
MPICH-GQ: Quality-of-Service for Message Passing Programs

Alain Roy ∗ Ian Foster∗† William Gropp† Nicholas Karonis‡ Volker Sander§ Brian Toonen†

Abstract

Parallel programmers typically assume that all resources
required for a program’s execution are dedicated to that
purpose. However, in local and wide area networks, con-
tention for shared networks, CPUs, and I/O systems can
result in significant variations in availability, with con-
sequent adverse effects on overall performance. We de-
scribe a new message-passing architecture, MPICH-GQ,
that uses quality of service (QoS) mechanisms to man-
age contention and hence improve performance of mes-
sage passing interface (MPI) applications. MPICH-GQ
combines new QoS specification, traffic shaping, QoS
reservation, and QoS implementation techniques to de-
liver QoS capabilities to the high-bandwidth bursty flows,
complex structures, and reliable protocols used in high-
performance applications—characteristics very different
from the low-bandwidth, constant bit-rate media flows
and unreliable protocols for which QoS mechanisms were
designed. Results obtained on a differentiated services
testbed demonstrate our ability to maintain application
performance in the face of heavy network contention.

Keywords: MPI, Quality of Service, Differentiated Services,
TCP

1 Introduction

The performance achieved by parallel programs is often
adversely affected by contention for resources such as net-
works and I/O systems. In the case of networks, even a
small amount of contention over a critical link can play
havoc with overall performance, particularly when an ap-
plication is using TCP/IP as its communication protocol:
TCP/IP’s built in contention-avoidance mechanisms can
reduce communication rates drastically, potentially idling
many processors.

∗Department of Computer Science, The University of Chicago,
Chicago, IL 60637, U.S.A.

†Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL 60439, U.S.A.

‡High-Performance Computing Laboratory, Department of Com-
puter Science, Northern Illinois University, DeKalb, IL 60115, U.S.A.

§Central Institute for Applied Mathematics, Forschungszentrum
Jülich GmbH, 52425 J̈ulich, Germany

One approach to dealing with contention is to explicitly
manage the allocation of scarce resources to different pur-
poses. If appropriate mechanisms can be provided for ex-
pressing application requirements, for arbitrating between
different requirements, for enforcing allocations, and for
providing feedback to applications concerning achieved
performance, then applications can, in principle, adapt
their behavior according to resource availability. How-
ever, while such quality of service (QoS) mechanisms
have been developed for low-bandwidth, constant bit-rate
media flows with unreliable protocols [21, 4, 28, 30, 29],
the high-performance, often bursty traffic patterns, com-
plex communication structures, and reliable protocols en-
countered in high-performance computing applications
pose new challenges. Furthermore, the sockets-based ap-
plication programming interfaces (APIs) typically pro-
vided for managing QoS are not appropriate for scientific
applications.

We describe a system, MPICH-GQ, that addresses the
problems just listed, providing the parallel programmer
with a QoS framework that supports:

• high-bandwidth (tens of Megabits per second: Mb/s)
flows

• reliable protocols, specifically TCP/IP

• a variety of different low-level QoS enforcement
mechanisms

• both immediate and advance reservation, and co-
reservation of CPU, network, and other resources
needed for end-to-end performance

• a familiar high-level programming model, namely
the message passing interface (MPI)

Our prototype MPICH-GQ implementation combines ele-
ments of the MPICH-G2 (formerly MPICH-G) wide area
implementation of MPI [18, 10] and the General-purpose
Architecture for Reservation and Allocation (GARA)
QoS framework [14, 15]. Experimental studies with sim-
ple MPI benchmark studies demonstrate our ability to de-
liver high performance in the face of network contention.

This work is part of a larger project focused on exploit-
ing MPI as a standards-based API for advanced network
computing. This work has produced new techniques for

Published in theProceedings of the IEEE/ACM SC2000 Conference
November, 2000

0-7803-9802-5/2000/$10.00 (c) 2000 IEEE.

constructing topology-aware collective operations [24] as
well as a first version of MPICH-G [10], a “Grid-” [12] or
network-aware implementation of MPI that uses mecha-
nisms provided by the Globus toolkit [11] to address se-
curity, startup, remote I/O, and other issues that can hinder
distributed execution. The PACX [16], MetaMPI [7], and
MAGPIE [25] systems also address some of these issues,
but not QoS.

2 Quality of Service: A Brief Re-
view

We review briefly the state of the art in network QoS
mechanisms, focusing on methods used within Internet
Protocol (IP)-based packet-switched networks.

In today’s Internet, the packets constituting an
application-level flow pass through a series of routers as
they travel from their source to their destination. An in-
dividual router must make decisions with implications for
perceived QoS whenever more than one incoming packet
can be forwarded at the same time. The router must then
choose to forward one packet before the other(s), which
are queued and hence delayed; if the number of incoming
packets exceeds the output rate of the router for an ex-
tended period, the router must also choose which packets
to discard.

