
0018-9162/02/$17.00 © 2002 IEEE June 2002 37

C O V E R F E A T U R E

Grid Services
for Distributed
System
Integration

abstractions and concepts that let applications
access and share resources and services across dis-
tributed, wide area networks, while providing com-
mon security semantics, distributed resource
management performance, coordinated fail-over,
problem determination services, or other QoS met-
rics that are of importance in a particular context.

For some time, such problems have been of cen-
tral concern to developers of distributed systems for
large-scale scientific research. Work within this
community has led to the development of Grid tech-
nologies,1 which have been widely adopted in sci-
entific and technical computing.2 Grid technologies
and infrastructures support the sharing and coor-
dinated use of diverse resources in dynamic, dis-
tributed virtual organizations3—that is, the
creation, from geographically distributed compo-
nents operated by distinct organizations with dif-
fering policies, of virtual computing systems that
are sufficiently integrated to deliver the desired QoS.

In particular, the open source Globus Toolkit
described in the “OGSA and the Globus ToolKit”
sidebar has emerged as a de facto standard for con-
struction of Grid systems. Projects building on the
Globus Toolkit range from scientific collaborations
concerned with remote access to specialized exper-
imental facilities—for example, the Network for
Earthquake Engineering Simulation, NEESgrid;
(http://www.neesgrid.org)—to “data grids” for the

The Open Grid Services Architecture enables
the integration of services and resources across
distributed, heterogeneous, dynamic virtual
organizations—whether within a single enterprise
or extending to external resource-sharing and
service-provider relationships.

Ian Foster
Argonne National
Laboratory

Carl
Kesselman
University of
Southern California

Jeffrey M.
Nick
IBM

Steven Tuecke
Argonne National
Laboratory

I ncreasingly, computing addresses collaboration,
data sharing, cycle sharing, and other modes of
interaction that involve distributed resources.
This trend results in an increased focus on the
interconnection of systems both within and

across enterprises. In addition, companies are real-
izing that they can achieve significant cost savings
by outsourcing nonessential elements of their IT
environment to various forms of service providers.

These evolutionary pressures generate new
requirements for distributed application develop-
ment and deployment. Today, applications and mid-
dleware developers typically target a specific
platform—such as Windows NT, some flavor of
Unix, a mainframe, Java 2 Enterprise Edition
(J2EE), or Microsoft .NET—that provides a host-
ing environment for running applications. Such
platforms provide capabilities ranging from inte-
grated resource management functions to database
integration, clustering services, security, workload
management, and problem determination—with
different platforms offering different implementa-
tions, semantic behaviors, and APIs.

The continuing decentralization and distribution
of software, hardware, and human resources make
it essential that we achieve the desired quality of
service (QoS) on resources assembled dynamically
from enterprise, service provider, and customer sys-
tems despite this diversity. This requires new

distributed analysis of large amounts of data—
for example, the Grid Physics Network (http://
www.griphyn.org); EU DataGrid Project (http://
www.eu-datagrid.org); and the Particle Physics
Data Grid (http://www.ppdg.net).

Grid technologies, and the Globus Toolkit in par-
ticular, are evolving toward an Open Grid Services
Architecture (OGSA)4 in which a Grid provides an
extensible set of services that virtual organizations
can aggregate in various ways. Building on con-
cepts and technologies from both the Grid and Web
services5 communities, OGSA defines a uniform
exposed service semantics (the Grid service); defines
standard mechanisms for creating, naming, and dis-
covering transient Grid service instances; provides
location transparency and multiple protocol bind-
ings for service instances; and supports integration
with underlying native platform facilities.

OGSA also defines, in terms of Web Services
Description Language (WSDL)6 interfaces and
associated conventions, mechanisms required for
creating and composing sophisticated distributed
systems, including lifetime management, change

management, and notification. Service bindings can
support reliable invocation, authentication, autho-
rization, and delegation.

The development of OGSA technical specifica-
tions is ongoing within the Global Grid Forum
(http://www.gridforum.org), a Grid community
and standards organization, and the Globus Project
is developing an open source reference implemen-
tation. We expect to see both an OGSA-based
Globus Toolkit and OGSA-based commercial
products by the end of 2002.

GRID TECHNOLOGIES ENTER THE MAINSTREAM
The World Wide Web began as a technology for

scientific collaboration and was later adopted for
e-business. We foresee—and indeed are experienc-
ing—a similar trajectory for Grid technologies.

