
A Quality of Service Architecture that Combines
Resource Reservation and Application Adaptation

Ian Foster Alain Roy
Mathematics and Computer Science Division Department of Computer Science

Argonne National Laboratory The University of Chicago
Argonne, IL 60439, U.S.A. Chicago, IL 60637, U.S.A.

Volker Sander
Central Institute for Applied Mathematics

Forschungszentrum Juelich GmbH
52425 Juelich, Germany

Abstract—Reservation and adaptation are two well-known and effective
techniques for enhancing the end-to-end performance of network applica-
tions. However, both techniques also have limitations, particularly when
dealing with high-bandwidth, dynamic flows: fixed-capability reservations
tend to be wasteful of resources and hinder graceful degradation in the face
of congestion, while adaptive techniques fail when congestion becomes ex-
cessive. We propose an approach to quality of service (QoS) that overcomes
these difficulties by combining features of reservations and adaptation. In
this approach, a combination of online control interfaces for resource man-
agement, a sensor permitting online monitoring, and decision procedures
embedded in resources enable a rich variety of dynamic feedback interac-
tions between applications and resources. We describe a QoS architecture,
GARA, that has been extended to support these mechanisms, and use three
examples of application-level adaptive strategies to show how this frame-
work can permit applications to adapt both their resource requests and
behavior in response to online sensor information.

I. INTRODUCTION

Network applications that need to achieve reliable end-to-end
performance typically make use of either reservations or adap-
tation. When using reservations, applications usually specify
quality of service (QoS) requirements when a connection is es-
tablished and do not change them subsequently; the QoS system
in turn guarantees that (modulo system failures or preemptions)
the reservation will not be reduced during the lifetime of the
application [1], [2]. In contrast, applications that use adaptation
do not make reservations but instead adapt to the network condi-
tions at hand by responding to some form of feedback, whether
explicit (notification of network conditions) or implicit (noticing
that bandwidth is low). Adaptation may occur when the appli-
cation detects a problem or when the application is notified that
a problem may exist [3], [4], [5], [6], [7].

Both reservations and adaptation have been proven effec-
tive in many situations, but also have significant limitations:
particularly when dealing with high-end applications featuring
high-bandwidth, dynamic flows. Fixed-capability reservations
can waste bandwidth and do not permit graceful degradation
in application performance when resource management policies
mandate changes in allocations. Adaptive techniques inevitably

Published in Proceedings of the Eight International Workshop on Quality of
Service (IWQOS 2000), pp. 181–188, June 2000.

fail when congestion reduces available resources below accept-
able limits [8], [9].

In this paper, we describe an approach to QoS that combines
features of both reservations and adaptation to address the diffi-
culties just noted. At the core of this approach is a QoS archi-
tecture in which resources are enhanced with:
� online control interfaces that allow applications, or agents
acting on their behalf, to modify resource characteristics (e.g.,
reservations) dynamically;
� sensors that allow applications (and agents) to detect when
adaptation is required; and
� decision procedures that support the expression of a rich set
of resource management policies.

These mechanisms in turn enable a wider range of
application-level adaptation strategies than are supported in
other architectures. For example, online control of reservations
allows applications to request premium service when adaptive
techniques fail to deliver; monitoring of reservations that change
as a result of decision procedures embedded in resource man-
agers allows for graceful degradation in application performance
in response to preemption.

To explore these ideas, we have incorporated such mecha-
nisms into a QoS architecture developed in previous work—
the Globus Architecture for Reservation and Allocation
(GARA) [10], [11]. We have completed a prototype implemen-
tation of this enhanced architecture, which has been deployed
by ourselves and others on local and national testbeds.

We hypothesize that the mechanisms and associated control
and information flows provided by this extended GARA archi-
tecture can be exploited to obtain more efficient resource us-
age than in purely reservation-based or application-based ap-
proaches, as applications can vary reservations and rates; to pro-
vide more flexible resource allocation strategies, as resources
can change allocations over the course of a reservation; and to
deliver more robust application performance, as applications can
detect and respond to changes in allocations and resource state.

