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Abstract 
 
After studying data-intensive, high-performance computing applications such as high-
energy physics and climate modeling, we conclude that these applications require two 
fundamental data management services:  secure, reliable, efficient transfer of data in 
wide area environments and the ability to register and locate multiple copies of data sets.  
In this paper, we present our design of these services in the Globus grid computing 
environment.  We also describe the performance of our current implementation. 
 
 
1   Introduction 
 
Data-intensive, high-performance computing applications require the efficient 
management and transfer of terabytes or petabytes of information in wide-area, 
distributed computing environments.  Examples of data-intensive applications include 
experimental analyses and simulations in several scientific disciplines, such as high-
energy physics, climate modeling, earthquake engineering and astronomy.  These 
applications share several requirements.  Massive data sets must be shared by a large 
community of hundreds or thousands of researchers who are distributed around the 
world.  These researchers need efficient transfer of large data sets to perform analyses at 
their local sites or at other remote resources.  In many cases, the researchers create local 
copies or replicas of the experimental data sets to overcome long wide-area data transfer 
latencies.  The data management environment must provide security services such as 
authentication of users and control over who is allowed to access the data.  In addition, 
once multiple copies of files are distributed at multiple locations, researchers would need 



the ability to find all existing copies of the data set and determine whether to access an 
existing copy or create a new one to meet the performance needs of their applications. 
 
The needs of these data-intensive computing applications rest on two fundamental data 
management services:  secure, reliable, efficient transfer of data in wide area 
environments and the ability to register and locate multiple copies of data sets. 
 
This paper presents our approach to providing these fundamental data management 
services in the Globus grid computing environment.  We begin by describing in more 
detail the needs of two data-intensive applications.  After briefly introducing the Globus 
grid computing environment, we present the design and initial performance 
measurements of our GridFTP protocol for efficient, secure data transfers as well as the 
Globus Replica Management architecture. 
 
 
2 Data-Intensive Computing Requirements 
 
We focus on two data-intensive computing applications:  high-energy physics 
experiments and climate modeling applications.  Important parameters required to 
characterize an application include: average file sizes, total data volume, rate of data 
creation, types of file access (write-once, write-many), expected access rates, type of 
storage system (file system or database), and consistency requirements for multiple 
copies of data. 
 
2.1 High-energy Physics applications 
 
First, we consider the data requirements of high-energy particle physics experiments.  
These experiments are characterized by the need to perform analysis over large amounts 
of data.  Experiments that use the Large Hadron Collider at the European physics center 
CERN will produce large amounts of raw and derived experimental results.  Beginning in 
2005, these experiments will produce several petabytes of data per year for 
approximately 15 years.  We are working with several physics experiments (ATLAS, 
CMS) that will produce LHC data as well as other physics data sets (BaBar).   
 
There are two types of data generated by physics experiments: 

• Experimental data represents the information collected by the experiment.  There 
is a single creator of this data, and once created, it is not modified.  However, data 
may be collected incrementally over a period of weeks. 

• Metadata captures information about the experiment (such as the number of 
events) and the results of analysis.  Multiple individuals may create 
metadata[CFK1].  The volume of metadata is typically smaller than that of 
experimental data. 

 
The BaBar, CMS and ATLAS experiments use object-oriented Objectivity databases to 
store experimental results.  Objectivity stores collections of objects in a single file called 
a database.  Databases can be grouped into larger collections called federations.  Typical 



database file sizes are approximately 2 to 10 gigabytes.  Federations are currently limited 
to 64K files; however, future versions of Objectivity will eliminate this restriction.  The 
BaBar experiment plans to exploit this feature to reduce database file sizes to 
approximately 1 gigabyte and increase the size of a federation to include millions of 
database files.  BaBar metadata files are currently 2 gigabytes in size, with plans to 
reduce this size in the future. 
 
While in principle the primary databases produced by physics experiments are read-only 
(once created, their contents do not change), we find in practice that during an initial data 
production  period of several weeks, database files change as new objects are added.  For 
example, in the BaBar experiment, objects are appended to database files in a federation 
over several weeks; during this period, many database files may be changing 
simultaneously until the files are filled, after which they do not change further.   
 
Metadata may be either modified or augmented over time, even after the initial period of 
producing experimental data.  For example, in the CMS experiment, metadata files 
change to reflect the increasing total number of events in the database.  
 
