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Abstract

The realization of end-to-end quality of service (QoS)
guarantees in emerging network-based applications requires
mechanisms that support first dynamic discovery and then
advance or immediate reservation of resources that will
often be heterogeneous in type and implementation and
independently controlled and administered. ~We propose
the Globus Architecture for Reservation and Allocation
(GARA) to address these four issues. GARA treats both
reservations and computational elements such as processes,
network flows, and memory blocks as first class entities,
allowing them to be created, monitored, and managed inde-
pendently and uniformly. It simplifies management of het-
erogeneous resource types by defining uniform mechanisms
for computers, networks, disk, memory, and other resources.
Layering on these standard mechanisms, GARA enables
the construction of application-level co-reservation and co-
allocation libraries that applications can use to dynamically
assemble collections of resources, guided by both applica-
tion QoS requirements and the local administration policy
of individual resources. We describe a prototype GARA im-
plementation that supports three different resource types—
parallel computers, individual CPUs under control of the
Dynamic Soft Real-Time scheduler, and Integrated Services
networks—and provide performance results that quantify
the costs of our techniques.

1 Introduction

Correct execution of emerging performance-
oriented network-based applications [10] often requires an

end-to-end provision of high quality of service (QoS). This
end-to-end QoS can be achieved and guaranteed through
proper configuration, reservation and allocation of corre-
sponding resources. For example, interactive data analysis
may require simultaneous access to a storage system holding
a copy of the data, a supercomputer for analysis, network
elements for data transfer, and a display device for interac-
tion, with each resource providing a specified QoS.

Such applications require discovery and selection mech-
anisms for selecting from among alternative candidate re-
sources according to QoS criteria such as reliability, avail-
ability, cost, and performance. They also require resource
allocation mechanisms for mediating among competing re-
quests and for preventing oversubscription. Note that the
networking research literature frequently uses the termi-
nology immediate reservation rather than allocation (e.g.,
the ReSerVation Protocol: RSVP [3]). For uniformity and
brevity, we will use the term allocation to apply to all re-
sources of interest: computers, networks, disk, and memory.

Applications may also require advance reservation mech-
anisms that provide an increased expectation that resources
can be allocated when demanded, much as an airline or con-
cert ticket provides an increased expectation of obtaining a
seat. In the absence of a reservation system, we encounter
either increased costs due to excess overprovisioning (as in
the Public Switched Telephone Network) or degraded ser-
vice for critical traffic (as in today’s Internet). In some
systems, such as supercomputers, overprovisioning may not
be an option.

The implementation and application of these mechanisms
in practical settings is made difficult by four factors: (1) de-
ployed systems (e.g., [3, 21, 5]) lack support for advance
reservations; (2) applications of interest require the discov-



ery, reservation, and allocation of not just a single resource
but potentially complex collections; (3) resources can be of
widely varying types: computers, networks, disk, memory,
etc.; and (4) resources are commonly located in different ad-
ministrative domains and subject to different control poli-
cies and mechanisms.

The Globus Architecture for Reservation and Allocation
(GARA) described in this paper addresses these four issues.
GARA builds on techniques and concepts developed in the
Globus toolkit [9] for the provision of computational QoS
via the co-allocation of computers [5], generalizing and ex-
tending them to support end-to-end discovery, reservation,
allocation, and management of heterogeneous ensembles of
computers, networks, storage systems, and other resources
under independent local control.

In particular, GARA: (1) treats both advance reserva-
tions and computational elements—such as processes, net-
work flows, and memory blocks—as first-class entities that
can be created, monitored, and managed independently; (2)
supports in a uniform fashion different resource types (e.g.,
networks, CPUs, memory, disk) and low-level mechanisms
(e.g., in the case of networks, RSVP signaling, differentiated
services bandwidth brokers, and ATM virtual circuits); and
(3) defines a layered architecture that allows strategies for
the discovery, reservation, allocation, and management of
resource collections to be encapsulated in co-reservation and
co-allocation agents. Agent code can be application-specific
or generic, can be linked with an application or instantiated
in independent “brokers,” and can incorporate centralized
or distributed implementations. We believe that this flexi-
bility is essential for advanced applications in which domain-
specific knowledge is required to achieve good end-to-end
QoS. For example, the above data analysis application may
achieve desired QoS by passing a description of its require-
ments to standard co-reservation and co-allocation agents,
but can then respond with domain-specific guidance if an
agent signals difficulties in resource reservation or alloca-
tion.