As a first step towards testing this hypothesis, we have used
GARA mechanisms to implement three different adaptive strate-
gies. The first two use a flow-specific packet loss sensor to adapt



bandwidth requests to the QoS system in order to meet perfor-
mance targets, for UDP and TCP flows, respectively; the third
uses a sensor that provides information on changes in reserva-
tion level (as a result of preemption) to adapt transmission rate
for bulk data transfer applications. In each case, we present
novel decision procedures and demonstrate that we can deliver
interesting adaptive behaviors via a combination of online mon-
itoring and control.

In the rest of this paper, we review the QoS requirements of
high-end applications, describe our enhanced GARA architec-
ture, and present our three adaptive strategies and the experi-
mental studies that we have performed to evaluate their effec-
tiveness. We conclude with a brief discussion of related and
future work.

II. MOTIVATION: HIGH-END APPLICATIONS

We are interested in providing QoS mechanisms for high-end
network applications [11], in which individual flows can have
high bandwidth, from a few megabits per second (Mb/s) to many
tens or hundreds of Mb/s; there may be complex mixes of flows,
from low bandwidth to high bandwidth and from low latency to
high latency; and flows may change their requirements dynami-
cally throughout their lifetime.

Applications with these characteristics arise in such areas
as distance visualization, analysis of petabyte-scale scientific
databases, online control of scientific instrumentation, and
teleimmersion [12]. For illustrative purposes, we examine a
teleimmersion example in more detail. Consider two or more
users at geographically separate locations who are exploring col-
laboratively a three-dimensional visualization of experimental
data. As in other telecollaboration systems, we have a num-
ber of streams with fairly constant rate and low to moderate
bandwidth: audio and video streams for communication, and
jitter- and latency-sensitive streams for the tracking data indi-
cating user movements in the virtual space. In addition, we have
streams with higher bandwidth and often variable rates, used for
visualization data and (in some cases) database updates. Visual-
ization data is calculated from the data set, and a representation
of it, perhaps a set of polygons for rendering, is transmitted [13].
The actual amount of data sent depends on both the data being
visualized and user actions, which may include zooming and
movement in space and time. Contention for shared resources
such as disk and CPU can also affect the transmission rate.

These characteristics place substantial demands on both net-
work infrastructure and applications. For example, consider a
situation in which several teleimmersion sessions are in oper-
ation simultaneously, while other groups are concurrently at-
tempting to perform high-speed bulk-data transfers over the
same network infrastructure, perhaps to stage data required for
an experiment later in the day. With today’s protocols and ser-
vices, no group would obtain acceptable service.

We believe that concerns such as these require that resource
providers be able to specify and implement flexible resource al-
location policies. For example, in the situation just noted, re-
source providers might allocate resources to different teleim-
mersion sessions and bulk-data transfers differentially. Teleim-

mersion session A might have priority, while sessions B and C
would be guaranteed some minimum service. Bulk-data trans-
fers D and E would have lowest instantaneous priority but would
be guaranteed service in terms of another “terabytes per hour”
metric.

We also believe that a policy-driven framework of this sort
can be effective only if applications themselves are provided
with the information and control flows required to detect and
adapt to policy-driven changes in resource allocations. For ex-
ample, a teleimmersion session could respond to reduced (in-
creased) resource availability by reducing (increasing) video
rates or introducing (eliminating) data compression to noncriti-
cal users, while a bulk-data transfer could reduce (increase) its
sending rate. The architecture that we present in this paper en-
ables these sorts of adaptation.

III. RESERVATION AND ADAPTATION COMBINED

Effective adaptive control requires three distinct mechanisms.
In the language of [14], these are
� actuators that permit online control, for example, of resource
allocations or application behavior;
� sensors that permit monitoring, for example, of resource allo-
cations or application behavior; and
� decision procedures that allow entities to respond to sensor
information, by invoking actuators.
As illustrated in Figure 1, these three elements act in concert
to achieve adaptive control. For example, a sensor might signal
a nonzero loss rate associated with a flow at a router. A deci-
sion procedure in the associated application can then execute to
determine whether to reduce the sending rate or, alternatively,
generate a request to a resource manager to create (or increase)
a reservation for that flow, hence invoking an actuator.

In this section, we first provide an overview of the GARA
architecture and then explain how we have extended it to support
these three mechanisms.