The consumers of experimental physics data and metadata will number in the hundreds or 
thousands. These users are distributed at many sites worldwide.   
 
Because of the geographic distribution of the participants in a particle physics experiment, it is 
desirable to make copies or replicas of the data being analyzed to minimize the access time to 
the data.  For example, Figure 1 shows the expected replication scheme for the physics data 
sets generated by the CERN Large Hardron Collider.  Files are replicated in a hierarchical 
manner, with all files stored at a central location (CERN) and decreasing subsets of the data 
set stored at national and regional data centers [1][2]. 
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Figure 1:  Scheme for hierarchical replication of Physics data 
 
Replication of physics data sets is complicated by several factors.  First, security services 
are required to authenticate the user and control access to storage systems.  Next, because 
data sets are so large, it may be desirable to replicate only “interesting” subsets of the 
data.  Finally, since experimental data and metadata files may be modified, any updates 



to the databaes files must be propagated to all replicas.  In the case of the BaBar 
experiment, experimental database files are logically appended over a period of several 
weeks.  During this initial production period, users want access to the data as it is being 
produced.  The experiment provides periodic batches of updates to remote replicas of the 
data sets, typically every few days or every week.  Since metadata updates can take place 
over an indefinite period, these must also be propagated periodically to all replicas.  
BaBar uses a master-slave model to propagate modifications to replicas.  This model is 
simple to implement in the physics environment because the physicists have partitioned 
the object identifier space so that each participating site has exclusive write access to a 
predefined subset of objects in the federation.  The exclusive writer of a particular object 
acts as the master in update operations. 
 
Table 1 summarizes the characteristics of high-energy physics applications. 
 
Rate of data generation (starting 2005) Several petabytes per year  
Typical experimental database sizes 2 to 10 gigabytes 
Typical metadata database sizes 2 gigabytes 
Maximum number of database files in federation Currently 64K; eventually millions
Period of updates to experimental data Several weeks 
Period of updates to metadata Indefinite 
Type of storage system Object-oriented database 
Number of data consumers Hundreds to thousands 
Table 1:  Characteristics of high-energy physics applications 
 
 
2.2 Climate Modeling Application 
 
A second example application is climate modeling.  Climate modeling research groups 
sometimes generate large reference simulations that are made available to a large 
international community.  The output from these simulations can be large (many 
terabytes).  The simulation data is typically generated at one or more supercomputer 
centers and is released in stages to progressively larger communities: first the research 
collaboration that generated the data, then perhaps to selected colleagues, and eventually 
to the entire community.  Thus, these applications require access control to determine 
which users are allowed to view the collection at each stage.   
 
In contrast to the physics community, data is not maintained in databases but rather as flat 
files, typically stored in a structured data format such as NetCDF, with associated 
metadata.  In addition, files are not updated once released.   
 
However, as in the physics application, researchers in the climate modeling community 
will find it convenient to store local copies of portions of the data set.  Therefore, the 
application will have similar needs for managing copies of data sets at multiple locations, 
as well as higher-level services such as replica selection or automatic replica creation. 
  
 



2.3 Summary of Application Requirements 
 
We observe that these scientific applications, as well as others we have examined in such 
areas as earthquake engineering and astronomy, require two fundamental data 
management components, upon which higher-level components can be built: 
 

! A reliable, secure, high-performance data transfer protocol for use in wide 
area environments.  Ideally, this protocol would be universally adopted to 
provide access to the widest variety of available storage systems. 

! Management of multiple copies of files and collections of files, including 
services for registering and locating all physical locations for files and 
collections. 

Higher-level services that can be built upon these fundamental components include 
reliable creation of a copy of a large data collection at a new location; selection of the 
best replica for a data transfer operation based on performance estimates provided by 
external information services; and automatic creation of new replicas in response to 
application demands. 
 
In the next section, we present an overview of the Globus grid computing environment 
and our approach to providing these fundamental data management services. 
 
 
3  The Globus Architecture and Data Management 
 
The term grid computing refers to the emerging computational and networking 
infrastructure that is designed to provide pervasive, uniform and reliable access to data, 
computational, and human resources distributed over wide area environments.  For 
example, in a computational grid environment, scientists at locations throughout the 
world can share data collection instruments such as particle colliders, compute resources 
such as supercomputers and clusters of workstations, and community data sets stored on 
network caches and hierarchical storage systems.   
 
