically smaller than that of
experimental data.

The BaBar, CMS and ATLAS experiments use object-oriented Objectivity databases to
store experimental results. Objectivity stores collections of objects in a single file called
a database. Databases can be grouped into larger collections called federations. Typical

database file sizes are approximately 2 to 10 gigabytes. Federations are currently limited
to 64K files; however, future versions of Objectivity will eliminate this restriction. The
BaBar experiment plans to exploit this feature to reduce database file sizes to
approximately 1 gigabyte and increase the size of a federation to include millions of
database files. BaBar metadata files are currently 2 gigabytes in size, with plans to
reduce this size in the future.

While in principle the primary databases produced by physics experiments are read-only
(once created, their contents do not change), we find in practice that during an initial data
production period of several weeks, database files change as new objects are added. For
example, in the BaBar experiment, objects are appended to database files in a federation
over several weeks; during this period, many database files may be changing
simultaneously until the files are filled, after which they do not change further.

Metadata may be either modified or augmented over time, even after the initial period of
producing experimental data. For example, in the CMS experiment, metadata files
change to reflect the increasing total number of events in the database.

The consumers of experimental physics data and metadata will number in the hundreds or
thousands. These users are distributed at many sites worldwide.

Because of the geographic distribution of the participants in a particle physics experiment, it is
desirable to make copies or replicas of the data being analyzed to minimize the access time to
the data. For example, Figure 1 shows the expected replication scheme for the physics data
sets generated by the CERN Large Hardron Collider. Files are replicated in a hierarchical
manner, with all files stored at a central location (CERN) and decreasing subsets of the data
set stored at national and regional data centers [1][2].

Tier 0
CERN

Tier 1
France

Tier 1
Italy

Tier 1
England

Tier 2
Bologna

Tier 2
Pisa

Tier 2
Padova

Figure 1: Scheme for hierarchical replication of Physics data

Replication of physics data sets is complicated by several factors. First, security services
are required to authenticate the user and control access to storage systems. Next, because
data sets are so large, it may be desirable to replicate only “interesting” subsets of the
data. Finally, since experimental data and metadata files may be modified, any updates

to the databaes files must be propagated to all replicas. In the case of the BaBar
experiment, experimental database files are logically appended over a period of several
weeks. During this initial production period, users want access to the data as it is being
produced. The experiment provides periodic batches of updates to remote replicas of the
data sets, typically every few days or every week. Since metadata updates can take place
over an indefinite period, these must also be propagated periodically to all replicas.
BaBar uses a master-slave model to propagate modifications to replicas. This model is
simple to implement in the physics environment because the physicists have partitioned
the object identifier space so that each participating site has exclusive write access to a
predefined subset of objects in the federation. The exclusive writer of a particular object
acts as the master in update operations.

Table 1 summarizes the characteristics of high-energy physics applications.

Rate of data generation (starting 2005) Several petabytes per year
Typical experimental database sizes 2 to 10 gigabytes
Typical metadata database sizes 2 gigabytes
Maximum number of database files in federation Currently 64K; eventually millions
Period of updates to experimental data Several weeks
Period of updates to metadata Indefinite
Type of storage system Object-oriented database
Number of data consumers Hundreds to thousands
Table 1: Characteristics of high-energy physics applications

2.2 Climate Modeling Application

A second example application is climate modeling. Climate modeling research groups
sometimes generate large reference simulations that are made available to a large
international community. The output from these simulations can be large (many
terabytes). The simulation data is typically generated at one or more supercomputer
centers and is released in stages to progressively larger communities: first the research
collaboration that generated the data, then perhaps to selected colleagues, and eventually
to the entire community. Thus, these applications require access control to determine
which users are allowed to view the collection at each stage.

In contrast to the physics community, data is not maintained in databases but rather as flat
files, typically stored in a structured data format such as NetCDF, with associated
metadata. In addition, files are not updated once released.