In addition to describing GARA concepts and architec-
ture, we also report on a prototype implementation that
supports co-reservation and co-allocation of parallel com-
puters, individual CPUs under the control of the Dynamic
Soft Real-time (DSRT) scheduler [18], and networks with
RSVP signaling. We present experimental results that
quantify the cost of local reservation and object creation
operations.

2 Related Work

The general problem of resource management in networks
and wide area computing systems is receiving increased at-
tention (for reviews, see e.g., [1, 11]). However, there has
been little work on the specific problems addressed in this
paper, namely advance reservation and co-allocation of het-
erogeneous collections of resources for end-to-end QoS. Here
we review briefly some relevant work; space constraints pre-

vent a complete survey.

Proposals for advance reservations in the Internet typi-
cally implement advance reservation capabilities via coop-
erating sets of servers that coordinate advance reservations
along an end-to-end path [20, 8, 7, 13, 2]. Techniques have
been proposed for representing advance reservations, for bal-
ancing immediate and advance reservations [8], for advance
reservation of predictive flows [7], and for handling mul-
ticast [2]. However, this work has not addressed problems
that arise when an application requires co-allocation of mul-
tiple resources of different types.

The Globus resource management architecture [9, 5] sup-
ports the co-allocation of heterogeneous compute resources
to support end-to-end computational QoS. The architecture
includes an information service, used to locate resources
meeting certain criteria, such as architecture, installed soft-
ware, availability, and network connectivity; local resource
managers, which encapsulate the local policies and mecha-
nisms used to initiate, monitor, and control computation on
particular resources; and a “signaling protocol” used to com-
municate allocation requests to resource managers. Both
generic and application-specific co-allocation strategies can
be encapsulated in reusable libraries.

The Darwin project at CMU is building a system with
many similarities to the Globus architecture [4]. A resource
broker called Xena implements co-allocation strategies and
a signaling protocol called Beagle is used to communicate
allocation requests to local resource managers that may pro-
vide access to network, storage, and compute elements. The
concept of hierarchical scheduling is introduced to allow con-
trolled sharing of network resources managed by different
providers: individual providers can specify sharing policies
and the Hierarchical Fair Share Curve scheduler is used to
determine an efficient schedule that meets all constraints.
Like Globus, Darwin does not support advance reservations.

Also relevant to the co-allocation problem is multimedia
system research concerned with identifying the appropriate
mix of resources required to provide desired end-to-end QoS.
Multimedia applications have motivated the development of
techniques for allocating both memory and CPU for channel
handlers [16] and of CPU, bandwidth, and other resources
for video streams [19, 18]. However, these techniques are
specific to particular mixes of resources and do not extend
easily to other resource types.

3 GARA Architecture Design

The GARA design was strongly influenced by experiences
with the resource management architecture [5] developed
for Globus, a toolkit for the development of advanced net-
work applications [9]. In the following, we provide a brief
overview of this architecture, discuss its limitations, and
then describe how GARA addresses and overcomes these
limitations.



3.1 The Globus Resource Management Ar-
chitecture

As discussed above, the Globus resource management archi-
tecture as described in [5] addresses the relatively narrow
QoS problem of providing dedicated access to collections of
computers in heterogeneous distributed systems. The archi-
tecture has been deployed on a testbed that spans hundreds
of computers at dozens of sites in eight countries [9] and
has proven effective in numerous large application experi-
ments. As illustrated in Figure 1, the architecture consists
of three main components: an information service, local re-
source managers, and various types of co-allocation agents,
which implement strategies used to discover and allocate the
resources required to meet application QoS requirements.

The information service uses Lightweight Directory Ac-
cess Protocol (LDAP) concepts to define a hierarchical name
space, uniform representation, and standard access methods
for resources. Information service entries characterize re-
sources in terms of their type, architecture, structure (e.g.,
network connectivity) and current state (e.g., current load,
operating system version, installed software, availability).
Automated discovery and publication mechanisms ensure
that information service contents are kept up to date. Query
mechanisms allow applications or agents acting on their be-
half to locate resources with desired characteristics.