Two primary approaches to QoS have been proposed
within the IP context. In the Integrated Services (IS) [2]
approach, a reservation is made at each router between
the endpoints of a reservation, usually via the Resource
ReserVation Protocol (RSVP) [3]. Each router distin-
guishes each of the reserved flows and provides each flow
with performance guarantee, either statistical or strict.
The IS approach has been criticized as being too “heavy,”
however, because each router is required to recognize and
treat each application-level flow separately, which may be
too much of a burden to place on routers in the core of a
large network such as the Internet.

In the Differentiated Services (DS) [1] approach,
routers that are at the “edge” of a DS network recognize
packets that should receive better service by classifying
the packets based on information in the header, such as
source and destination addresses and ports. For exam-
ple, a network provider may choose to give better-quality
service to all packets sent in video flows, or may have a
bandwidth reservation system that allows applications to
request specific amounts of bandwidth for particular ap-
plication flows. Once an edge router classifies a packet as
needing better service, it marks that packet in the header
with a particular service. In the interior of the network,
packets are no longer fully classified as they were by the
edge routers, but they are treated as an aggregate based on

the service marked in the packet. This approach greatly
simplifies the task of the routers in the interior of the net-
work.

In addition to classifying and marking the packets, edge
devices may have to perform policing and shaping.Polic-
ing is a mechanism to ensure that senders do not send
too much high-quality traffic; if the sender transmits data
too quickly, policing will throw out traffic above a cer-
tain rate. Policing is often implemented through a token
bucket mechanism. The size of the token bucket controls
how quickly an application can send data: tokens are grad-
ually added to the token bucket and packets are only sent
if there are tokens in the bucket. Policing is important
when the network provider wishes to offer not simply dif-
ferent types of service, but some sort of guarantee on a
service: if access to the service is unrestricted, it may be
impossible to provide such guarantees.Shapingis impor-
tant when application traffic is bursty. If these bursts are
not smoothed to be less bursty, policing may cause pack-
ets to be dropped. As we explain below, shaping can be
performed either in the router or in the application.

The Internet Engineering Task Force (IETF) has de-
fined two different types of DS services. These are not
services in the “end-to-end” sense of the word, but instead
areper hop behaviors(PHBs). That is, they define how
packets are treated at each router. One PHB that is of
particular interest to us in theExpedited Forwarding(EF)
behavior which says that all packets in the “expedited”
router queue are sent before any other packets are sent.
Clearly, to prevent starvation of nonexpedited flows, the
number of expedited packets must be carefully limited.
It is possible to build a premium end-to-end service that
provides statistical bandwidth guarantees on top of the
EF PHB by doing careful admission control and policing
at the edge routers. Normally, admission control is per-
formed not by the router but by an external QoS system,
usually referred to as abandwidth broker. In this paper,
we will not discuss admission control and the bandwidth
broker in detail, although it is part of the GARA system
as described below.

In brief, then, the task of providing application-level
QoS maps to that of configuring key parameters (flow
rates, bucket sizes) within individual routers. This map-
ping is fairly straightforward for the media applications
that have motivated most work on QoS, because of their
simple and regular communication structures. For exam-
ple, an audio stream may comprise 1000 bit packets, gen-
erated every 64th of a second, for a total bandwidth re-
quirement of 64 Kb/s. Therefore, we configure the under-
lying network to support a flow with premium bandwidth
of 64 Kb/s and a token bucket depth of 1000 bits. As
we discuss in the following, things are more complex for
high-performance applications.

2

3 Quality of Service and MPI

The communication structures associated with MPI appli-
cations are often significantly more complex than in me-
dia applications, in three principal respects:

• Communication is often bursty: an application may
compute for a while, then call a communication
function, then compute some more. In some cases,
communication can be overlapped with computation,
but in others, computation ceases until communica-
tion completes. Furthermore, communication struc-
tures and rates may not be predictable.

• Communication is typically achieved via reliable
protocols such as (on a LAN or WAN) TCP/IP.
These protocols further complicate the communi-
cation structure, because a single application-level
message may result in many low-level communica-
tions, and packet loss may trigger unexpected behav-
iors.

• Communication can involve many processes, rather
than a single pair.

To illustrate the implications of these differences, we
consider a simple finite difference application partitioned
across two 8-processor multiprocessors connected by a
wide area network. A simple calculation of the total data
volume exchanged by the application suggests that the ap-
plication maintains an average data rate of 1 Mb/s. Yet if
we configure our network to support a premium flow at
this rate, we find that things do not perform as we ex-
pect. The application immediately performs anMPI Send
involving a large buffer (100 KB), depleting the token
bucket and causing packets to be dropped. TCP kicks into
slow start mode and starts sending more slowly, gradually
building up its send rate until packets are dropped again.
The result is an extremely low communication rate and
an underutilized network. The provision of QoS for such
applications requires new methods and mechanisms.

Figure 1 illustrates the types of problems that can arise.
Here, we deal with a simple TCP program that is attempt-
ing to send data at approximately 50 Mb/s over a con-
gested network, with a reservation that is somewhat too
low (40 Mb/s). As we see, the bandwidth obtained by this
program varies wildly: every time TCP kicks into slow
start mode, the bandwidth drops significantly, then slowly
increases until packets are dropped again.

The fact that a typical MPI program may involve large
numbers of communicating processors complicates things
further. We need to bind all relevant flows with underlying
QoS mechanisms; in addition, multiple concurrent TCP
flows can lead to some interesting interactions.