However, as in the physics application, researchers in the climate modeling community
will find it convenient to store local copies of portions of the data set. Therefore, the
application will have similar needs for managing copies of data sets at multiple locations,
as well as higher-level services such as replica selection or automatic replica creation.

2.3 Summary of Application Requirements

We observe that these scientific applications, as well as others we have examined in such
areas as earthquake engineering and astronomy, require two fundamental data
management components, upon which higher-level components can be built:

! A reliable, secure, high-performance data transfer protocol for use in wide
area environments. Ideally, this protocol would be universally adopted to
provide access to the widest variety of available storage systems.

! Management of multiple copies of files and collections of files, including
services for registering and locating all physical locations for files and
collections.

Higher-level services that can be built upon these fundamental components include
reliable creation of a copy of a large data collection at a new location; selection of the
best replica for a data transfer operation based on performance estimates provided by
external information services; and automatic creation of new replicas in response to
application demands.

In the next section, we present an overview of the Globus grid computing environment
and our approach to providing these fundamental data management services.

3 The Globus Architecture and Data Management

The term grid computing refers to the emerging computational and networking
infrastructure that is designed to provide pervasive, uniform and reliable access to data,
computational, and human resources distributed over wide area environments. For
example, in a computational grid environment, scientists at locations throughout the
world can share data collection instruments such as particle colliders, compute resources
such as supercomputers and clusters of workstations, and community data sets stored on
network caches and hierarchical storage systems.

The Globus project provides middleware services for grid computing environments.
There are four main components of Globus. The Grid Security Infrastructure (GSI)
provides authentication and authorization services using public key certificates as well as
Kerberos authentication. The Globus Resource Management architecture provides a
language for specifying application requirements and mechanisms for immediate and
advance reservations of one or more computational components. This architecture also
provides several interfaces for submitting jobs to remote machines. The Globus
Information Management architecture provides a distributed scheme for publishing and
retrieving information about resources in the wide area environment. A distributed
collection of information servers is accessed by higher-level services that perform
resource discovery, configuration and scheduling. The last major component of Globus
is the Data Management architecture.

Based on the application needs presented in the previous section, the Globus Data
Management architecture, or Data Grid, provides the two fundamental components: a
universal data transfer protocol for grid computing environments called GridFTP and a
Replica Management infrastructure for managing multiple copies of shared data sets. In
the remainder of this paper, we present the design of these two fundamental components.
We discuss our initial implementation as well as preliminary performance measurements.

4 GridFTP: A Secure, Efficient Data Transport Mechanism

Data-intensive scientific and engineering applications require both transfers of large
amounts of data (terabytes or petabytes) between storage systems and access to large
amounts of data (gigabytes or terabytes) by many geographically distributed applications
and users for analysis, visualization, etc.

There are already a number of storage systems in use by the Grid community, each of
which was designed to satisfy specific needs and requirements for storing, transferring
and accessing large datasets. These include the Distributed Parallel Storage System
(DPSS) and the High Performance Storage System (HPSS), which provide high-
performance access to data and utilize parallel data transfer and/or striping across
multiple servers to improve performance [1][2]. The Distributed File System (DFS)
supports high-volume usage, dataset replication and local caching. The Storage
Resource Broker (SRB) connects heterogeneous data collections, provides a uniform
client interface to storage repositories, and provides a metadata catalog for describing and
locating data within the storage system [4]. Other systems allow clients to access
structured data from a variety of underlying storage systems (e.g., HDF5 [5]).

Unfortunately, most of these storage systems utilize incompatible and often unpublished
protocols for accessing data, and therefore require the use of their own client libraries to
access data. These incompatible protocols and client libraries effectively partition the
datasets available on the grid. Applications that require access to data stored in different
storage systems must use multiple access methods.

To overcome these incompatible protocols, we have proposed a universal grid data
transfer and access protocol called GridFTP that provides secure, efficient data
movement in Grid environments. This protocol, which extends the standard FTP
protocol, provides a superset of the features offered by the various Grid storage systems
currently in use. We argue that using GridFTP as a common data access protocol would
be mutually advantageous to grid storage providers and users. Storage providers would
gain a broader user base, because their data would be available to any client, while
storage users would gain access to a broader range of storage systems and data.