The scientific resource sharing applications that
motivated the early development of Grid tech-
nologies include the pooling of expertise through
collaborative visualization of large scientific data
sets, the pooling of computer power and storage
through distributed computing for computation-

38 Computer

The Globus Toolkit1 is a community-
based, open architecture, open source set
of services and software libraries that sup-
port Grids and Grid applications. The
toolkit addresses issues of security, infor-
mation discovery, resource management,
data management, communication, and
portability. Globus Toolkit mechanisms
are in use at hundreds of sites and by
dozens of major Grid projects worldwide.2

OGSA represents a natural evolution
of the second version of the Globus
Toolkit, GT2. Key concepts, such as fac-
tory, registry, and reliable and secure invo-

cation exist in the Globus Toolkit but in
a less general and flexible form and with-
out the benefits of a uniform interface def-
inition language. In effect, OGSA
refactors key design elements so that, for
example, it uses common notification
mechanisms for service registration and
service state. OSGA further abstracts
these elements so that they can be applied
at any level to virtualize VO resources.

The Globus Project is evolving the
Globus Toolkit code base to exploit
OGSA capabilities. The result of this evo-
lution will be Globus Toolkit version 3
(GT3). Figure A illustrates GT3’s struc-
ture, which includes

• the GT3 core, which implements the
Grid service interfaces and behaviors;

• GT3 base services, which exploit the
GT3 core to implement both existing
Globus Toolkit capabilities (for
example, resource management, data
transfer, and information services)
and new capabilities (for example,
reservation and monitoring); and

• higher-level services that may target
both GT3 core and GT3 base ser-
vices such as data management,
workload management, and diag-
nostics.

The first GT3 Core prototype was
made available in May 2002, and a full
GT3 release is planned for around the end
of 2002. This release will be a full open
source OGSA implementation that sup-
ports existing Globus APIs as well as
WSDL interfaces, as described at http://
www.globus.org/ogsa.

References
1. I. Foster and C. Kesselman, “Globus: A

Toolkit-Based Grid Architecture,” The
Grid: Blueprint for a New Computing
Infrastructure, I. Foster and C. Kessel-
man, eds., Morgan Kaufmann, San
Francisco, 1999, pp. 259-278.

2. I. Foster, “The Grid: A New Infrastruc-
ture for 21st Century Science,” Physics
Today, vol. 55, no. 2, 2002, pp. 42-47.

GT3
data

services

Other
Grid

services

GT3 base services

GT3 core

OGSA and the Globus Toolkit

Figure A. GT3 structure.

June 2002 39

ally demanding data analyses, and increasing func-
tionality and availability by coupling scientific
instruments with remote computers and archives.1,7

We expect similar applications to become impor-
tant in commercial settings—initially for scientific
and technical computing applications, where we
can already point to success stories—and then for
commercial distributed computing applications.

However, we expect that rather than enhancing
raw capacity, the most important role for Grid con-
cepts in commercial computing will be to offer solu-
tions to new challenges that relate to the
construction of reliable, scalable, and secure dis-
tributed systems. These challenges derive from the
current rush, driven by technology trends and
commercial pressures, to decompose and distrib-
ute through the network previously monolithic
host-centric services.

The evolution of enterprise computing
In the past, organizations performed computing

tasks in highly integrated enterprise computing cen-
ters. Although sophisticated distributed systems
existed, such as command-and-control and reser-
vation systems, and the Internet Domain Name
System, these were specialized, niche entities. The
Internet’s rise and the emergence of e-business have,
however, led to a growing awareness that an enter-
prise’s IT infrastructure also encompasses external
networks, resources, and services.

Initially, developers treated this new source of
complexity as a network-centric phenomenon and
attempted to construct intelligent networks that
intersected with traditional enterprise IT data cen-
ters only at edge servers—an enterprise’s Web point
of presence or the virtual private network server
that connects an enterprise network to service
provider resources, for example. These developers
worked from the assumption that these servers
could thus manage and circumscribe the impact of
e-business and the Internet on an enterprise’s core
IT infrastructure.