20000

25000

30000

35000

40000

45000

50000

55000

0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
 (

K
b/

s)

�

Time (s)

TCP Flow
Reservation

Figure 1: An application using TCP has made a reserva-
tion for only 40 Mb/s, when it is sending at 50M b/s.

4 MPICH-GQ

MPICH-GQ extends the MPICH-G2 wide area imple-
mentation of MPI and leverages mechanisms provided by
the GARA QoS architecture to deliver QoS support for
MPI applications. Our initial work focuses on IP networks
and DS mechanisms, but we believe that the basic princi-
ples apply in other contexts, for example, within a parallel
computer with an interconnect that supports QoS mecha-
nisms.

Figure 2 shows the principal components of the
MPICH-GQ architecture. These are:

• TheMPICH implementation of MPI[18] is extended
in a standards-compliant fashion so that MPI’s at-
tribute mechanisms can be used to communicate with
the underlying QoS system. (Note that we have pro-
totyped this, but in actuality the results presented
used a slightly different mechanism.)

• An MPI QoS Agentincorporates the rules used to
translate application-level QoS specifications into
the lower-level commands and parameters required
to implement QoS.

• As in MPICH-G2, aGlobus device[10] provides
low-level security, startup, and other functions for
wide area networks.

• Theglobus-io libraryprovides a convenient wrapper
for the low-level socket calls used to implement wide
area transport; traffic shaping can also be performed
here.

• The GARA system[13] is used to reserve premium
bandwidth and to control physical devices such as
routers and computers.

3

• The physical devices themselves are controlled via
their implementations ofdifferentiated servicesand
other mechanisms.

MPI Applications

MPICH extended to support QoS

Globus Device:
security, startup, I/O

MPI QoS
Agent

Globus I/O

GARA: QoS Reservations

QoS-Enabled
Networks

(Differentiated
Services)

QoS-Enabled
CPU

(DSRT)

Figure 2: The MPICH-GQ Architecture

At the time of writing, we have prototyped significant
fractions of the MPICH-GQ architecture—enough to con-
duct the experiments described below—but do not have a
complete implementation. The major component that we
have not yet constructed is the MPI QoS Agent. As we
describe in the next section, we currently bind QoS pa-
rameters directly to application-level flows.

We now proceed to describe the MPI attribute exten-
sions, GARA architecture, and the techniques used to deal
with TCP flows.

4.1 Application-Level QoS Specification

The Message Passing Interface (MPI) standard was de-
signed to support high-performance, scalable message
passing for communication between two or more pro-
cesses. The major parts of this programming model are
well known (see [19, 17, 20]).

A goal in designing MPICH-GQ was to make QoS
capabilities available within this standards-based frame-
work. One consequence of this goal is that we cannot ex-
tend MPI arbitrarily. For example, it might be convenient
to introduce anMPI Setqosfunction, but MPI programs
that used it would no longer be standards compliant or
portable to different MPI implementations.

Fortunately, the MPI standard provides an elegant solu-
tion to the problem of enabling application-level tuning
without compromising portability, namely, itsattribute

mechanism. This part of the MPI specification was in-
troduced with the specific goal of allowing users and im-
plementors to share information to enable faster or more
reliable communication.

In the MPI programming model, all communication
takes place within acommunicator. A communicator is
simply a group of processes, with an additional, unique
communication context that ensures that messages sent in
one communicator cannot be received in another commu-
nicator.

The application programmer can create, set, or get
attributes that are maintained on a communicator-by-
communicator basis. An attribute is identified by an
integer keyval. The value of an attribute (in C and
C++) is a pointer, thus providing a standard-conforming
way of retrieving information from the MPI imple-
mentation (MPI Attr get with a predefinedkeyval)
and providing information to the MPI implementation
(MPI Attr put).

MPICH-GQ exploits this attribute mechanism to ex-
change information between the user’s application and the
MPI implementation, usingMPI Attr put to specify
required QoS andMPI Attr get to see whether the re-
quested QoS is available. Because attributes are specific
to a particular communicator, it is possible, by careful cre-
ation of appropriate communicators, to target both queries
and requests to specific links or sets of links. Note that the
action of putting the attribute actually triggers the request
for QoS, which is slightly different than the normal usage
of attributes, which do not trigger actions.

In our work with MPICH-GQ, we focus initially on
QoS attributes that are applied to two-party intercommu-
nicators and on the techniques required to communicate
quite low-level specifications of required QoS to the un-
derlying QoS system. A typical specification is illustrated
in Figure 3. The QoS class may be “best-effort” (i.e.,
no QoS), “low-latency” (suitable for small message traf-
fic [33, 32]: e.g., certain collective operations), or “pre-
mium.” The maximum message size allows us to translate
application reservation sizes to network reservation sizes,
because it is possible to calculate the amount of proto-
col overhead. Extensions to ensembles of processes will
be considered in the future, as will more interesting map-
pings from QoS specifications expressed in terms mean-
ingful to MPI programmers, such as MB/s or messages
per second.