We chose to extend the FTP protocol because we observed that FTP is the protocol most
commonly used for data transfer on the Internet and the most likely candidate for meeting
the Grid’s needs. The FTP protocol is an attractive choice for several reasons. First, FTP

is a widely implemented and well-understood IETF standard protocol. As a result, there
is a large base of code and expertise from which to build. Second, the FTP protocol
provides a well-defined architecture for protocol extensions and supports dynamic
discovery of the extensions supported by a particular implementation. Third, numerous
groups have added extensions through the IETF, and some of these extensions will be
particularly useful in the Grid. Finally, in addition to client/server transfers, the FTP
protocol also supports transfers directly between two servers, mediated by a third party
client (i.e. “third party transfer”).

4.1 Features of GridFTP

Next, we describe the protocol extensions in GridFTP. Some of these features are
supported by FTP extensions that have already been standardized in the IETF, but which
are currently seldom implemented. Other features are new extensions to FTP.

4.1.1 Grid Security Infrastructure (GSI) and Kerberos support

Robust and flexible authentication, integrity, and confidentiality features are critical when
transferring or accessing files. GridFTP must support Grid Security Infrastructure (GSI)
and Kerberos authentication, with user controlled setting of various levels of data
integrity and/or confidentiality. GridFTP provides this capability by implementing the
GSSAPI authentication mechanisms defined by RFC 2228, “FTP Security Extensions”.

4.1.2 Third-party control of data transfer

To manage large data sets for distributed communities, we must provide authenticated
third-party control of data transfers between storage servers. A third-party operation
allows a “third-party” user or application at one site to initiate, monitor and control a
data transfer operation between two other “parties”: the source and destination sites for
the data transfer. Our implementation adds GSSAPI security to the existing third-party
transfer capability defined in the FTP standard. The “third-party” authenticates itself on a
local machine, and GSSAPI operations authenticate the third party to the source and
destination machines for the data transfer.

4.1.3 Parallel data transfer

On wide-area links, using multiple TCP streams in parallel (even between the same
source and destination) can improve aggregate bandwidth over using a single TCP
stream. GridFTP supports parallel data transfer through FTP command extensions and
data channel extensions.

4.1.4 Striped data transfer

Data may be striped or interleaved across multiple servers, as in a DPSS network disk
cache or a striped file system. GridFTP includes extensions that initiate striped transfers,

which use multiple TCP streams to transfer data that is partitioned among multiple
servers. Striped transfers provide further bandwidth improvements over those achieved
with parallel transfers. We have defined GridFTP protocol extenstions that support
striped data transfers

4.1 5 Partial file transfer

Many applications would benefit from transferring portions of files rather than complete
files. This is particularly important for applications like high-energy physics analysis that
require access to relatively small subsets of massive, object-oriented physics database
files. The standard FTP protocol requires applications to transfer entire files, or the
remainder of a file starting at a particular offset. GridFTP introduces new FTP
commands to support transfers of subsets or regions of a file.

4.1.6 Automatic negotiation of TCP buffer/window sizes

Using optimal settings for TCP buffer/window sizes can have a dramatic impact on data
transfer performance. However, manually setting TCP buffer/window sizes is an error-
prone process (particularly for non-experts) and is often simply not done. GridFTP
extends the standard FTP command set and data channel protocol to support both manual
setting and automatic negotiation of TCP buffer sizes for large files and for large sets of
small files.

4.1.7 Support for reliable and restartable data transfer

Reliable transfer is important for many applications that manage data. Fault recovery
methods for handling transient network failures, server outages, etc. are needed. The
FTP standard includes basic features for restarting failed transfers that are not widely
implemented. The GridFTP protocol exploits these features and extends them to cover
the new data channel protocol.