The Globus project provides middleware services for grid computing environments.  
There are four main components of Globus.  The Grid Security Infrastructure (GSI) 
provides authentication and authorization services using public key certificates as well as 
Kerberos authentication.  The Globus Resource Management architecture provides a 
language for specifying application requirements and mechanisms for immediate and 
advance reservations of one or more computational components.  This architecture also 
provides several interfaces for submitting jobs to remote machines.  The Globus 
Information Management architecture provides a distributed scheme for publishing and 
retrieving information about resources in the wide area environment.  A distributed 
collection of information servers is accessed by higher-level services that perform 
resource discovery, configuration and scheduling.  The last major component of Globus 
is the Data Management architecture. 
 



Based on the application needs presented in the previous section, the Globus Data 
Management architecture, or Data Grid, provides the two fundamental components:  a 
universal data transfer protocol for grid computing environments called GridFTP and a 
Replica Management infrastructure for managing multiple copies of shared data sets.  In 
the remainder of this paper, we present the design of these two fundamental components.  
We discuss our initial implementation as well as preliminary performance measurements. 
 
 
 
4  GridFTP:  A Secure, Efficient Data Transport Mechanism 
 
Data-intensive scientific and engineering applications require both transfers of large 
amounts of data (terabytes or petabytes) between storage systems and access to large 
amounts of data (gigabytes or terabytes) by many geographically distributed applications 
and users for analysis, visualization, etc.   
 
There are already a number of storage systems in use by the Grid community, each of 
which was designed to satisfy specific needs and requirements for storing, transferring 
and accessing large datasets.  These include the Distributed Parallel Storage System 
(DPSS) and the High Performance Storage System (HPSS), which provide high-
performance access to data and utilize parallel data transfer and/or striping across 
multiple servers to improve performance [1][2].  The Distributed File System (DFS) 
supports high-volume usage, dataset replication and local caching.   The Storage 
Resource Broker (SRB) connects heterogeneous data collections, provides a uniform 
client interface to storage repositories, and provides a metadata catalog for describing and 
locating data within the storage system [4].  Other systems allow clients to access 
structured data from a variety of underlying storage systems (e.g., HDF5 [5]). 
 
Unfortunately, most of these storage systems utilize incompatible and often unpublished 
protocols for accessing data, and therefore require the use of their own client libraries to 
access data.  These incompatible protocols and client libraries effectively partition the 
datasets available on the grid.  Applications that require access to data stored in different 
storage systems must use multiple access methods.   
 
To overcome these incompatible protocols, we have proposed a universal grid data 
transfer and access protocol called GridFTP that provides secure, efficient data 
movement in Grid environments.  This protocol, which extends the standard FTP 
protocol, provides a superset of the features offered by the various Grid storage systems 
currently in use.  We argue that using GridFTP as a common data access protocol would 
be mutually advantageous to grid storage providers and users.  Storage providers would 
gain a broader user base, because their data would be available to any client, while 
storage users would gain access to a broader range of storage systems and data.  
 
We chose to extend the FTP protocol because we observed that FTP is the protocol most 
commonly used for data transfer on the Internet and the most likely candidate for meeting 
the Grid’s needs.  The FTP protocol is an attractive choice for several reasons.  First, FTP 



is a widely implemented and well-understood IETF standard protocol.  As a result, there 
is a large base of code and expertise from which to build.  Second, the FTP protocol 
provides a well-defined architecture for protocol extensions and supports dynamic 
discovery of the extensions supported by a particular implementation.  Third, numerous 
groups have added extensions through the IETF, and some of these extensions will be 
particularly useful in the Grid.  Finally, in addition to client/server transfers, the FTP 
protocol also supports transfers directly between two servers, mediated by a third party 
client (i.e. “third party transfer”). 
 
 
4.1 Features of GridFTP 
 
Next, we describe the protocol extensions in GridFTP.  Some of these features are 
supported by FTP extensions that have already been standardized in the IETF, but which 
are currently seldom implemented.  Other features are new extensions to FTP. 
 
4.1.1 Grid Security Infrastructure (GSI) and Kerberos support 
 
Robust and flexible authentication, integrity, and confidentiality features are critical when 
transferring or accessing files.  GridFTP must support Grid Security Infrastructure (GSI) 
and Kerberos authentication, with user controlled setting of various levels of data 
integrity and/or confidentiality.  GridFTP provides this capability by implementing the 
GSSAPI authentication mechanisms defined by RFC 2228, “FTP Security Extensions”. 
 