A. GARA Overview

The Globus Architecture for Reservation and Allocation pro-
vides advance reservations and end-to-end management for
quality of service on different types of resources, including net-
works, CPUs, and disks [10], [11].

A GARA system comprises a number of resource managers
that each implement reservation, control, and monitoring oper-
ations for a specific resource. Resource managers can and have
been implemented for a variety of resource types, hence the use
of the term “resource manager” rather than the more specific
“bandwidth broker” favored in the networking literature [15].
Uniform interfaces allow applications to express QoS needs for
different types of resources in similar ways, hence simplify-
ing the development of end-to-end QoS management strategies.
Mechanisms provided by the Globus toolkit are used for secure
authentication and authorization of all requests to resource man-
agers. An information service allows applications to discover
resource properties such as current and future availability.

The work described in this article involves just a single type
of resource manager, namely, one that uses differentiated ser-



..

Network

Edge Router

Application A
(Sender)

QoS Resource Manager

QoS Enforcement

Loss Rate
Sensor

Reservation Actuator

Bulk-Transfer
Decision Procedure

Admission Control
Decision Procedure Adaptation

Decision ProcedureNon-zero loss
rate indicator

Application B
(Receiver)

Create/Modify
Reservation Request

Application Data

Fig. 1. An example of how actuators, sensors, and decision procedures may be combined to provide adaptive control. We illustrate reservation adaptation in
Application A, occuring as a result of a packet loss notification received from a router via the resource manager. The operation of this strategy is described in
the text, as is the bulk transfer decision procedure that is also shown.

vices mechanisms [16] to implement network QoS. This re-
source manager uses the expedited forwarding per-hop behav-
ior (PHB), as specified by the Internet Engineering Task Force’s
(IETF) Working Group on Differentiated Services, to provide a
premium service. With careful admission control at the edge of
the network, it is possible to build a network QoS system with
reasonably strong bandwidth guarantees, even though traffic is
treated as an aggregate in the core of the network.

The resource manager enables reservation requests (see be-
low) by configuring the routers that it controls. In particular,
it configures the ingress routers to classify, police, mark, and
potentially shape, all packets that belong to a flow for which
a reservation has been authorized, as is normally done for dif-
ferentiated services. The expedited forwarding per-hop behav-
ior drops packets that exceed the reservation, but allows small
bursts of excess traffic using a token-bucket mechanism.

B. Actuators: Online Control

A first prerequisite for adaptation is support for online control
of resource characteristics. (We are also interested in online con-
trol of application behavior, but that topic is beyond the scope of
this article.) GARA supports this requirement directly via con-
trol functions that allow an application—or an agent acting on
its behalf—to make and subsequently modify QoS reservations.

In the case of the network resources considered in this arti-
cle, an application request to the resource manager specifies a
start time and duration for the desired reservation; the IP ad-
dresses of the end hosts that will be communicating; the band-
width required for the reservation; and the network protocol that
will be used (TCP or UDP) [10]. Since reservations may be
made in advance, not all information may be known at the time
the reservation is made. In particular, an application may not
know what port numbers will be used for communication un-
til network communications begin. Therefore, GARA provides
a “bind” operation, which simultaneously “claims” the reserva-

tion and provides this run-time information.
Both immediate and advance reservations are supported. Ad-

vance reservations simplify co-scheduling of scarce resources
and help to ensure that resources are available for important
events, such as scientific experiments.

GARA allows third parties to make, monitor, and modify
reservations on behalf of an application. This capability allows
us to separate adaptation logic from an application proper; in
the case of advance reservations, it means that an application
need not be running when a reservation is made. For brevity, we
frame subsequent discussion as if only applications manipulate
reservations; however, in practice, a third party can always be
substituted.

C. Sensors

A second requirement for adaptive control is that we be able
to determine the state of system components and detect state
changes. This capability is provided via sensors associated with
system entities to which other entities can subscribe, with noti-
fications provided via some form of event service or callback
mechanism. We have implemented two such sensors in our
GARA prototype.

C.1 Loss rate sensor.

This sensor provides applications with information on packet
loss rate in the network. This information can serve to indicate
the application is either sending too fast or has an inadequate
reservation.