These attempts have generally failed because IT
services decomposition is also occurring inside
enterprise IT facilities. New applications are being
developed for programming models, such as the
Enterprise JavaBeans component model, that insu-
late the application from the underlying comput-
ing platform and support portable deployment
across multiple platforms. Thus, for example, Web
serving and caching applications target commodity
servers rather than traditional mainframe comput-
ing platforms. Meanwhile, Web access to enterprise
resources requires ever-faster request servicing, fur-

ther driving the need to distribute and cache
content closer to the network’s edge.

The overall result is decomposition of a
highly integrated internal IT infrastructure
into a collection of heterogeneous and frag-
mented systems, often operated by different
business units. Enterprises must then reinte-
grate these distributed servers and data
resources with QoS, addressing issues of nav-
igation, distributed security, and content dis-
tribution inside the enterprise as well as on
external networks.

In parallel with these developments, enter-
prises require an increasingly robust IT infra-
structure to handle the unpredictability and
rapid growth associated with e-business ventures.
Businesses are also expanding the scope and scale
of their enterprise resource planning projects as
they try to achieve better integration with customer-
relationship-management, integrated-supply-chain,
and existing core systems.

These developments have the aggregate effect of
making the QoS traditionally associated with main-
frame host-centric computing essential to the effec-
tive conduct of e-business across distributed
computing resources, both inside and outside the
enterprise. For example, enterprises must provide
consistent response times to customers, despite
workloads with significant deviations between
average and peak utilization. Thus, they require
flexible resource allocation in accordance with
workload demands and priorities. Yet the current
paradigm for delivering QoS to applications via the
vertical integration of platform-specific compo-
nents and services does not work in today’s dis-
tributed environment: The decomposition of
monolithic IT infrastructures is inconsistent with
the delivery of QoS through vertical integration of
services on a given platform.

Service providers and
business-to-business computing

Another key IT trend is the emergence of various
types of Web hosting, content distribution, appli-
cations, and storage service providers (SPs). By
exploiting economies of scale, SPs aim to provide
standard e-business processes, such as creation of
a Web portal presence, to multiple customers with
superior price and performance. Enterprises want
to offload such processes because they view them as
commodity functions.

Such emerging e-utilities—service providers who
offer continuous, on-demand access—are beginning
to offer a model for carrier-grade IT resource deliv-

Enterprises require
an increasingly

robust IT
infrastructure
to handle the

unpredictability
and rapid growth
associated with

e-business ventures.

ery through metered usage and subscription
services. Unlike yesterday’s computing ser-
vices companies, which tended to provide
offline batch-oriented processes, today’s e-util-
ities often provide resources that both enter-
prise computing infrastructures and in-house
and outsourced business processes use. Thus,
one consequence of exploiting the economies
of scale that e-utility structures enable is fur-
ther decomposition and distribution of enter-
prise computing functions.

To achieve economies of scale, e-utilities
require a server infrastructure that can be eas-
ily customized on demand to meet specific

customer needs and an IT infrastructure that

• supports dynamic resource allocation in accor-
dance with service-level agreement policies, effi-
cient sharing and reuse of the IT infrastructure
at high utilization levels, and distributed secu-
rity from the network edge to application and
data servers; and

• delivers consistent response times and high lev-
els of availability—which in turn drive a need
for end-to-end performance monitoring and
real-time reconfiguration.

A final key IT industry trend is cross-enterprise
business-to-business collaboration such as multi-
organization supply chain management, virtual
Web malls, and electronic market auctions. B2B
relationships are, in effect, virtual organizations—
albeit with particularly stringent requirements for
security, auditability, availability, service-level
agreements, and complex transaction-processing
flows. Thus, B2B computing represents another
source of demand for distributed systems integra-
tion, often characterized by large differences among
the information technologies that different organi-
zations deploy.

OPEN GRID SERVICES ARCHITECTURE
Enterprise computing systems must increasingly

operate within virtual organizations (VO) with sim-
ilarities to the scientific collaborations that origi-
nally motivated Grid computing. Depending on the
context, the dynamic ensembles of resources, ser-
vices, and people that comprise a scientific or busi-
ness VO can be small or large, short- or long-lived,
single- or multi-institutional, and homogeneous or
heterogeneous. Individual ensembles can be struc-
tured hierarchically from smaller systems and may
overlap in membership.

Regardless of these differences, VO application

developers face common requirements as they seek
to deliver QoS—whether measured in terms of
common security semantics, distributed workflow
and resource management, coordinated fail-over,
problem determination services, or other metrics—
across a collection of resources with heterogeneous
and often dynamic characteristics.