An application that wishes to create a computation passes
a description of that computation to a co-allocation agent.
This agent uses some combination of information service
queries, general heuristics, and application-specific knowl-
edge to map application QoS requirements into resource re-
quirements, to discover resources with those requirements,
and to allocate those resources. This agent also typically in-
corporates co-allocation strategies to provide robust startup
across multiple resources in the presence of failure. For ex-
ample, the Globus toolkit’s Dynamically Updateable Re-
source Online Co-allocator (DUROC) uses upcalls to the ap-
plication to signal failure of individual allocation events [6].

An agent allocates an individual resource by directing an
allocation request to a local resource manager, or Globus
Resource Allocation Manager (GRAM). A GRAM takes a
request as input, authenticates the request using the Globus
Security Infrastructure, and, if the request was successful,
interfaces to local schedulers to allocate that resource and
create a “job,” returning a portable “job handle” as output.
The requesting process can use the job handle to monitor
and control the state of a computation and can request up-
calls to signal such events as a job entering the run state or
terminating. GRAMs have been developed for a variety of
CPU schedulers [5].

This architecture addresses two of the four concerns iden-
tified in the introduction. It supports the management of
collections of resources via the use of co-allocation agents
and the co-allocation strategies that these agents can encap-
sulate. In addition, the existence of a standardized source
of information about managed resources and a consistent
GRAM interface for allocating and controlling resources en-

ables applications and co-allocation agents to deal with the
site-specific variations that are inevitable across collections
of independently administered resources.

The two issues that this architecture does not address
are advance reservations and (apart from some preliminary
investigations of network scheduling [17]) heterogeneous re-
source types. The absence of advance reservations means
that we cannot ensure that a resource can provide a re-
quested QoS when required, which drastically restricts our
ability to perform co-allocation, as specialized resources
such as supercomputers and high-bandwidth virtual chan-
nels are typically in high demand. The lack of support for
network, disk, and other resource types makes it impossible
to provide end-to-end QoS guarantees when (as is normally
the case) an application involves more than just computa-
tion.

3.2 The Globus Architecture for Reserva-
tion and Allocation

GARA extends the Globus resource management architec-
ture in two major ways: it introduces the generic resource
object, which encompasses network flows, memory blocks,
disk blocks, and other entities as well as processes; and in-
troduces the reservation as a first class entity in the re-
source management architecture. Various other architec-
tural changes follow from these new concepts.

We discuss resource objects first. In GARA, we refor-
mulate computation-specific allocation functions in terms
of general resource objects, hence allowing different appli-
cation components to be manipulated in common ways. A
generic “Create Object” operation is used to create a pro-
cess, flow, disk object, memory object, etc., according to
the supplied arguments. Each “Create Object” call returns
an object handle that can subsequently be used to monitor
and control the object (e.g., to delete it); a system or ap-
plication process can also request upcalls on specific events,
such as reservation applied to object, object termination, or
QoS contract violations. Upcalls allow the construction of
adaptive systems.

We next consider reservations. GARA splits the task of
creating a resource object into two phases: reservation and
allocation. In the reservation phase, a reservation is created,
which provides some confidence that a subsequent allocation
request will succeed; however, no object is created at this
time. Instead, a reservation handle is returned, that can
be used to monitor and control the status of the reservation
and that can also be passed to a subsequent “Create Object”
call in order to associate that object with the reservation.

The introduction of a distinct reservation phase has two
important ramifications. First, by splitting reservation from
allocation, it enables us to perform advance reservation of
resources, which can be critical to application success if a
required resource is in high demand. Second, if reservation
is cheaper than allocation (as is often the case for large
parallel computers, for example), we can implement lighter-
weight resource reservation strategies than if objects must
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Figure 1: The Globus and GARA resource management architectures, on the left and right, respectively.

Notice the

distributed information service and local resource managers (GRAMs), and the co-reservation and co-allocation agents
that applications use to create distributed computations. The dashed line represents upcalls, which may be used to invoke

application-specific routines, for example on failure.

be created in order to guarantee access to a resource.