The features just described allow for QoS specification
internal to an MPI application. In addition, it can be use-
ful to allow for external management of QoS by a separate
QoS agent. To support this feature, we also define a func-
tion that can extract the necessary information (basically
port and machine names) from a communicator.

Note that, in our prototype, we do not yet fully support

4

struct qos_attribute
{

u_int32_t qosclass;
double bandwidth; /* Peak bandwidth in kbps */
int max_message_size; /* Max size used in MPI_Send */

} QoS, *Qos_p;
...

MPI_Attr_put(comm, MPICH_ATM_QOS, &QoS);
MPI_Attr_get(comm, MPICH_ATM_QOS, &Qos_p, &flag);

Figure 3: QoS-enhanced MPI code to set and then check the QoS parameters associated with a communicator.

the setting of QoS chracteristics directly from within MPI
as this requires modifications to our security mechanisms.
The modifications, while not significant, did delay the im-
plementation.

4.2 The GARA Architecture

An MPI QoS Agent must be able to translate application-
level QoS requests into reservations for low-level physi-
cal resources. We perform these reservations via requests
to GARA, a resource management architecture that sup-
ports flow-specific QoS specification, secure immediate
and advance co-reservation, online monitoring/control,
and policy-driven management of a variety of resource
types, including networks [13]. Mechanisms provided by
the Globus toolkit [11] are used to address resource dis-
covery and security issues when resources span multiple
administrative domains.

GARA defines APIs that allows users and applications
to manipulate reservations of different resources in uni-
form ways. For example, essentially the same calls are
used to make an immediate or advance reservation of a
network or CPU resource. Once a reservation is made, an
opaque object called a reservation handle is returned that
allows the calling program to modify, cancel, and monitor
the reservation. Other functions allow reservations to be
monitored by polling or through a callback mechanism in
which a user’s function is called every time the state of the
reservation changes in an interesting way.

MPICH-GQ can use GARA mechanisms to reserve
shared resources, such as networks and CPUs, and then
to bind specific flows (sockets) and processes to those
reservations. In our work to date, we have demonstrated
the ability to generate reservations for an MPI applica-
tion once the application has been started. In the fu-
ture, we will integrate the reservation process with MPI
startup and execution, so that, for example, an MPI pro-
gram can select from among alternative resources, accord-
ing to their availability, and adapt execution strategies or
change reservations if reservations cannot be satisfied in

full or are preempted.
The GARA implementation must provide admission

control and reservation enforcement for multiple re-
sources of different types. Because few resources provide
reservation capabilities, we have implemented our own re-
source manager so as to ensure availability of reservation
functions. This manager uses a slot table [6, 22] to keep
track of reservations and invokes resource-specific oper-
ations to enforce reservations. Requests to this resource
manager are made via an internal local resource manager
API and result in calls to functions that add, modify, or
delete slot table entries; timer-based callbacks generate
call-outs to resource-specific routines to enable and can-
cel reservations. Note that only certain elements of this
resource manager need to be replaced to instantiate a new
resource interface. To date, we have developed resource
managers for DS networks, for the Distributed Soft Real-
Time (DSRT) CPU scheduler [23], and for the Distributed
Parallel Storage System (DPSS) [35], a network storage
system; others are under development.

4.3 Support for TCP Flows

An MPICH-GQ call to GARA requesting the reservation
of network resources for an MPI application flow must ul-
timately be translated into calls to resource-specific con-
trol functions to configure the routers (and/or CPU sched-
ulers, etc.) that implement QoS functions. This con-
figuration process is complicated by the fact that the
application-level traffic consists of one or more high-
performance TCP flows. TCP’s flow control and conges-
tion control mechanisms [34, 5], while critical to the ef-
fectiveness of TCP in shared networks, have the unfortu-
nate consequences of making TCP traffic both bursty and
sensitive to the loss of individual packets [27, 26]. In a
DS-based system, this means that we need both a large
token bucket on the edge router and an accurate reserva-
tion value.

The GARA DS module incorporates configuration
rules that allow it to set these values correctly. In brief,

5

we configure the token bucket depth to be

depth = bandwidth ∗ delay,

where “depth” is in bits, bandwidth is in bits per second,
and “delay” is in seconds. However, the token bucket
is usually specified in bytes, not bits, so the formula be-
comes:

depth = bandwidth ∗ delay ∗ 8.

In our local testbed (described in Section 5.1), the delay
is quite small, on the order of a millisecond or two. A two
millisecond delay would therefore suggest that the depth
of the bucket should be

bandwidth ∗ 2
1000

∗ 8 = bandwidth/62.5.

However, to allow for larger bursts in traffic, we currently
usebandwidth/40. As we explain in Section 5.4 below,
this value is not always adequate.

5 Experimental Results

We present experimental results that demonstrate our abil-
ity to deliver QoS to MPI applications and also expose
some of the difficulties that one encounters when dealing
with bursty MPI traffic.

5.1 Experimental Setup

Our experimental configuration, illustrated in Figure 4,
is a laboratory testbed at Argonne National Laboratory
called the Globus Advance Reservation Network Testbed,
or GARNET, which is connected to a number of remote
sites. GARNET allows controlled experimentation with
basic DS mechanisms; the wide area extensions allow for
more realistic operation, albeit with a small number of
sites.