4.1.2 Third-party control of data transfer 
 
To manage large data sets for distributed communities, we must provide authenticated 
third-party control of data transfers between storage servers.   A third-party operation 
allows a  “third-party” user or application at one site to initiate, monitor and control a 
data transfer operation between two other “parties”:  the source and destination sites for 
the data transfer.  Our implementation adds GSSAPI security to the existing third-party 
transfer capability defined in the FTP standard.  The “third-party” authenticates itself on a 
local machine, and GSSAPI operations authenticate the third party to the source and 
destination machines for the data transfer.    
 
4.1.3 Parallel data transfer 
 
On wide-area links, using multiple TCP streams in parallel (even between the same 
source and destination) can improve aggregate bandwidth over using a single TCP 
stream. GridFTP supports parallel data transfer through FTP command extensions and 
data channel extensions. 
 
4.1.4 Striped data transfer 
 
Data may be striped or interleaved across multiple servers, as in a DPSS network disk 
cache or a striped file system.  GridFTP includes extensions that initiate striped transfers, 



which use multiple TCP streams to transfer data that is partitioned among multiple 
servers.  Striped transfers provide further bandwidth improvements over those achieved 
with parallel transfers. We have defined GridFTP protocol extenstions that support 
striped data transfers 
 
4.1 5 Partial file transfer 
 
Many applications would benefit from transferring portions of files rather than complete 
files.  This is particularly important for applications like high-energy physics analysis that 
require access to relatively small subsets of massive, object-oriented physics database 
files. The standard FTP protocol requires applications to transfer entire files, or the 
remainder of a file starting at a particular offset.  GridFTP introduces new FTP 
commands to support transfers of subsets or regions of a file. 
 
4.1.6 Automatic negotiation of TCP buffer/window sizes 
 
Using optimal settings for TCP buffer/window sizes can have a dramatic impact on data 
transfer performance.  However, manually setting TCP buffer/window sizes is an error-
prone process (particularly for non-experts) and is often simply not done.  GridFTP 
extends the standard FTP command set and data channel protocol to support both manual 
setting and automatic negotiation of TCP buffer sizes for large files and for large sets of 
small files. 
 
4.1.7 Support for reliable and restartable data transfer 
 
Reliable transfer is important for many applications that manage data.  Fault recovery 
methods for handling transient network failures, server outages, etc. are needed.  The 
FTP standard includes basic features for restarting failed transfers that are not widely 
implemented.  The GridFTP protocol exploits these features and extends them to cover 
the new data channel protocol. 
 
 
4.2  The GridFTP Protocol Implementation 
 
In this section, we briefly present the implementation of the GridFTP protocol in the 
Globus Grid computing environment.  Our current implementation is an alpha release of 
the gridFTP libraries, available with limited support to a small number of users.  The 
current implementation supports partial file transfers, third-party transfers, parallel 
transfers and striped transfers.   This implementation does not yet support automatic 
negotiation of TCP buffer/window sizes. 
 
The implementation consists of two main libraries implemented in C:  the 
globus_ftp_control_library and the globus_ftp_client_library.   
 
The globus_ftp_control_library implements the control channel API.  This API 
provides routines for managing a GridFTP connection, including authentication, creation 



of control and data channels, and reading and writing data over data channels.  Having 
separate control and data channels, as defined in the FTP protocol standard, greatly 
facilitates the support of such features as parallel transfers, striped transfers and third-
party data transfers.  For parallel and striped transfers, the control channel is used to 
specify a put or get operation; multiple parallel TCP data channels provide concurrent 
transfers.  In third-party transfers, the initiator monitors or aborts transfers via the control 
channel, while data is transferred over one or more data channels between source and 
destination sites.  
 
The globus_ftp_client_library implements the GridFTP client API.  This API provides 
higher-level client features on top of the globus_ftp_control library, including complete 
file get and put operations, calls to set the level of parallelism for parallel data transfers, 
partial file transfer operations, third-party transfers, and eventually, functions to set TCP 
buffer sizes. 
 
4.3  Performance of gridFTP data transfers 
 
Next, we present performance measurements of data transfers using a prototype 
implementation of the gridFTP protocol.   
 