A reservation is created by a generic “Create Reservation”
operation, which interacts with local resource management
elements to ensure that the requested quantity and quality
of the resource will be available at the requested start time
and will remain available for the desired duration. If the
resource cannot make this assurance, the “Create Reserva-
tion” operation fails. All “Create Object” operations re-
quire a reservation in order to proceed. This reservation is
normally created via a preceding “Create Reservation” call,
but for some resources a default “best effort” reservation
can be specified. Note that the GARA concept of reser-
vation encompasses both immediate reservations, which are
assumed to be followed immediately by an allocation, and
advance reservations, which are created in the present to
reserve resources for use in the future.

Reservation and object creation operations are imple-
mented by a renamed GRAM: the Globus Reservation and
Allocation Manager. As illustrated in Figure 1, GARA in-
troduces a new entity called a co-reservation agent. A co-
reservation agent, like our earlier co-allocation agent, is re-
sponsible for discovering a collection of resources that can
satisfy application end-to-end QoS requirements (a resource
set); however, rather than allocating those resources, it sim-
ply reserves them. Hence, a call to a co-reservation agent
specifies QoS requirements and returns a set of reservation
handles that can then be passed to an co-allocation agent.
In GARA, the co-allocation agent remains but now has the
simpler task of allocating a resource set, given a reserva-
tion handle generated by a co-reservation agent. (In prac-
tice it may need to either incorporate some aspects of co-
reservation agent functionality, or interact with an external
co-reservation agent, in order to recover from allocation fail-
ures that may occur.)

In summary, GARA supports advance reservation di-

rectly. The introduction of generalized resource objects
along with the standardized interface provided by GRAM
addresses issues of heterogeneity in the resource set. Co-
reservation and co-allocation agents layered on top of
GRAM and the standardized information services enable
the dynamic construction of collections of independently
administered resources that satisfy application QoS require-
ments.

4 Co-Reservation/Allocation
Agents

Co-reservation (and, to a lesser extent, co-allocation) agents
play a critical role in GARA. They provide a bridge between
the application and the available resources, constructing sets
of resources that both match application QoS requirements
and conform to the local practices and policies of resource
providers.

Because GARA does not constrain agent design other
than to define the GRAM and information service functions
used to construct implementations, a wide range of agent ar-
chitectures are possible. An agent can take the form of a
library, linked with an application, that makes reservation
decisions on behalf of that single application [1]. Alterna-
tively, an agent may be a global system-oriented “broker”
that provides reservation services to numerous users and ap-
plications. Functionality may be centralized or may be dis-
tributed over multiple agent instances or throughout a hier-
archy of different agents. (The latter organization is useful,
for example, if certain subsets of required resources are un-
der the control of “local” reservation systems, such as band-
width brokers.) Finally, an agent can act autonomously,
responding to a reservation request with either success or
failure, or may proceed interactively, allowing a user or ap-



plication to guide the construction of a resource set.

To clarify the role of co-reservation agents, we return to
the data analysis example of the introduction. Let us as-
sume that while visualization must occur at a specific lo-
cation (the user’s computer), we can choose from among
several cached replicas of the data and from among several
alternative analysis supercomputers (Figure 2). Reservation
and object creation operations on these data stores, super-
computers, and network elements can be achieved by calls
to appropriate GRAMs, although each system may of course
implement these functions with quite different mechanisms.

We imagine a co-reservation agent that takes as input a
specification of the dataset that is to be analyzed and an
indication of desired QoS, expressed in terms of how precise
the result should be, how soon results are required, and how
much the user is prepared to pay. The agent uses the infor-
mation service to locate cached data replicas—if the data
is not cached, the agent may return control to the user to
migrate data from a tape archive—and then, having deter-
mined relevant data properties (e.g., its size and location),
invokes a secondary agent to determine computational and
network requirement for analysis and data transfer.

The agent must now discover computational and band-
width resources that can collectively provide desired end-to-
end QoS. Applications developed in the context of the cur-
rent Globus system achieve this goal—for co-allocation—Dby
using exhaustive search [5]. In an advance reservation en-
vironment, we can consider a range of future times, and
so the number of candidate resources can be larger; hence,
efficient search heuristics will typically be required. For ex-
ample, we can consider each potential data cache in turn,
consulting for each the information service to locate a su-
percomputer that can deliver the required computational
power. At this point the agent may need to consider is-
sues such as acceptable use and security policies, perhaps
because data is proprietary. Then, the agent attempts to
reserve both supercomputer nodes and network bandwidth
between the supercomputer and the visualization engine. If
both reservations succeed, the agent can proceed to discover
and reserve a network link between the supercomputer and
the data cache.