We use a DS implementation based on Cisco 7500 se-
ries routers, which support the EF PHB with the Modular
QoS Command line interface (MQC). In detail, we use the
following mechanisms to support our DS implementation:

• A packet classifier is used on each router interface to
determine the type of service.

• A token bucket mechanism is used on the ingress
ports of edge routers to mark and police the flows
for which premium bandwidth is required. It is also
used on the ingress router of a domain to police the
premium aggregate.

• Priority queuing is used on the egress port of edge
routers to support delay-sensitive UDP flows. Prior-
ity queueing ensures that all packets associated with
reservations are sent before any other packets. When
there are no packets in the priority queue, other pack-
ets are allowed to use the entire available bandwidth.

Within GARNET, the routers are connected by OC3
ATM connections; across wide area links, they are con-
nected by VCs of varying capacity. End system computers
are connected to routers by either switched Fast Ethernet
or OC3 connections.

5.2 QoS and MPI: Ping-Pong

We first present MPICH-GQ results for a simple “ping-
pong” program, in which two processes repeatedly
exchange a fixed-sized message viaMPI Send and
MPI Recv calls. While artificial, this communication
pattern is characteristic of many SPMD applications.

Figure 5 shows the one-way throughput obtained by
this program as a function of reservation size, for four
different message sizes, in the face of heavy contention.
Contention is generated via a UDP traffic generator that is
quite capable of overwhelming any TCP application that
does not have a reservation. (As the two processes ex-
change messages, total “throughput”—and reservation—
is twice what is shown here, when summed over both
directions.) We do not show the results obtained in the
absence of a reservation or in the absence of contention
(and with no reservation), but, in brief, performance is
extremely poor in the first case but is at the peak levels
reached in the figure in the second case.

We see that the achieved throughput improves as the
applied reservation increases until the reservation is “ad-
equate” for the message size in question, after which fur-
ther increases in reservation size have no significant im-
pact. This is the general behavior that we would ex-
pect: when the reservation is too low, packets are dropped.
In fact, the throughput that was observed was much
lower than the reservation, until the reservation was large
enough. This is because TCP backs off when packets are
dropped, as discussed above.

5.3 QoS and MPI: Distance Visualization

Our next results are for an MPI program designed to em-
ulate a distance visualization pipeline. The program com-
municates a stream of fixed-sized messages from a sender
to a receiver at a fixed rate; both the rate (“frames per
second”) and the message size (“frame size”) can be ad-
justed, hence varying both the generated bandwidth and
the burstiness of the traffic.

6

Linux Linux

Cisco 7507
�

Cisco 7507
�

Cisco 7507
�

ESnet
Testbed

ANL

Ultra
(competitive source)

�

Ultra
(premium source)

�

Ultra
(competitive destination)

�

MREN EMERGE
Testbed

Ultra
(premium destination)

�

Univ of
�

Wisconsin-
�

Madison

iCAIR

Univ of
�

Chicago
�

Univ of
�

Illinois

LBNL
�

SNL
�

Figure 4: GARNET, our experimental testbed.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2000 4000 6000 8000 10000 12000

O
ne

-W
ay

 T
hr

ou
gh

pu
t A

ch
ie

ve
d

(K
b/

s)

�

One-Way Reservation (Kb/s)

8 Kb messages
40 Kb messages
80 Kb messages

120 Kb messages

Figure 5: The effect of different reservation sizes for the
ping-pong MPICH-GQ program. Each line represents the
throughput achieved for a particular message size at dif-
ferent reservation sizes.

Figure 6 shows the throughput achieved by this pro-
gram as a function of reservation size for frame sizes of 5,
10, 20, and 30 KB. (The rate was fixed at 10 frames per
second.) Once again, we see that the achieved through-
put increases with reservation until the reservation is “ade-
quate.” However, in contrast to the ping-pong case, we see
that the performance at lower reservations is significantly
worse than we would expect from simple scaling. This ef-

fect is due to TCP congestion control strategies. We also
see that we require a reservation value of around 1.06 of
the sending rate, because of TCP packet overheads.

0

500

1000

1500

2000

2500

0 400 800 1200 1600 2000 2400

B
an

dw
id

th
 A

ch
ie

ve
d(

K
b/

s)

�

Reservation (Kb)

Attempting 400Kb/s
Attempting 800Kb/s

Attempting 1600Kb/s
Attempting 2400Kb/s

Figure 6: The effect of different reservations on the vi-
sualization application attempting different throughputs.
Note that making a reservation that is even a little bit
too small dramatically decreases the throughput that is
achieved.

7

Table 1: The reservation required to achieve a speci-
fied throughput, for varying degrees of “burstiness” (ex-
pressed in frames per second) and token bucket sizes. All
bandwidths and reservations are in Kb/s.

Reservation Required
Bandwidth Normal Token Bucket Large Token Bucket

Desired 10 fps 1 fps 1 fps
400 500 750 500
800 900 1450 900
1600 1700 2700 1700
2400 2500 3600 2500

5.4 The Effect of Burstiness

We outlined in Section 4.3 how MPICH-GQ currently at-
tempts to deal with small bursts of TCP by adopting a
moderately large, but fixed value, for the size of the to-
ken bucket. We present results here that demonstrate the
impact that this value can have on performance.