In Figure 1, we show the performance of parallel GridFTP transfers as the number of 
simultaneous TCP streams between the source and destination hosts increases from 1 to 
32.  This transfer was measured between a host at Argonne National Laboratory and 
another host at Lawrence Berkeley National Laboratory.  Bandwidth increases with the 
number of streams.  However, as the number of streams increases, the benefit of adding a 
stream diminishes.  From these tests, we conclude that using eight streams will give us 
most of the benefits possible with  parallel transfers.   We use these numbers in the 
remainder of our tests. 
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Figure 1:  Bandwidth of parallel GridFTP transfer with increasing number of 
simultaneous TCP streams 
 
In Figure 2, we show aggregate parallel bandwidth for a period of approximately 14 
hours during the Supercomputing 2000 conference in Dallas, Texas, on November 7, 
2000.  This data corresponds to parallel transfers between two hosts using up to eight 
simultaneous streams.  The graph includes drops in performance due to various network 
problems, including a power failure for the Supercomputing network (SciNet), DNS 
problems, and backbone problems on the exhibition floor.  Because the GridFTP protocol 
supports restart of failed transfers, the interrupted transfers are able to continue as soon as 
the network is restored.  Toward the right side of the graph, we show the increase in 
aggregate bandwidth as parallelism increases.  One notable feature of the graph is the 
frequent drop in bandwidth to relatively low levels.  This is due to our current 
implementation of GridFTP, which destroys and rebuilds the TCP connection between 
subsequent transfers.  Our plans to address this performance issue with data channel 
caching are discussed below. 
 



 
 
Figure 2:  Supercomputing 2000 bandwidth over period  
 
Finally, we present the bandwidth we achieved during the Network Challenge 
competition at the Supercomputing 2000 conference.  Our configuration for this 
competition consisted of eight linux workstations on the SC2000 exhibition floor sending 
data across the wide area network to eight workstations (four linux, four solaris) at 
Lawrence Berkeley Laboratory.  Figure 3 illustrates this configuration.  We used striped 
transfers during this competition, with a 2-gigabyte file partitioned across the eight 
workstations on the exhibition floor.  Each workstation actually had four copies of its file 
partition.  On each server machine, a new transfer of a copy of the file partition was 
initiated after 25% of the previous transfer was complete.  Each new transfer creates a 
new TCP stream.  At any time, there are up to four simultaneous TCP streams 
transferring data from each server in the cluster of eight workstations, for a total of up to 
32 simultaneous TCP streams.  Because our current implementation requires that a TCP 
stream be broken down and restarted between subsequent transfers, there are often fewer 
than four simultaneous streams transferring data on each host. 
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Figure 3:  Experimental configuration for GridFTP experiments at SC’00 in Dallas, 
Texas,  November 2000. 
 
Table 2 summarizes the results of our Network Challenge competition entry.  We 
achieved a peak transfer rate of 1.55 gigabits/second over an interval of 0.1 seconds.  
This striped configuration was able to transfer a peak rate of 1.03 gigabits/second over an 
interval of 5 seconds.  Over the hour-long period of our competition entry, we sustained a 
data rate of 512.9 megabits per second.  This corresponded to a total data transfer during 
that hour of 230.8 gigabytes, or a quarter of a terabyte. 
   
Striped servers at source location 8 
Striped servers at destination location 8 
Maximum simultaneous TCP streams per server 4 
Maximum simultaneous TCP streams overall 32 
Peak transfer rate over 0.1 seconds 1.55 Gbits/sec 
Peak transfer rate over 5 seconds 1.03 Gbits/sec 
Sustained transfer rate over 1 hour 512.9 Mbits/sec
Total data transferred in 1 hour 230.8 Gbytes 
Table 2:  Network Challenge Configuration and Performance Results 
 
The next version of the GridFTP implementation will support higher bandwidth with data 
channel caching.  This mechanism allows a client to indicate that a TCP stream is likely 
to be re-used soon after the existing transfer is complete.  In response to this hint, we will 
temporarily keep the TCP channel active and allow subsequent transfers to use the 
channel without requiring costly breakdown, restart and re-authentication operations.  
 
 
 



5  Replica Management 
 
In this section, we present the Globus Replica Management architecture, which is 
responsible for managing complete and partial copies of data sets.  Replica management 
is an important issue for a number of scientific applications.  For example, consider a 
data set that contains petabytes of experimental results for a particle physics application.  
While the complete data set may exist in one or possibly several physical locations, it is 
likely that many universities, research laboratories or individual researchers will have 
insufficient storage to hold a complete copy.  Instead, they will store copies of the most 
relevant portions of the data set on local storage for faster access. 
 