We measure packet loss rates at the first hop router: that is,
the router at which initial policing is performed by our differ-
entiated services implementation. Our resource manager peri-
odically queries this router, which because of its classification
and policing role is able to provide statistics about the number
of packets that have exceeded a flow’s reservation.

The query to the router returns the number of packets that



conformed to the reservation and were not dropped (p c) and
the number of packets that exceeded the reservation and were
dropped (pe), both of these quantities being since the last time
the statistics were queried. If the resource manager detects a
nonzero pe value then it generates a callback to notify any sub-
scribed processes that packet loss has occurred. This callback
specifies both an estimated loss percentage and the currently un-
allocated bandwidth; an application might use the latter quantity
as a guide when deciding whether to respond to a packet loss no-
tification by attempting to increase its reservation vs. changing
its behavior.

In computing the estimated bandwidth, we must deal with the
complicating factor that the router uses a token bucket of size
pb to allow small bursts. The router updates its statistics only
periodically (roughly every 10 seconds) and the resource man-
ager cannot know if the token bucket was full or empty when
the statistics were gathered. To avoid persistent underestimates
of loss rates, we assume that the token bucket is at least half-full
and reduce the number of conforming packets correspondingly.
This adjustment is reflected in our formula for estimated fraction
of packets that were dropped:

P =
pe

pc + pb=2 + pe

We describe in Section IV how this sensor can be used to
modify QoS reservations to meet application requirements, for
both UDP and TCP flows.

C.2 Reservation change sensor.

Our second sensor is used to publish information about
changes in resource allocations. The reason for these changes
is described in the next subsection; here we note simply that we
have a sensor capable of communicating such changes to inter-
ested entities.

D. Decision Procedures

The third component of an adaptive control architecture com-
prises the decision procedures that invoke actuators in response
to sensor data.

In our environment, such decision procedures can occur in
multiple locations. They clearly arise in applications, and in-
deed we give three such examples below. Decision procedures
can also occur in resource managers; this can lead to interesting
interactions.

Decision procedures may be invoked within a GARA re-
source manager at a number of points. Following authentica-
tion, an incoming request is first authorized and then executed.
Decision procedures may be invoked at both stages: for exam-
ple, to determine whether a request should be granted, in the
first instance, and to reallocate resources in the second instance
if the newly authorized reservation oversubscribes available re-
sources.

To explore these ideas and demonstrate our ability to incor-
porate decision procedures in resource managers, we have im-
plemented the following simple but highly effective procedure.

D.1 Bulk-data transfer procedure.

As noted above, bulk-data transfer (BDT) operations have ser-
vice requirements expressible in terms of “terabytes per hour”
rather than “Mb/s.” Satisfying such requirements in the face of
congestion can require the use of premium service but need not
always pre-empt other applications requiring premium service.

Our BDT decision procedure is designed to exploit this ob-
servation. In effect, it implements two classes of premium ser-
vice, foreground and background, within a single premium ser-
vice class. It does this by applying the following simple deci-
sion rules when processing requests to create, bind, or terminate
reservations.
1. Create foreground reservation: Creation of a foreground
reservation is authorized if at no time during the reservation pe-
riod the sum of all foreground reservations would exceed the
total available premium bandwidth.
2. Bind foreground reservation: Binding of a foreground reser-
vation results in the requested bandwidth being allocated to the
appropriate flow. If necessary, premium bandwidth is preempted
from background flow(s), with callbacks being generated to no-
tify interested parties.
3. Cancel reservation: The freed bandwidth is allocated to
background flows with inadequate allocations, if any such ex-
ist, and callbacks are generated.
4. Create background reservation: Creation of a background
reservation is always allowed.
5. Bind background reservation: Binding of a reservation re-
sults in a “fair share” of the unallocated premium bandwidth
being allocated to the appropriate flow. (See below for a de-
scription of how this fair share is calculated.)

We describe below how an application can use the reservation
change sensor triggered by this decision procedure to achieve
sustained BDT rates without impeding foreground flows.

IV. APPLICATION-LEVEL ADAPTATION PROCEDURES

We now describe the three application-level adaptation pro-
cedures that we have developed to date.