4.2 The GridFTP Protocol Implementation

In this section, we briefly present the implementation of the GridFTP protocol in the
Globus Grid computing environment. Our current implementation is an alpha release of
the gridFTP libraries, available with limited support to a small number of users. The
current implementation supports partial file transfers, third-party transfers, parallel
transfers and striped transfers. This implementation does not yet support automatic
negotiation of TCP buffer/window sizes.

The implementation consists of two main libraries implemented in C: the
globus_ftp_control_library and the globus_ftp_client_library.

The globus_ftp_control_library implements the control channel API. This API
provides routines for managing a GridFTP connection, including authentication, creation

of control and data channels, and reading and writing data over data channels. Having
separate control and data channels, as defined in the FTP protocol standard, greatly
facilitates the support of such features as parallel transfers, striped transfers and third-
party data transfers. For parallel and striped transfers, the control channel is used to
specify a put or get operation; multiple parallel TCP data channels provide concurrent
transfers. In third-party transfers, the initiator monitors or aborts transfers via the control
channel, while data is transferred over one or more data channels between source and
destination sites.

The globus_ftp_client_library implements the GridFTP client API. This API provides
higher-level client features on top of the globus_ftp_control library, including complete
file get and put operations, calls to set the level of parallelism for parallel data transfers,
partial file transfer operations, third-party transfers, and eventually, functions to set TCP
buffer sizes.

4.3 Performance of gridFTP data transfers

Next, we present performance measurements of data transfers using a prototype
implementation of the gridFTP protocol.

In Figure 1, we show the performance of parallel GridFTP transfers as the number of
simultaneous TCP streams between the source and destination hosts increases from 1 to
32. This transfer was measured between a host at Argonne National Laboratory and
another host at Lawrence Berkeley National Laboratory. Bandwidth increases with the
number of streams. However, as the number of streams increases, the benefit of adding a
stream diminishes. From these tests, we conclude that using eight streams will give us
most of the benefits possible with parallel transfers. We use these numbers in the
remainder of our tests.

GridFTP (globus-url-opy)

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35

of TCP Streams

B
an

dw
id

th
 (M

bs
)

Series1

Figure 1: Bandwidth of parallel GridFTP transfer with increasing number of
simultaneous TCP streams

In Figure 2, we show aggregate parallel bandwidth for a period of approximately 14
hours during the Supercomputing 2000 conference in Dallas, Texas, on November 7,
2000. This data corresponds to parallel transfers between two hosts using up to eight
simultaneous streams. The graph includes drops in performance due to various network
problems, including a power failure for the Supercomputing network (SciNet), DNS
problems, and backbone problems on the exhibition floor. Because the GridFTP protocol
supports restart of failed transfers, the interrupted transfers are able to continue as soon as
the network is restored. Toward the right side of the graph, we show the increase in
aggregate bandwidth as parallelism increases. One notable feature of the graph is the
frequent drop in bandwidth to relatively low levels. This is due to our current
implementation of GridFTP, which destroys and rebuilds the TCP connection between
subsequent transfers. Our plans to address this performance issue with data channel
caching are discussed below.

Figure 2: Supercomputing 2000 bandwidth over period

Finally, we present the bandwidth we achieved during the Network Challenge
competition at the Supercomputing 2000 conference. Our configuration for this
competition consisted of eight linux workstations on the SC2000 exhibition floor sending
data across the wide area network to eight workstations (four linux, four solaris) at
Lawrence Berkeley Laboratory. Figure 3 illustrates this configuration. We used striped
transfers during this competition, with a 2-gigabyte file partitioned across the eight
workstations on the exhibition floor. Each workstation actually had four copies of its file
partition. On each server machine, a new transfer of a copy of the file partition was
initiated after 25% of the previous transfer was complete. Each new transfer creates a
new TCP stream. At any time, there are up to four simultaneous TCP streams
transferring data from each server in the cluster of eight workstations, for a total of up to
32 simultaneous TCP streams. Because our current implementation requires that a TCP
stream be broken down and restarted between subsequent transfers, there are often fewer
than four simultaneous streams transferring data on each host.