Services provided by a replica management system include: 

! creating new copies of a complete or partial data set 

! registering these new copies in a Replica Catalog  

! allowing users and applications to query the catalog to find all existing copies 
of a particular file or collection of files 

! selecting the ``best'' replica for access based on storage and network 
performance predictions provided by a Grid information service 

The Globus replica management architecture is a layered architecture.  At the lowest 
level is a Replica Catalog that allows users to register files as logical collections and 
provides mappings between logical names for files and collections and the storage system 
locations of one or more replicas of these objects.  We have implemented a Replica 
Catalog API in C as well as a command-line tool; these functions and commands perform 
low-level manipulation operations for the replica catalog, including creating, deleting and 
modifying catalog entries.  Finally, we have defined a higher-level Replica Management 
API that creates and deletes replicas on storage systems and invokes low-level commands 
to update the corresponding entries in the replica catalog. 
 
In this section, we present the design of the Replica Catalog and the corresponding APIs.  
We describe the current state of our implementation and present performance numbers 
for a replica catalog implemented as an LDAP directory service.    
 
The basic replica management services that we provide can be used by higher-level tools 
to select among replicas based on network or storage system performance or 
automatically to create new replicas at desirable locations.  We will implement some of 
these higher-level services in the next generation of our replica management 
infrastructure. 
 
5.1 The Replica Catalog 
 
As mentioned above, the purpose of the replica catalog is to provide mappings between 
logical names for files or collections and one or more copies of the objects on physical 
storage systems.  The catalog registers three types of entries:  logical collections, 
locations and logical files. 
 



A logical collection is a user-defined group of files.  We expect that users will find it 
convenient and intuitive to register and manipulate groups of files as a collection, rather 
than requiring that every file be registered and manipulated individually.  Aggregating 
files should reduce both the number of entries in the catalog and the number of catalog 
manipulation operations required to manage replicas.   
 
Location entries in the replica catalog contain all the information required for mapping a 
logical collection to a particular physical instance of that collection.   The location entry 
may register information about the physical storage system, such as the hostname, port 
and protocol.  In addition, it contains all information needed to construct a URL that can 
be used to access particular files in the collection on the corresponding storage system.  
Each location entry represents a complete or partial copy of a logical collection on a 
storage system.  One location entry corresponds to exactly one physical storage system 
location.   The location entry explicitly lists all files from the logical collection that are 
stored on the specified physical storage system.   
 
Each logical collection may have an arbitrary number of associated location entries, each 
of which contains a (possibly overlapping) subset of the files in the collection.  Using 
multiple location entries, users can easily register logical collections that span multiple 
physical storage systems.  
 
Despite the benefits of registering and manipulating collections of files using logical 
collection and location objects, users and applications may also want to characterize 
individual files.  For this purpose, the replica catalog includes optional entries that 
describe individual logical files.  Logical files are entities with globally unique names 
that may have one or more physical instances.  The catalog may optionally contain one 
logical file entry in the replica catalog for each logical file in a collection. 
 

 



Figure 4:  A Replica Catalog for a climate modeling application.   
 
Figure 4 shows an example replica catalog for a climate modeling application.  This 
catalog contains two logical collections with CO2 measurements for 1998 and 1999.  The 
1998 collection has two physical locations, a partial collection at jupiter.isi.edu and a 
complete collection at sprite.llnl.gov.  The location entries contain attributes that list all 
files stored at a particular physical location.  They also contain attributes that provide all 
information (protocol, hostname, port, path) required to map from logical names for files 
to URLs corresponding to file locations on the storage system.  The example climate 
modeling catalog also contains logical file entries for each file in the collection.  These 
entries provide size information for individual files. 
 
5.2 Replica Catalog API and Command Line Tool 
 
We have implemented an API for low-level replica catalog manipulation as a C library 
called globus_replica_catalog.c.  In addition, we have implemented a straightforward 
command-line tool that provides similar functionality.   
 
All operations on the replica catalog being by establishing a connection to a logical 
collection.  This may include creating a new logical collection entry if the specified 
collection doesn’t already exist.  After establishing this connection, API and command 
line functions operate on the collection entry or on its corresponding location or 
logicalfile entries.  Possible operations on replica catalog entries fall into three general 
categories:   
 
! Create and delete entire entries:  When creating a logical collection, location or 

logicalfile entry, the client supplies all attributes to be associated with the new entry.  
For example, the client might specify all filenames to be associated with a logical 
collection entry or the hostname, protocol and path information required for mapping 
to physical file locations in a location entry.  Deleting a catalog entry requires knowing 
only the name of the entry and its corresponding logical collection. 