A. The GARA Testbed

All experiments reported below were performed in the testbed
shown in Figure 2. The testbed consists of three Cisco 7507
routers interconnected with 155 Mb/s (OC-3) ATM. Hosts are
connected to the routers with 100 Mb/s switched Ethernet. All
hosts used in our tests were Sun Ultra 60s. In addition, virtual
circuits to several remote sites permit wide area experiments.

Cisco’s Modular QoS command line interface (MQC) is used
for two different purposes. On the ingress interfaces to the net-
work, it is used to classify, police, and mark packets. Within
the interior of the network, it is used to enable Weighted Fair
Queuing (WFQ) to give priority to marked packets.

B. Adaptive QoS Reservations: UDP Flows

We first describe how adaptive techniques can be used to de-
termine the bandwidth reservation required to support a partic-
ular UDP flow. The motivation for this use of adaptation is that



Linux Linux

Cisco 7507 Cisco 7507 Cisco 7507

ESnet
Testbed

ANL

Ultra
(competitive source)

Ultra
(premium source)

Ultra
(competitive destination)

MREN EMERGE
Testbed

Ultra
(premium destination)

Univ of
Wisconsin-

Madison

iCAIR

Univ of
Chicago

Univ of
Illinois

LBNL

NREN
Testbed

NASA

Fig. 2. The GARA Network Testbed (GARNET). The core of the testbed consists of three Cisco 7507 routers. There are several computers on each end of the
testbed, more than shown here. Note the connections to three wide area networks.

many application developers have no knowledge or QoS mech-
anisms or of the principles by which QoS parameters are deter-
mined. We show that information provided by a simple packet
loss rate sensor can be used to guide a decision procedure that
sets bandwidth reservations adaptively, increasing reservations
until loss rates reach zero. This decision procedure can be in-
corporated in an application or in a separate agent.

Our decision procedure uses information provided by the
packet loss rate sensor described in Section III-C. Recall that
this sensor periodically generates an estimate of the fraction of
packets dropped, P ; hence, 1� P is the fraction of packets that
conformed to the reservation. Our decision procedure calculates
what reservation would have been needed to make such that no
packets would have been dropped, as follows:

Rn(1� P ) = Ro

or

Rn =
Ro

1� P

where Ro is the old reservation and Rn is the new reservation.
To evaluate the effectiveness of this strategy, we performed

experiments as follows. In order to obtain a replicable experi-
ment, we used as our application a test program that sends UDP
traffic at a user-specified rate across our testbed.

Results for two similar experiments are superimposed in Fig-
ure 3. In each case, the application made an initial reservation
for 2500 kilobytes per second (KB/s) but then sent data at a
higher rate: in the first case at 4000 KB/s and in the second
case at 8000 KB/s. As described before, the first router clas-
sified, policed, and marked traffic. Because the router allows

small bursts, the application initially was able to send slightly
faster than the reservation allowed, but then the data rate settled
down to a constant 2500 KB/s.

Our loss rate sensor is implemented by the GARA resource
manager, which queries the router every ten seconds and pro-
vides feedback to the application for every query except the
first. (The first query is not reported to the application because
we wish to gather statistically sufficient data.) As the resource
manager and application are not synchronized in any way, we
should not be surprised that the feedback arrives at slightly dif-
ferent times in the two cases: at 16 seconds and 22 seconds,
respectively.

It is clear from Figure 3 that the UDP application was able to
adapt quickly in these experiments. However, the poor tempo-
ral resolution offered by our routers means that adaptation need
not always work so well. For example, if the router statistics
were gathered just as a series of packets were starting to be
dropped, a unrepresentative result may be reported to the ap-
plication. However, this problem would be compensated for af-
ter another round of adaptation. In addition, our router updates
statistics only every ten seconds, which limits the frequency at
which the resource manager can check them.