This example illustrates an important aspect of end-to-
end reservation, namely the importance that application-
level criteria (e.g., end-to-end security requirements) can
have for resource selection. The example also illustrates
other issues that must be considered when developing agent
strategies. For example, search procedures such as that just
outlined can produce several alternative resource sets. If it
does, we can choose between alternatives based on selection
criteria such as first found and “best” found. If no suit-
able resources exist, the agent may either fail or attempt
to renegotiate with the user, who might for example decide
to proceed with fewer analysis nodes than was originally
desired, or with best effort rather than reserved bandwidth.

In this example, reservation failure is handled by back-
tracking: we proceed to try alternative resources until ei-
ther the request is successful or fails. In other situations,

we may prefer to wait until all required resources are avail-
able. In this case, we need to be concerned about the pos-
sibility of deadlock, as other agents may attempt to acquire
some of the same resources simultaneously. Deadlock can be
avoided by using variants of well-known deadlock prevention
and avoidance schemes [14, 12], such as enforcing orderings
on how resources are acquired (e.g., processors sorted by
IP address, followed by disks, followed by networks, etc) or
timeout mechanisms.

The search and deadlock strategies just described are
necessary because in this application there are dependen-
cies among required resources. In other situations, simpler
techniques can be used. For example, consider an applica-
tion that simply requires N computational resources with
a specified minimum network connectivity. If some number
M < N of an attempted N reservations succeed, then we
can either return to the information service to locate addi-
tional candidates or generate a callback to the application
to determine whether it is possible to proceed with just M
resources, a strategy used by the DUROC co-allocator when
allocations fail [6].

5 GARA
Application Programming Inter-
face

The GARA client-side application programming interface
(API) includes calls to create and cancel reservations and
objects, and to query and to request notification of changes
in the status of reservations and objects. As outlined in
Figure 3, arguments include resource manager contact ad-
dresses; portable reservation and object handles; and spec-
ifications of required resources and object characteristics,
expressed in a declarative resource specification language
(RSL) [5].

Briefly, a CreateReservation call takes as input a rep-
resentation of the required resources and returns a reser-
vation handle, while a CreateObject call takes as input
a specification of the required object and a reservation
handle representing the resources with which the object
is to be associated, and returns a portable object handle.
CancelReservation and CancelObject allow cancellation
of previously created reservations or objects, using the ap-
propriate handles. RegisterCallback allow an application
to request upcalls on selected events, such as the failure of
a reservation. ModifyReservation allows an application to
adapt if existing reservations can’t be honored or an appli-
cation’s requirements change. Besides these API function
calls, a user can use reservation and object specifications to
control various aspects of object behavior, for example what
should happen to an object when its reservation expires.

The use of these calls is illustrated in Figure 4, which
shows in pseudo-code logic that can be used to discover a
computer (“b”) that can be linked via a network (“net”)
to an originating computer (“a”) to provide desired QoS.
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Figure 2: Candidate resources for a data analysis application include multiple cached copies of the Terabyte dataset;
multiple supercomputers used for analysis; and network links (not shown) connecting these components. On the right, we
show the physical location of the resources and on the left the search tree constructed by the co-reservation agent; the “R”s
represent reservations. This configuration is typical of problems encountered in high-performance data-intensive computing.

reservation-handle =
object-handle =

CreateReservation(resource-manager-contact, reservation-specifation)
CreateObject (resource-manager-contact, reservation-handle,

object-specification)

ModifyReservation(reservation-handle, new-reservation-specification)

result = CancelReservation(reservation-handle)
result = CancelObject (object-handle)
new-resv-handle =

result =

RegisterCallback (handle, callback-function, callback-argument)

Figure 3: Pseudo-code prototypes for selected GARA client-side API functions

(This problem is a simplified version of the data anal-
ysis system described in Section 5.) The co-reservation
agent ReserveResources uses an exhaustive search pro-
cedure to locate and reserve resources for the required
time, constructing a set of reservation handles (rh-a, rh-b,
and rh-net) representing these reservations. The routine
FindNextCandidate (not shown) queries the information
service to locate a candidate compute and network re-
sources, returning GRAM contacts and a host name for
these resources (contact-b, id-b, contact-net). While
this routine embeds specific resource requirements (the ital-
icized RSL arguments to the CreateReservation calls), it
can easily be parameterized to provide a completely generic
procedure.