Linux workstation

Linux workstation

Linux workstation

Linux workstation

Linux workstation

Linux workstation

Linux workstation

Linux workstation

Linux workstation

Linux workstation

Linux workstation

Linux workstation

Solaris workstation

Solaris workstation

Solaris workstation

Solaris workstation

Workstations at SC’00
exhibition floor

Workstations at
Lawrence Berkeley Lab

up to 32 total TCP streams

Wide Area
Routing:

2 x GigE to
Scinet, then
router, then
1.5 Gb/s via
HSCC to
NTON, then
OC48 to
LBNL

Figure 3: Experimental configuration for GridFTP experiments at SC’00 in Dallas,
Texas, November 2000.

Table 2 summarizes the results of our Network Challenge competition entry. We
achieved a peak transfer rate of 1.55 gigabits/second over an interval of 0.1 seconds.
This striped configuration was able to transfer a peak rate of 1.03 gigabits/second over an
interval of 5 seconds. Over the hour-long period of our competition entry, we sustained a
data rate of 512.9 megabits per second. This corresponded to a total data transfer during
that hour of 230.8 gigabytes, or a quarter of a terabyte.

Striped servers at source location 8
Striped servers at destination location 8
Maximum simultaneous TCP streams per server 4
Maximum simultaneous TCP streams overall 32
Peak transfer rate over 0.1 seconds 1.55 Gbits/sec
Peak transfer rate over 5 seconds 1.03 Gbits/sec
Sustained transfer rate over 1 hour 512.9 Mbits/sec
Total data transferred in 1 hour 230.8 Gbytes
Table 2: Network Challenge Configuration and Performance Results

The next version of the GridFTP implementation will support higher bandwidth with data
channel caching. This mechanism allows a client to indicate that a TCP stream is likely
to be re-used soon after the existing transfer is complete. In response to this hint, we will
temporarily keep the TCP channel active and allow subsequent transfers to use the
channel without requiring costly breakdown, restart and re-authentication operations.

5 Replica Management

In this section, we present the Globus Replica Management architecture, which is
responsible for managing complete and partial copies of data sets. Replica management
is an important issue for a number of scientific applications. For example, consider a
data set that contains petabytes of experimental results for a particle physics application.
While the complete data set may exist in one or possibly several physical locations, it is
likely that many universities, research laboratories or individual researchers will have
insufficient storage to hold a complete copy. Instead, they will store copies of the most
relevant portions of the data set on local storage for faster access.

Services provided by a replica management system include:

! creating new copies of a complete or partial data set

! registering these new copies in a Replica Catalog

! allowing users and applications to query the catalog to find all existing copies
of a particular file or collection of files

! selecting the ``best'' replica for access based on storage and network
performance predictions provided by a Grid information service

The Globus replica management architecture is a layered architecture. At the lowest
level is a Replica Catalog that allows users to register files as logical collections and
provides mappings between logical names for files and collections and the storage system
locations of one or more replicas of these objects. We have implemented a Replica
Catalog API in C as well as a command-line tool; these functions and commands perform
low-level manipulation operations for the replica catalog, including creating, deleting and
modifying catalog entries. Finally, we have defined a higher-level Replica Management
API that creates and deletes replicas on storage systems and invokes low-level commands
to update the corresponding entries in the replica catalog.

In this section, we present the design of the Replica Catalog and the corresponding APIs.
We describe the current state of our implementation and present performance numbers
for a replica catalog implemented as an LDAP directory service.

The basic replica management services that we provide can be used by higher-level tools
to select among replicas based on network or storage system performance or
automatically to create new replicas at desirable locations. We will implement some of
these higher-level services in the next generation of our replica management
infrastructure.

5.1 The Replica Catalog

As mentioned above, the purpose of the replica catalog is to provide mappings between
logical names for files or collections and one or more copies of the objects on physical
storage systems. The catalog registers three types of entries: logical collections,
locations and logical files.