C. Adaptive QoS Reservations: TCP Flows

We should not be surprised that it is possible to determine
UDP transmission rates by monitoring packet loss informa-
tion, given that UDP does not perform congestion control. Im-
plementing a comparable adaptive strategy for TCP is signif-
icantly more complex because of TCP’s self-clocking mecha-
nisms. Data that an application attempts to write into a socket
buffer with a specific rate may not be transported immediately
because TCP’s sliding window protocol requires that acknowl-



1500

2500

3500

4500

5500

6500

7500

8500

9500

0 10 20 30 40 50 60 70 80

Time (s)

B
an

di
w

dt
h 

(K
B

/s
)

Received BW 1
Reservation 1
Received BW 2
Reservation 2

Fig. 3. Performance of our UDP reservation adaptation strategy in two different
cases. In the first case, the application is sending at 4000 KB/s while in the
second it is sending at 8000 KB/s. In both cases, an initial reservation of
approximately 2500 KB/s is corrected after a single round of adaptation.

edgments be received before further data is sent. Also, TCP
slows its sending rate when it believes it has encountered con-
gestion. (In our case, TCP has not encountered congestion, but
an aggressive QoS policing mechanism.) Nevertheless, TCP is
used extensively in the applications that interest us, and so it is
important to support TCP if we can.

Because of these difficulties, our decision procedure for TCP
does not attempt to derive the transmission rate from the packet
loss rate ratio. Instead, it uses a search procedure to determine
the correct rate. When the packet loss rate sensor signals that
packets have been dropped, we simply double the reservation.
Once the reservation is large enough, we perform a binary search
between the current reservation and the previous reservation un-
til we arrive at a reservation that works and that has not changed
from the previous reservation by more than five percent.

Figure 4 illustrates the results that we obtain with this heuris-
tic. We see that the search takes some time to adapt but even-
tually comes close to a correct value. The time delay is largely
because statistics on dropped packets are reported only every 10
seconds on our routers. Clearly, decreasing that interval would
improve the adaptation time. Nevertheless, even this relatively
long adaptation time is quite acceptable for many of our long-
lived target applications.

There are a couple of possibilities for improving upon this
search. One possibility is to change the initial doubling by es-
timating the correct multipler from the percentage of dropped
packets, much as we did in the UDP case. We have performed
extensive experiments with such techniques but have not yet
succeeded in identifying a good estimate for the multiplier, be-
cause of TCP’s complex behavior. Recent work proposes mod-
ifying TCP’s windowing algorithm to be aware of reservation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120 140 160 180 200

Time (s)

B
an

dw
id

th
 (K

B
/s

)

Actual Bandwidth

Reservation

Fig. 4. An example of how our search-based reservation rate strategy deter-
mines the correct reservation to use for a TCP application. The application
doubled its reservation request twice, then narrowed its reservation with a
binary search. The difference between the gross and net reservations is due
to packet overheads.

rates [17], [18].
It may be possible to adapt more quickly by monitoring closer

to the application. In particular, if the application used an instru-
mented TCP library that could measure the rate at which the ap-
plication was attempting to send, it could use the adjustment to
adapt much more quickly. However, this strategy requires mod-
ifications to the application: our heuristics have the advantage
of being usable by a third party agent.

D. A Bulk-Data Transfer Application

Our third example of an application-level adaptation proce-
dure uses our BDT reservation-change sensor to guide rate adap-
tation for BDT applications. As described in Section III-D, this
sensor signals changes in backgrond flow reservations due to
preemption by (or termination of) higher-priority foreground
flows. Our decision procedure simply adapts the transmission
rate of the TCP-based bulk data transfer application in order to
achieve throughput close to the bandwidth allocated to the BDT
flow. Note that in the absence of this decision procedure, the
achieved throughput would tend to be extremely low, because
preemption lowers the background flow’s reservation and pack-
ets that exceed the reservation are dropped, therefore triggering
TCP’s backoff algorithms.

For our experiments, this decision procedure was incorpo-
rated into a QoS-aware TCP-based BDT application. Figure 5
shows results obtained in a wide area testbed between Argonne
National Labratory and Lawrence Berkeley National Labratory.
At about time 5, the (background) BDT application began and
was assigned all of the premium bandwidth, 25 MB/s. At ap-
proximately times 40 and 100, a foreground reservation began
and the BDT reservation was reduced. When the foreground
reservations ended, the background reservation was increased.
Notice that at time 15, competitive UDP traffic began but does
not interfere with either the foreground or background reserva-
tions.



0

10000

20000

30000

40000

50000

0 20 40 60 80 100 120 140 160 180

Time (s)

B
an

dw
id

th
 (

K
bp

s)

background
foreground
competitive

Fig. 5. An example of bulk-transfer in our wide area testbed. See text for details.