In the experiments described, we used our visualiza-
tion program to transmit data at various rates, while vary-
ing both the burstiness of the traffic (1 frame per sec-
ond or 10, with the former of course featuring bursts that
are ten times as large) and the size of the token bucket
(bandwidth/40: “normal” andbandwidth/4: “large”).

The results, shown in Table 1, demonstrate that there
are limits to the size of the burst that our “normal” token
bucket depth can deal with: with the normal depth, the
very bursty configurations needs an approximately 50%
larger reservation.

Figure 7 provides an aid to visualizing the difference in
burstiness between the two programs. Note how the pro-
gram running at ten frames per second has much smaller
bursts that are well spread out, while the program running
at one frame per second sends all of its data in one much
larger burst, thus effectively giving it a larger bandwidth
over a small time interval.

These results present serious challenges for MPICH-
GQ design. One approach to this problem is to attempt to
compute the “correct” token bucket size dynamically, by
using application-specific information and perhaps also
dynamic network performance data [36]. However, one
is also expending scarce system resources. An alternative
approach is to incorporate traffic-shaping support into the
MPICH-GQ implementation on the end-system.

5.5 Combining Network and CPU Reserva-
tions

Up to this point, we have only considered QoS for net-
works. Unfortunately, it is not always sufficient to rely

60

40

20

0
10.80.60.40.20

Sequence Number

Time (s)

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

��

60

40

20

0
1.00.80.60.40.20

Sequence Number

Time (s)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

Figure 7: TCP traces of two programs that each send at
400Kb/s, but with very different burstiness characteristics.
On the top is a program sending 10 frames per second, and
each frame is 40Kb. On the bottom is a program sending
just 1 frame per second, and the frame is 400Kb. (This
corresponds to the first line of Table 1.) In each case, only
one second of the program’s execution is shown.

on network QoS. For example, if there is contention for a
CPU or disk, it may be necessary to use QoS mechanisms
to control access to the CPU and disk to ensure end to end
QoS.

We have done experiments to demonstrate this neces-
sity. In order to create and enforce CPU reservations
we are using the Dynamic Soft Real-Time CPU Sched-
uler [23]. DSRT works by overriding the Unix scheduler
and performing soft real-time scheduling of select pro-
cesses.

Figure 8 again shows a trace of our visualization appli-
cation. At the beginning, it is able to maintain a fairly
steady throughput of 15Mb/s. However at 10 seconds,
a CPU-intensive application begins running on the same
machine as the sending side of the visualization applica-
tion. This reduces the bandwidth significantly, so a CPU
reservation for 90% of the CPU is made at 20 seconds,
and the visualization application again is able to achieve
its full bandwidth.

There are some interesting aspects to this example.
When we first developed our visualization application,
our implementation of MPI was using TCP socket buffer
sizes of 8KB but was writing to the socket in chunks
greater than 60KB. This had the effect of using a large
amount of user CPU time (as opposed to kernel time), so

8

..

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

B
an

dw
id

th
 A

ch
ie

ve
d

(K
b/

s)

�

Time (s)

Figure 8: The bandwidth achieved by the visualiation ap-
plication. Contention for the CPU on the sending side
begins at 10 seconds, and a reservation is made at 20 sec-
onds.

the effect of the CPU congestion was more pronounced at
smaller bandwidths. When we began using larger socket
buffer sizes, we had to significantly increase the band-
width that the application was using before the band-
width was affected by CPU congestion. This was because
the network communication was actually kernel time, not
user time. In addition, our visualization application was
originally an inaccurate simulation of a visualization ap-
plication: it sent a chunk of data, slept for a short time,
then repeated. Since the network writes were blocking,
the application actually used very little CPU time, and was
not significantly affected by the CPU contention. After a
modification to make the application do some “work” be-
tween sending frames, the application was more affected
by the CPU contention.

There are two lessons to draw from this experience.
First, applications that use TCP and want high perfor-
mance need careful tuning (such as socket buffer sizes)
to actually obtain the high performance. Since MPICH-
GQ applications do not use TCP directly, that burden falls
on MPICH-GQ directly. Second, it can be difficult to de-
cide how best to optimize a program: does it simply need
to have TCP parameters tuned (a network optimization),
or does it need a CPU reservation (a CPU optimization),
or does it need both? Applications that have large band-
widths are much more sensitive to CPU contention, and
may need CPU reservations to achieve their desired per-
formance.

Figure 9 shows another example of CPU reservations.
In this case, the application which is trying to send data
at 35Mb/s encounters both network congestion and CPU
contention. The network congestion begins at time 10
continues to the end of the experiment, while the CPU

congestion begins at time 30, and continues to the end
of the experiment. Both network and CPU reservations
are made to overcome the resource contention. This fig-
ure demonstrates that not only can network congestion
and CPU contention combine to decrease an application’s
bandwidth, but it is possible to overcome such contention
in order to acheive good performance. Note that it is in-
sufficient to make just a network reservation or a CPU
reservation: both reservations are needed.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35 40 45 50
B

an
dw

id
th

 A
ch

ie
ve

d
(K

b/
s)

�

Time (s)

Figure 9: A trace of the bandwidth achieved by the vi-
sualization application as it attempts to achieve a con-
stant 35Mb/s rate. Initially it runs well (0-10 seconds),
then network congestion affects its bandwidth (11-20 sec-
onds) until a network reservation is made (21-30 seconds).
Bandwidth again decreases when there is CPU contention
at the sender (31-40 seconds) until there is a CPU reser-
vation (41-50 seconds).