6 GARA Implementation

We limit discussion of GARA implementation to the local
resource manager component as this is where issues of het-
erogeneity are addressed. We explain the basic structure of
our implementation and describe the three resource man-
agers that we have constructed to date. The discussion il-
lustrates how advance reservations can be implemented via
a slot manager and how heterogeneous resources can be en-

capsulated under common interfaces.

GARA has a layered structure: a GARA External Inter-
face (GEI) component addresses issues such as authentica-
tion and dispatch of incoming requests, the registration and
propagation of upcalls to remote processes, and publication
of resource information; a lower-level Local Resource Allo-
cation Manager (LRAM) provides basic object and reserva-
tion services, interacting only with system-specific resource
management components and services. We focus here on
the LRAM because of its dependence on the underlying re-
source.

The structure of a particular LRAM implementation de-
pends upon the nature of the local resource management
services (e.g., the “scheduler”) associated with the resource
in question. Three major cases can be distinguished:

1. If the scheduler provides appropriate advance reserva-
tion support, then an LRAM for that resource can pass
advance reservation requests directly to the scheduler.

2. Otherwise, we have to deal with two cases:

(a) If an LRAM associated with a resource has total
control over the resource (i.e., all object creation
calls must pass via the LRAM), then the LRAM



subroutine ReserveResources
rh-a = CreateReservation(contact-a,
" & (reservation_type=compute)
(start_time="10:30 pm”)
(duration="1 hour”) (nodes=32)")
if rh-a is null then exit
repeat until rh-b and rh-net defined:
(contact-b, id-b, contact-net) =
FindNextCandidate ()
rh-b = CreateReservation(contact-b,
" & (reservation_type=compute)
(start_time="10:30 pm”)
(duration="1 hour”)
(percent_cpu="75)")

if rh-b is null then continue
rh-net = CreateReservation(contact-net,
" & (reservation_type=network)
(start_time="10:30 pm”)
(duration="1 hour”) (bandwidth=200)
(endpoint-a=id-a) (endpoint-b=id-b)")
if rh-net is null then
CancelReservation(rh-b)
end repeat loop
if rh-b is null then
signal that search failed
end subroutine

Figure 4: Pseudo-code for a GARA-based co-reservation agent ReserveResources that reserves a set of three resources.
The variables with “rh” prefixes are reservation handles and the italicized text is RSL specifications.

can use a slot manager (see below) to implement
advance reservations for that resource.

(b) Otherwise, only probabilistic advance reservations
can be supported, for example by using a slot man-
ager and defining “available” resources at any one
time as the amount of resources that we predict
to be available at that time.

We introduce briefly the concepts of a timeslot table
(slot table for short) and a timeslot manager [8, 15]. If
the available capacity of a resource is a known, enumer-
able quantity—e.g., peak network bandwidth or number of
processors—then a slot table data structure can be used
to keep track of current allocations and future reservations
(Figure 5). We have constructed a resource-neutral slot
manager library that uses a slot table to ensure that com-
mitted resources never exceed a specified limit (e.g., 70%
of peak network bandwidth). This library provides func-
tions for slot table creation, for requesting and canceling a
reservation, for querying the state of the current reservation
table, for examining properties of a specific reservation, and
for requesting upcalls at the time of reservation activation
or termination. Note that our slot manager represents just
one, relatively simple implementation of advance reservation
functionality; more sophisticated slot managers might for
example support pre-emption, or invoke a policy agent [15]
to determine whether requests should be allowed.

To our knowledge, no widely deployed resource manage-
ment system for networks, computers, or other resources
supports advance reservations. Hence, the three LRAMs
developed to date are all of type 2(a) or 2(b). As illustrated
in Figure 6, each uses our slot manager to manage alloca-
tions and reservations and differs from the others only in
the nature of the resource being managed and the low-level
mechanisms used to create and destroy objects.