These results show that we are successful in adapting the BDT
flow in response to information concerning preemption by fore-
ground flows. Apart from a few artifacts, the BDT flow main-
tains data transfer at a rate close to the amount of premium band-
width allocated to that flow. The artifacts can be explained as
follows. First, we see that each time the BDT reservation is re-
duced, the BDT rate drops momentarily more than expected and
then recovers. We attribute this behavior to the fact that TCP
shrinks its window size when packets are dropped (when the
reservation is changed before the application adapts), either by
falling into its slow-start phase or into its congestion avoidance
phase.

In addition, the application is using large socket buffers to
obtain high performance over the wide area testbed and when
it enters slow-start mode (because packets have been dropped
once the reservation decreases) these socket buffers quickly fill
up. As TCP increases its congestion window size exponen-
tially during the slow-start phase, data is immediately available
to send, and TCP sends the data as increasingly larger bursts,
until the socket buffer is emptied. Because the former con-
gestion window size did not reflect the actual amount of data
transmitted, the length of the slow-start phase after a drop is too
long, therefore, data is initially sent too rapidly for the updated
router configuration, forcing packets to be dropped and TCP to
go into slow-start mode again, until the congestion window be-
comes more appropriate. This effect is magnified by the larger
bandwidth-delay product and hence larger socket buffers (1 MB
in this case) in the wide area network.

V. RELATED WORK

There has been a great deal of research on rate adaptation
for network applications when reservation mechanisms are not
present. For example, Goel et al. [7] describe a modular frame-
work that provides feedback for not only network streams but
also CPU scheduling. The present paper takes its terminol-
ogy of actuators, sensors, and decision procedures from another
feedback infrastructure, Autopilot [14], which has been used for
dynamic performance tuning in various settings, including I/O.

Our approach follows the concept of detaching the “controller”
from the the application, as proposed in [3].

Implementing QoS-aware middleware is addressed in several
projects. The Adaptive Quality of Service Architecture for dis-
tributed multimedia applications (AQUA) [19] introduces ab-
stract interfaces for QoS measurements and negotiation. How-
ever, this work focuses on ATM-connections and how to ensure
QoS under competition on the end-system.

The Quartz architecture [20] provides a CORBA-based QoS
framework. It introduces agent-based adaption and a resource
trader, called a balancing agent, which tries to compensate for
the loss of resources by increasing the amount requested.

VI. CONCLUSIONS AND FUTURE WORK

We have argued that advanced network applications such as
teleimmersion, bulk data transfer, and distance visualization can
benefit from mechanisms that enable the coordinated use of
reservation and adaptation, via support for dynamic feedback
among entities involved in making resource management de-
cisions. We have described an implementation of such mech-
anisms within the GARA resource management architecture.
In this implementation, sensors associated with resource and
resource managers permit application-level monitoring of re-
source state and reservation status, while online control mech-
anisms enable adaptive control of reservations. We have used
these mechanisms to develop three different application-level
adaptive control mechanisms: two that use loss rate information
to adapt reservations and one that uses reservation state infor-
mation to adapt transmission rate.

We find these initial results encouraging, but recognize that
much more work remains to be done. For example, we would
like to experiment with more sophisticated resource-side allo-
cation policies and determine to what extent applications can
adapt to these policies in interesting ways. In more complex
multidomain environments, performance feedback and adapta-
tion become more complex, not least because relevant sensor
information may not be easily accessible. Finally, experimenta-
tion with a wider range of applications is required.

ACKNOWLEDGMENTS

We gratefully acknowledge assistance given by Linda Win-
kler and Becca Nitzen with the testbed used in these experiments
and by Andy Adamson who wrote the UDP traffic generator.
Numerous discussions with our colleagues Gary Hoo, Bill John-
ston, Carl Kesselman, and Steven Tuecke have helped shape our
approach to quality of service. We also thank Cisco Systems for
an equipment donation that allowed the creation of the GAR-
NET testbed. This work was supported in part by the Mathemat-
ical, Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38;
by the Defense Advanced Research Projects Agency under con-
tract N66001-96-C-8523; by the National Science Foundation;
and by the NASA Information Power Grid program.