Applications that use MPI often assume that they have
exclusive access to a machine. If exclusive access can
be ensured with non-QoS mechanisms, then there is no
need for using systems like DSRT. However, it is clear
that there are times when combining network and CPU
QoS mechanisms is advantageous.

6 Related Work

We review briefly related work on QoS within MPI, the
high-level specification of QoS, and QoS for reliable
flows.

The only other relevant effort in the context of MPI is
work on real-time extensions to MPI. MPI/RT [9] pro-
vides a QoS interface but is not an established standard
and introduces a new programming interface. Further-
more, the focus is on real-time needs such as predictability
of performance and system resource usage more appropri-
ate for embedded systems than for wide area networks.

9

Other approaches to the high-level specification of QoS
include work within the context of CORBA [31, 37] (in
the context of embedded systems) and socket libraries [8].
However, these systems are not appropriate for high-
performance computing due to their object request broker
and socket-based programming models, respectively.

The pan-European research network and its task force
Testing Advanced Networking Technologies (TF-TANT)
are currently evaluating DS mechanisms for providing
QoS to reliable and unreliable flows using commodity
hardware, although they are not concerned with higher-
level systems like MPI, but with TCP and UDP, at lower
bandwidths than considered here.

Acknowledgments

We gratefully acknowledge assistance given by Linda
Winkler and Becca Nitzan with the testbed used in these
experiments and by Andy Adamson who wrote the UDP
traffic generator. John Bresnahan and Joe Link have been
instrumental in implementing our QoS extensions to MPI.
Numerous discussions with our colleagues Keith Jackson,
Gary Hoo, Bill Johnston, Carl Kesselman, and Steven
Tuecke have helped shape our approach to quality of ser-
vice. We also thank Cisco Systems for an equipment do-
nation that allowed the creation of the GARNET testbed.
This work was supported in part by the Mathematical, In-
formation, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Re-
search, U.S. Department of Energy, under Contract W-31-
109-Eng-38; by the Defense Advanced Research Projects
Agency under contract N66001-96-C-8523; by the Na-
tional Science Foundation; and by the NASA Information
Power Grid program.

References

[1] S. Blake, D. Black, M. Carlson, M. Davies, Z. Wang,
and W. Weiss. An architecture for differentiated ser-
vices. Internet RFC 2475, 1998.

[2] R. Braden, D. Clark, and S. Shenker. RFC 1633:
Integrated services in the internet architecture: an
overview. Internet RFC 1633, July 1994.

[3] R. Braden, L. Zhang, S. Berson, S. Herzog, and
S. Jamin. Resource ReSerVation Protocol (RSVP)-
version 1 functional specification.Internet RFC
2205, September 1997.

[4] Prashant Chandra, Allan Fisher, Corey Kosak,
T. S. Eugene Ng, Peter Steenkiste, Eduardo Taka-
hashi, and Hui Zhang. Darwin: Resource manage-
ment for value-added customizable network service.

In Sixth IEEE International Conference on Network
Protocols (ICNP’98), 1998.

[5] D. Comer. Internetworking with TCP/IP. Prentice-
Hall International Editions, 1988.

[6] M. Degermark, T. Kohler, S. Pink, and O. Schelen.
Advance reservations for predictive service in the in-
ternet.ACM/Springer Verlag Journal on Multimedia
Systems, 5(3), 1997.

[7] Thomas Eickermann, Helmut Grund, and Jörg Hen-
richs. Performance issues of distributed MPI ap-
plications in a German gigabit testbed. InProc. of
the 6th European PVM/MPI Users’ Group Meeting,
September 1999.

[8] Microsoft Winsock QoS extensions.
ftp://ftp.microsoft.com/bussys/
winsock/winsock2/gqos_spec.doc .

[9] MPI/RT Forum.http://www.mpirt.org .

[10] I. Foster and N. Karonis. A grid-enabled MPI: Mes-
sage passing in heterogeneous distributed comput-
ing systems. InProceedings of SC’98. ACM Press,
1998.

[11] I. Foster and C. Kesselman. Globus: A toolkit-based
grid architecture. In[12] , pages 259–278.

[12] I. Foster and C. Kesselman, editors.The Grid:
Blueprint for a Future Computing Infrastructure.
Morgan Kaufmann Publishers, 1999.

[13] I. Foster, C. Kesselman, C. Lee, R. Lindell,
K. Nahrstedt, and A. Roy. A distributed re-
source management architecture that supports ad-
vance reservations and co-allocation. InProceedings
of the International Workshop on Quality of Service,
pages 27–36, 1999.

[14] I. Foster, A. Roy, and V. Sander. A quality of service
architecture that combines resource reservation and
application adaptation. InInternational Workshop
on Quality of Service, pages 181–188, 2000.