! Add, list or delete attributes of an entry:  These operations allow the user to 
manipulate the attributes of an entry.  For example, as new files are produced by an 
experimental physics application, their names might be added as attributes to a logical 
collection entry.  If space constraints on a storage system required deleting certain 
files, a location entry should be updated to remove the corresponding filenames from 
the catalog entry. 

! List or search for specified entries:  These operations search the catalog and return a 
list of entries and their attributes that match the specified search criteria.  For example, 
a simple list operation might return all the location entries associated with a logical 
collection.  More complex search operations are used to identify all physical locations 
where a particular set of files is stored.  These search operations are essential to 
higher-level tools that select among possible source and destination locations for data 
transfer operations. 

 



 
 
5.3 Replica Management API 
 
In this section, we describe the high-level Replica Management API that is currently 
being designed.  The purpose of this API is to build higher-level functionality on top of 
the low-level Replica Catalog API.  In addition to making low-level Replica Catalog API 
calls, the functions in the Replica Management API can manipulate storage systems 
directly, including copying files and checking file status, such as last modification time.  
This library has not yet been implemented.  

 
The functions of the Replica Management API can be categorized as follows: 
 
! Session management:  These functions create, configure and destroy session handles.  

The use of session handles allows caching of connection states to GridFTP and LDAP 
servers, so that a series of operations on multiple files can be performed efficiently, 
without requiring separate FTP or LDAP commands for each operation. 

! Catalog creation: These functions create and populate one or more entries in a replica 
catalog.  There are basic functions to create empty logical collection and location 
objects.  In addition, there are functions to register and publish filenames into logical 
collections and locations.  A client registers a file that already exists on a storage 
system by adding the filename to collection and location entries in the catalog.  
Alternatively, the client publishes a file into logical collection and location entries by 
first copying the file onto the corresponding storage system and then updating the 
catalog entries.   

! File maintenance: These functions include copy, update, delete operations on physical 
files with corresponding replica catalog updates.  For example, the copy operation 
copies a file from one physical location to another, updating the corresponding 
location entry in the replica catalog.  The delete operation removes a filename from a 
location entry in the replica catalog and optionally also deletes the file on the 
corresponding physical storage system.    

! Access control:  These functions control who is allowed to access and make replicas 
of individual files and logical collections. 

 

5.4 Implementation and Performance 
We have implemented the Replica Catalog as a Lightweight Directory Access Protocol 
(LDAP) directory.  We have implemented the Replica Catalog API as a C library in the 
Globus grid computing environment. In addition, we have implemented a command line 
tool that calls replica catalog API functions. 
 
[Note to reviewers:  we are currently running extensive performance measurements of a 
test replica catalog to determine its scalability as collection size and number of 
collections increases.  If space allows, we will include these results in the final version of 
the paper, but we have left them out of the current draft.]  



 
 
 
6 Conclusions 
 
We have argued that high-performance, distributed computing applications require two 
fundamental services:  secure, reliable, efficient transfer of data in wide area 
environments and the ability to register and locate multiple copies of data sets.  Upon 
these fundamental components, we can build higher-level services, including reliable 
creation of a copy of a data collection at a new location; selection of the best replica for a 
data transfer operation based on performance; and automatic creation of new replicas in 
response to application demands. 
 
We have presented our design and implementation of these fundamental services in the 
Globus grid computing environment.  We presented the GridFTP protocol, which 
implements extensions to provide GSI security, parallel, striped, partial and third-party 
transfers.  We also presented the performance of GridFTP parallel and striped accesses.  
Next, we described the Globus Replica Management architecture, which is responsible 
for managing complete and partial copies of data sets.  We described the design of our 
Replica Catalog, as well as APIs for manipulating the catalog and storage systems. 
 
We are working with several high-performance, data-intensive computing applications, 
such as high-energy physics, climate modeling and earthquake engineering.  Working 
with these application communities provides an ideal opportunity to evaluate the 
usefulness of the Globus data management architecture. 
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[CFK1]We need to clarify metadata update issue: single writer (as in Babar), what about 
other experiments.  Is there updates to objects, or are new metadata objects just added. 

 