REFERENCES

[1] L. Wolf and R. Steinmetz, “Concepts for reservation in advance,” Kluwer
Journal on Multimedia Tools and Applications, vol. 4, May 1997.

[2] D. Ferrari, A. Gupta, and G. Ventre, “Distributed advance reservation of
real-time connections,” ACM/Springer Verlag Journal on Multimedia Sys-
tems, vol. 5, no. 3, 1997.

[3] B. Li and K.Nahrstedt, “A Control-based Middleware Framework for
Quality of Service Adaptations,” IEEE Journal of Selected Areas in Com-
munications, Special Issue on Service Enabling Platforms, June 1999.

[4] B. Li and K. Nahrstedt, “QualProbes: Middleware QoS Profiling Services
for Configuring Adaptive Applications,” in Proceedings of IFIP Interna-
tional Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware 2000), 2000.

[5] X. Wang and H. Schulzrinne, “Comparison of Adaptive Internet Multime-
dia Applications,” Institute of Electronics, Information and Communica-
tion Engineers Transactions, vol. E82-B, pp. 806–818, June 1999.

[6] D. Sisalem and H. Schulzrinne, “The Loss-Delay Adjustment Algorithm:
A TCP-friendly Adaptation Scheme,” in Proc. International Workshop
on Network and Operating System Support for Digital Audio and Video
(NOSSDAV), July 1998.

[7] A. Goel, D. Steere, C. Pu, and J. Walpole, “Adaptive Resource Manage-
ment Via Modular Feedback Control,” Tech. Rep. 99-03, Oregon Graduate
Institute, Computer Science and Engineering, Jan. 1999.

[8] W. Almesberger, J. L. Boudec, and T. Ferrari, “Scalable Resource Reser-
vation for the Internet,” in IEEE Conference on Protocols for Multimedia
Systems –Multimedia Networking, Nov. 1997.

[9] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A Resource Al-
location Model for QoS Management,” in 18th IEEE Real-Time System
Symposium, 1997.

[10] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy, “A
Distributed Resource Management Architecture That Supports Advance
Reservations and Co-Allocation,” in International Workshop on Quality of
Service, pp. 27–36, June 1999.

[11] I. Foster, A. Roy, V. Sander, and L. Winkler, “End-to-End Quality of Ser-
vice for High-End Applications,” tech. rep., Argonne National Laboratory,
1999. http://www.mcs.anl.gov/qos/qos papers.htm.

[12] I. Foster and C. Kesselman, eds., The Grid: Blueprint for a Future Com-
puting Infrastructure. Morgan Kaufmann Publishers, 1999.

[13] I. Foster, J. Insley, G. von Laszewski, C. Kesselman, and M. Thiebaux,
“Distance Visualization: Data Exploration on the Grid,” IEEE Computer
Magazine, pp. 36–43, Dec. 1999.

[14] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed, “Autopilot: Adaptive
Control of Distributed Applications,” in Proc. 7th IEEE Symp. on High
Performance Distributed Computing, IEEE Computer Society Press, 1998.

[15] K. Nichols, V. Jacobson, and L. Zhang, “A Two-Bit Differentiated Ser-
vices Architecture for the Internet,” Internet RFC 2638, July 1999.

[16] S. Blake, D. Black, M. Carlson, M. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Services,” Internet RFC 2475, 1998.

[17] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Understanding and Improv-
ing TCP Performance Over Networks with Minimum Rate Guarantees,”
IEEE/ACM Transactions on Networking, vol. 7, pp. 173–187, Apr. 1999.

[18] I. Yeom and A. N. Reddy, “Realizing Throughput Guarantees in a Differ-
entiated Services Network,” in IEEE Int. Conf. on Multimedia Computing
and Systems, pp. 372–376, June 1999.

[19] K. Lakshman and R. Yavatkar, “Integrated CPU and Network I/O QoS
Management in an End-System,” Intel Architecture Labs and University of
Kentucky in Computer Communications Journal, Special Issue on Quality
of Service in Distributed Systems, vol. 21, Apr. 1997.

[20] F. Siqueira and V. Cahill, “Delivering QoS in Open Distributed Systems,”
in Proceedings of the 7th IEEE Workshop on Future Trends in Distributed
Computing Systems (FTDCS’99), Dec. 1999.