A logical collection is a user-defined group of files. We expect that users will find it
convenient and intuitive to register and manipulate groups of files as a collection, rather
than requiring that every file be registered and manipulated individually. Aggregating
files should reduce both the number of entries in the catalog and the number of catalog
manipulation operations required to manage replicas.

Location entries in the replica catalog contain all the information required for mapping a
logical collection to a particular physical instance of that collection. The location entry
may register information about the physical storage system, such as the hostname, port
and protocol. In addition, it contains all information needed to construct a URL that can
be used to access particular files in the collection on the corresponding storage system.
Each location entry represents a complete or partial copy of a logical collection on a
storage system. One location entry corresponds to exactly one physical storage system
location. The location entry explicitly lists all files from the logical collection that are
stored on the specified physical storage system.

Each logical collection may have an arbitrary number of associated location entries, each
of which contains a (possibly overlapping) subset of the files in the collection. Using
multiple location entries, users can easily register logical collections that span multiple
physical storage systems.

Despite the benefits of registering and manipulating collections of files using logical
collection and location objects, users and applications may also want to characterize
individual files. For this purpose, the replica catalog includes optional entries that
describe individual logical files. Logical files are entities with globally unique names
that may have one or more physical instances. The catalog may optionally contain one
logical file entry in the replica catalog for each logical file in a collection.

Figure 4: A Replica Catalog for a climate modeling application.

Figure 4 shows an example replica catalog for a climate modeling application. This
catalog contains two logical collections with CO2 measurements for 1998 and 1999. The
1998 collection has two physical locations, a partial collection at jupiter.isi.edu and a
complete collection at sprite.llnl.gov. The location entries contain attributes that list all
files stored at a particular physical location. They also contain attributes that provide all
information (protocol, hostname, port, path) required to map from logical names for files
to URLs corresponding to file locations on the storage system. The example climate
modeling catalog also contains logical file entries for each file in the collection. These
entries provide size information for individual files.

5.2 Replica Catalog API and Command Line Tool

We have implemented an API for low-level replica catalog manipulation as a C library
called globus_replica_catalog.c. In addition, we have implemented a straightforward
command-line tool that provides similar functionality.

All operations on the replica catalog being by establishing a connection to a logical
collection. This may include creating a new logical collection entry if the specified
collection doesn’t already exist. After establishing this connection, API and command
line functions operate on the collection entry or on its corresponding location or
logicalfile entries. Possible operations on replica catalog entries fall into three general
categories:

! Create and delete entire entries: When creating a logical collection, location or

logicalfile entry, the client supplies all attributes to be associated with the new entry.
For example, the client might specify all filenames to be associated with a logical
collection entry or the hostname, protocol and path information required for mapping
to physical file locations in a location entry. Deleting a catalog entry requires knowing
only the name of the entry and its corresponding logical collection.

! Add, list or delete attributes of an entry: These operations allow the user to
manipulate the attributes of an entry. For example, as new files are produced by an
experimental physics application, their names might be added as attributes to a logical
collection entry. If space constraints on a storage system required deleting certain
files, a location entry should be updated to remove the corresponding filenames from
the catalog entry.

! List or search for specified entries: These operations search the catalog and return a
list of entries and their attributes that match the specified search criteria. For example,
a simple list operation might return all the location entries associated with a logical
collection. More complex search operations are used to identify all physical locations
where a particular set of files is stored. These search operations are essential to
higher-level tools that select among possible source and destination locations for data
transfer operations.

5.3 Replica Management API

In this section, we describe the high-level Replica Management API that is currently
being designed. The purpose of this API is to build higher-level functionality on top of
the low-level Replica Catalog API. In addition to making low-level Replica Catalog API
calls, the functions in the Replica Management API can manipulate storage systems
directly, including copying files and checking file status, such as last modification time.
This library has not yet been implemented.

The functions of the Replica Management API can be categorized as follows:

! Session management: These functions create, configure and destroy session handles.

The use of session handles allows caching of connection states to GridFTP and LDAP
servers, so that a series of operations on multiple files can be performed efficiently,
without requiring separate FTP or LDAP commands for each operation.