The SMP LRAM supports parallel execution on a shared
memory multiprocessor for which the number of processes

created must not exceed a specified threshold N. We use
the slot manager to manage resource reservation and cre-
ation. For example, a CreateReservation call creates a
slot manager entry, a CreateObject call registers a “create
process” (Unix fork) function to be called when a reserva-
tion becomes active, and reservation termination is handled
by registering a “destroy process” (Unix kill) function.

If all process creation requests on an SMP must occur via
our LRAM then this LRAM is of type 2(a) and reservations
can be guaranteed, modulo system failures. If users can also
create processes by other means, then we have an LRAM of
type 2(b) and reservations can only be probabilistic.

The DSRT LRAM manages fractions of a single CPU to
provide “soft” realtime response, with DSRT [18] used to
manage task scheduling. Again, the slot manager is used
to manage the allocation of resources, with in this case the
quantity available for allocation being a CPU fraction (typ-
ically 70%) rather than a number of CPUs. Object creation
involves the use of normal Unix system functions to create
a process; reservation activation involves a call to a DSRT
functions to adjust process scheduling. The DSRT LRAM,
like SMP, may be of type 2(a) or 2(b), depending on whether
or not all DSRT operations must occur via LRAM.

Finally, the IntServ LRAM is concerned with the man-
agement of network flows and with the assignment of band-
width reservations to those flows. In this case the quantity
managed by the slot manager is bandwidth, object creation
occurs via standard Unix socket calls, and reservations are
associated with flows via calls to an RSVP signaling API
(SCRAPI). In our current prototype, RSVP calls are ser-
viced on a first-come first-served basis and so our LRAM
is of type 2(b). A type 2(a) LRAM can be obtained if
the RSVP implementation is constrained so that alloca-
tions proceed only if approved by our slot manager. One
approach to implementing this approval process would be
to use a COPS policy agent to control allocations, with our
slot manager being charged with updating policies.
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Figure 5: A slot table keeps track of current allocations and future reservations for a resource

Time

GARA externa inteface GARA externa inteface GARA external inteface
LRAM interface LRAM interface LRAM interface
adaptation layer adaptation layer adaptation layer

Reservatiorf  Object Reservatiorf  Object Reservatior] Object
Unix "fork' Unix "fork' Unix "socket"
Slot . Slot Slot
& Unix & DSRT & RSVP
MaNager || scheduler MaNager ||| scheduler manager signalling

(a) Processes on MPP

(b) CPU fractions

(c) IntServ bandwidth

Figure 6: The three GARA resource managers constructed to date, showing the resource-independent components (shaded)

and resource-specific components (unshaded)

7 Results

We have constructed implementations of the SMP, DSRT,
and RSVP resource managers described above, and demon-
strated our ability to perform co-reservations and co-
allocations across multiple resources of different types.
Here, we present experimental results that provide insights
into the performance of our techniques and implementa-
tions.

We are interested in answering three questions: (1) What
are the costs of our reservation and object creation mech-
anisms? (2) How do these costs compare with the “na-
tive” costs that would be incurred if resources were allocated
without GARA mechanisms? (3) What does a comparison
of reservation and creation costs tell us about the practical
utility of search-based reservation strategies?

We performed experiments on a pair of Sun Ultra-2 work-
stations running Solaris 2.6 and on the same 100 Mb/s
Ethernet segment. We timed certain major GARA and
LRAM operations, measuring however only the cost of in-
dividual operations, not the time required to make end-to-
end reservations. (The latter experiments are clearly im-
portant, but require that GARA resource managers be de-
ployed on a larger number of systems.) For each of our
three LRAM implementations, we measured “native ob-
ject creation” costs (fork for SMP, fork plus set priority for

Table 1: The cost of selected native object creation and
LRAM operations. All times are the average of 10 runs and
are in milliseconds.