[15] I. Foster, A. Roy, V. Sander, and L. Winkler.
End-to-End Quality of Service for High-
End Applications. Technical report, Mathe-
matics and Computer Science Division, Ar-
gonne National Laboratory, Argonne, 1999.
http://www.mcs.anl.gov/qos .

[16] E. Gabriel, M. Resch, T. Beisel, and R. Keller. Dis-
tributed computing in a heterogenous computing en-
vironment. InEuroPVMMPI’98, 1998.

10

[17] W. Gropp, S. Huss-Lederman, A. Lumsdaine,
E. Lusk, B. Nitzberg, W. Saphir, and Marc Snir.
MPI–The Complete Reference. Volume 2–The MPI-
2 Extensions. MIT Press, Cambridge, MA, 1998.

[18] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the
MPI message passing interface standard.Parallel
Computing, 22:789–828, 1996.

[19] W. Gropp, E. Lusk, and A. Skjellum.Using MPI:
Portable Parallel Programming with the Message-
Passing Interface. MIT Press, Cambridge, MA,
1999.

[20] William Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir.MPI—The Complete Ref-
erence: Volume 2, The MPI-2 Extensions. Scien-
tific and engineering computation. MIT Press, Cam-
bridge, MA, USA, 1998.

[21] Roch Gúerin and Henning Schulzrinne. Network
quality of service. In[12] , pages 479–503.

[22] G. Hoo, W. Johnston, I. Foster, and A. Roy. QoS
as middleware: Bandwidth broker system design.
Technical report, LBNL, 1999.

[23] Hao hua Chu and Klara Nahrstedt. CPU service
classes for multimedia applications. InProceed-
ings of IEEE International Conference on Multime-
dia Computing and Systems. IEEE Computer Soci-
ety Press, 1999.

[24] N. Karonis, B. de Supinski, I. Foster, W. Gropp,
E. Lusk, and J. Bresnahan. Exploiting hierarchy
in parallel computer networks to optimize collective
operation performance. In2000 International Paral-
lel and Distributed Processing Symposium (IPDPS
’00), May 2000.

[25] T. Kielmann, R. Hofman, H. Bal, A. Plaat, and
R. Bhoedjang. Magpie: MPI’s collective commu-
nication operations for clustered wide area systems.
In Proc. ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP’99),
pages 131–140, May 1999.

[26] T. Lakshman, U. Madhow, and B. Suter. Window-
based Error Recovery and Flow Control with a Slow
Acknowledgement Channel: A Study of TCP/IP
Performance. InProceedings of the IEEE INFO-
COM. 1997.

[27] M. Mathis, J. Semke, and J. Mahdavi. The Macro-
scopic Behavior of the TCP Congestion Avoidance

Algorithm. InProceedings of ACM SIGCOMM, vol-
ume 27, number 3. 1997.

[28] A. Mehra, A. Indiresan, and K. Shin. Structuring
communication software for quality-of-service guar-
antees. InProc. of 17th Real-Time Systems Sympo-
sium, December 1996.

[29] K. Nahrstedt, H. Chu, and S. Narayan. QoS-aware
resource management for distributed multimedia ap-
plications.Journal on High-Speed Networking, IOS
Press, December 1998.

[30] K. Nahrstedt and J. M. Smith. Design, implemen-
tation and experiences of the OMEGA end-point ar-
chitecture.IEEE JSAC, Special Issue on Distributed
Multimedia Systems and Technology, 14(7):1263–
1279, September 1996.

[31] C. O’Ryan, D. Schmidt, F. Kuhns, M. Spivak, J. Par-
sons, I. Pyarali, and David L. Levine. Evaluating
policies and mechanisms for supporting embedded,
real-time applications with CORBA 3.0. InProceed-
ings to the Sixth IEEE Real-Time Technology and
Applications Symposium (RTAS’00), June 2000.

[32] V. Sander, I. Foster, and A. Roy. Implementing a
premium service based on the expedited forwarding
per-hop behavior. Technical report, Argonne Na-
tional Laboratory, September 2000.

[33] V. Sander, I. Foster, A. Roy, and L. Winkler. A
Differentiated Services Implementation for High-
Performance TCP Flows. InTerena Networking
Conference 2000 (TNC2000). May 2000.

[34] W. Stevens.TCP/IP Illustrated, Vol. 1 The Proto-
cols. Addison-Wesley, 1997.

[35] B. Tierney, W. Johnston, L. Chen, H. Herzog,
G. Hoo, G. Jin, and J. Lee. Distributed parallel data
storage systems: A scalable approach to high speed
image servers. InProc. ACM Multimedia 94. ACM
Press, 1994.

[36] R. Wolski. Forecasting network performance to sup-
port dynamic scheduling using the network weather
service. InProc. 6th IEEE Symp. on High Per-
formance Distributed Computing, Portland, Oregon,
1997. IEEE Press.

[37] J. Zinky, D. Bakken, and R. Schantz. Architectural
support for quality of service for CORBA objects. In
Theory and Practice of Object Systems, volume 3,
pages 55–73, January 1997.

11