! Catalog creation: These functions create and populate one or more entries in a replica
catalog. There are basic functions to create empty logical collection and location
objects. In addition, there are functions to register and publish filenames into logical
collections and locations. A client registers a file that already exists on a storage
system by adding the filename to collection and location entries in the catalog.
Alternatively, the client publishes a file into logical collection and location entries by
first copying the file onto the corresponding storage system and then updating the
catalog entries.

! File maintenance: These functions include copy, update, delete operations on physical
files with corresponding replica catalog updates. For example, the copy operation
copies a file from one physical location to another, updating the corresponding
location entry in the replica catalog. The delete operation removes a filename from a
location entry in the replica catalog and optionally also deletes the file on the
corresponding physical storage system.

! Access control: These functions control who is allowed to access and make replicas
of individual files and logical collections.

5.4 Implementation and Performance
We have implemented the Replica Catalog as a Lightweight Directory Access Protocol
(LDAP) directory. We have implemented the Replica Catalog API as a C library in the
Globus grid computing environment. In addition, we have implemented a command line
tool that calls replica catalog API functions.

[Note to reviewers: we are currently running extensive performance measurements of a
test replica catalog to determine its scalability as collection size and number of
collections increases. If space allows, we will include these results in the final version of
the paper, but we have left them out of the current draft.]

6 Conclusions

We have argued that high-performance, distributed computing applications require two
fundamental services: secure, reliable, efficient transfer of data in wide area
environments and the ability to register and locate multiple copies of data sets. Upon
these fundamental components, we can build higher-level services, including reliable
creation of a copy of a data collection at a new location; selection of the best replica for a
data transfer operation based on performance; and automatic creation of new replicas in
response to application demands.

We have presented our design and implementation of these fundamental services in the
Globus grid computing environment. We presented the GridFTP protocol, which
implements extensions to provide GSI security, parallel, striped, partial and third-party
transfers. We also presented the performance of GridFTP parallel and striped accesses.
Next, we described the Globus Replica Management architecture, which is responsible
for managing complete and partial copies of data sets. We described the design of our
Replica Catalog, as well as APIs for manipulating the catalog and storage systems.

We are working with several high-performance, data-intensive computing applications,
such as high-energy physics, climate modeling and earthquake engineering. Working
with these application communities provides an ideal opportunity to evaluate the
usefulness of the Globus data management architecture.

Acknowledgements

We are grateful to Marcus Thiebaux and Soonwook Hwang for their work in
characterizing the performance of LDAP servers. Brian Toonen helped to optimize the
GridFTP code in preparation for the SC ‘2000 conference. This work has been funded in
part by the National Science Foundation and the Department of Energy.

References
[1] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, K. Stockinger, “Data

Management in an International Grid Project”, 2000 International Workshop on Grid
Computing (GRID 2000), Bangalore, India, December 2000.

[2] K. Holtman, “Object Level Replication for Physics”, Proceedings of 4th Annual
Globus Retreat, Pittsburgh, July 2000.

[3] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, “The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets,” to be published in the Journal of Network and Computer
Applications .

[4] Globus Data Management web page,www.globus.org/research/data-management.html

[5] Tierney, B. Lee, J., Crowley, B., Holding, M., Hylton, J., Drake, F., "A Network-
Aware Distributed Storage Cache for Data Intensive Environments", Proceedings of
IEEE High Performance Distributed Computing conference(HPDC-8), August 1999.

[6] "Basics of the High Performance Storage System", www.sdsc.edu/projects/HPSS
[7] C. Baru, R. Moore, A. Rajasekar, M. Wan, "The SDSC Storage Resource Broker,"

Proc. CASCON'98 Conference, Nov.30-Dec.3, 1998, Toronto, Canada.
[8] HDF5 information available at http://hdf.ncsa.uiuc.edu/

Page: 2
[CFK1]We need to clarify metadata update issue: single writer (as in Babar), what about
other experiments. Is there updates to objects, or are new metadata objects just added.