DSRT | SMP | RSVP
Native object creation 6.80 | 6.30 | 25.20
LRAM reservation 0.81 | 0.82 0.82
LRAM object creation 17.63 | 11.87 | 31.20
LRAM object cancellation 729 | 045 | 28.30

DSRT, create flow plus bind to reservation for RSVP) and
then the costs of CreateReservation, CreateObject, and
CancelObject calls when performed via a local LRAM call
and via a GARA call from a remote workstation, with and
without authentication. LRAM times, presented in Table 1,
show that reservation is much cheaper than object creation
within a single computer. (The DSRT object creation and
cancelation times are higher than those for SMP because in
the DSRT case we must communicate with a custom CPU
scheduler; RSVP object creation costs are higher still be-
cause of the need to communicate with an RSVP agent to
instantiate the reservation.)

For operations performed remotely using the GARA in-
terface, we incur additional costs of around 11 msec for net-



work communication and around 100 msec for authentica-
tion. The communication cost includes the time to open
a socket, which could be avoided on subsequent requests
when multiple requests are made to the same LRAM com-
puter from a single host. The authentication cost includes
three round trip communications performed by the SSL
handshake and 1024-bit public key operations for credential
verification. Clearly, remote access time is dominated by
authentication rather than communication. These results
suggest that the GRAM constructed to date can sustain
around 8-10 reservation operations per second; a single user
process can sustain significantly higher reservation rates, if
multiple calls are issued simultaneously.

We find these results encouraging in terms of what they
reveal of GARA performance. In a wide area environment,
in which the heavyweight authentication used here is nec-
essary, the cost of creating and then cancelling an object is
slightly higher than that of creating and then cancelling a
reservation: for example, 283 vs. 225 msec in the case of
RSVP. (In other systems, such as large parallel computers,
object creation costs can be significantly higher.) Hence,
search schemes that create and then cancel reservations will
be at least as efficient as schemes that create and destroy
objects, and in many cases will be significantly more ef-
ficient. (Soft state pre-reservations that time out can be
used to avoid the need to cancel unwanted reservations [15],
but will make successful reservations more expensive.) “Im-
mediate” object creation requires a reservation call followed
by an object creation call; however, the additional cost in-
herent in the two calls can be avoided by defining a “create
reservation and object” operation. Finally, we see that if a
computation requires multiple resources within the same ad-
ministrative domain, it can be desirable to avoid repeated
remote operations so as to avoid multiple authentication
operations, for example by downloading an agent able to
negotiate on a user’s behalf.

8 Conclusions

A significant impediment to the production use of advanced
networked applications has been the difficulty of achieving
end-to-end QoS guarantees across heterogeneous collections
of shared resources. We have presented a resource man-
agement architecture, GARA, that addresses this problem.
GARA exposes both reservations and objects as first-class,
abstract objects; defines uniform representations and op-
erations for diverse resource types; and uses an informa-
tion service to reveal site-specific policies. These constructs
enable the construction of reusable co-reservation and co-
allocation agents that can combine domain- and resource-
specific knowledge to discover, reserve, and allocate re-
sources that meet application QoS requirements.

We have constructed a prototype GARA implementation
and conducted initial performance experiments for simple
end-to-end scenarios. Results demonstrate that the cost of
GARA mechanisms are not large when compared to under-

lying resource management operations. However, while pre-
vious experience with the Globus resource management ar-
chitecture has shown the utility of the basic approach, large-
scale experimentation, particularly with advance reserva-
tions, remains for the future. One area of uncertainty relates
to whether it is really feasible or useful to treat all computa-
tional objects in a uniform fashion, as proposed here. While
reservations can clearly be represented and manipulated in
a uniform fashion, it may well be that processes and flows
are sufficiently different in their characteristics that distinct
representations and operations are warranted.

We plan future work in four major areas. First, we will
implement additional resource managers: for example, to
mediate access to parallel computer schedulers providing ad-
vance reservations; to premium traffic on ingress and egress
routers in Differentiated Services networks [15]; and to other
resource types, such as disk I/O, disk blocks, and mem-
ory blocks. We are also interested in understanding how
our techniques can be applied to multicast. Second, we
will deploy GARA functionality more widely in our testbed
environment and develop and evaluate high-performance
distributed applications that exploit GARA capabilities.
Third, we will investigate techniques for co-reservation and
co-allocation. Finally, we plan GARA extensions designed
to support notification of QoS violations and application-
level adaptation.
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