Service orientation
The Open Grid Services Architecture (OGSA) 3

supports the creation, maintenance, and applica-
tion of the service ensembles that VOs maintain.
OGSA adopts a common representation for com-
putational and storage resources, networks, pro-
grams, databases, and the like. All are treated as
services—network-enabled entities that provide
some capability through the exchange of messages.
Arguably, we could use the term object instead, as
in systems like SOS8 and Legion,9 but we avoid it
because of its overloaded meaning and because
OGSA does not require object-oriented imple-
mentations. Adopting this uniform service-oriented
model makes all components of the environment
virtual—although the model must be grounded on
implementations of physical resources.

This service-oriented view partitions the inter-
operability problem into two subproblems: the def-
inition of service interfaces and the identification
of protocols that can invoke a particular interface.
A service-oriented view addresses the need for stan-
dard interface definition mechanisms, local and
remote transparency, adaptation to local OS ser-
vices, and uniform service semantics. A service-ori-
ented view also simplifies virtualization through
encapsulation of diverse implementations behind
a common interface.

Virtualization
Virtualization enables consistent resource access

across multiple heterogeneous platforms. Virtuali-
zation also enables mapping of multiple logical
resource instances onto the same physical resource
and facilitates management of resources within a
VO based on composition from lower-level
resources. Further, virtualization lets us compose
basic services to form more sophisticated services—
without regard for how these services are imple-
mented.

Virtualizing Grid services also underpins the abil-
ity to map common service semantic behavior
seamlessly onto native platform facilities. This vir-
tualization is easier if we can express service func-
tions in a standard form, so that any imple-
mentation of a service is invoked in the same man-

40 Computer

Enterprise
computing systems

operate within
virtual organizations

with similarities
to the scientific

collaborations that
originally motivated

Grid computing.

June 2002 41

ner. We adopt the Web Services Description
Language (WSDL) for this purpose.

WSDL distinguishes between the service inter-
face definition and the protocol bindings used for
service invocation; a single interface can have mul-
tiple bindings, including both distributed commu-
nication protocols such as HTTP and locally
optimized bindings such as a local IPC for interac-
tions on the same host.

Other binding properties can include reliability
and other forms of QoS, as well as authentication
and delegation of credentials. The choice of bind-
ing should always be transparent to the requestor
with respect to service invocation semantics, but
not with respect to other things—for example, a
requestor should be able to choose a particular
binding for performance reasons.

The service interface definition and access bind-
ing are also distinct from the service implementa-
tion. A service can support multiple imple-
mentations on different platforms, facilitating
seamless overlay not only to native platform facil-
ities but also, via the nesting of service implemen-
tations, to virtual resource ensembles. For example,
depending on the platform and context, we might
use the following implementation approaches:

• construct a reference implementation for full
portability across multiple platforms to sup-
port the execution environment for hosting a
service;

• use a platform possessing specialized native
facilities for delivering service functionality to
map from the service interface definition to the
native platform facilities; or

• apply these mechanisms recursively, con-
structing a higher-level service from the com-
position of multiple lower-level services, which
themselves can either map to native facilities
or decompose further.

The service implementation for the third option
would then dispatch operations to lower-level ser-
vices.

The ability to adapt to operating system func-
tions on specific hosts is central to virtualization of
resource behaviors. Enabling exploitation of native
capabilities presents a significant challenge when
developing these mappings—whether we focus on
performance monitoring, workload management,
problem determination, or enforcement of native
platform security policy—so that the Grid envi-
ronment does not become the least common
denominator of its constituent pieces. Service dis-

covery mechanisms are important in this
regard, allowing higher-level services to dis-
cover what capabilities a particular interface
implementation supports. For example, if a
native platform supports reservation capa-
bilities, a resource-management interface
implementation can exploit those capabili-
ties.

Thus, our service architecture supports
local and remote transparency with respect
to service location and invocation. It also
provides multiple protocol bindings to facil-
itate localized optimization of services invo-
cation when the service is hosted locally with the
service requestor. In addition, it enables protocol
negotiation for network flows across organiza-
tional boundaries to allow choosing between sev-
eral interGrid protocols, each optimized for a
different purpose. Finally, the implementation of
a particular Grid service interface can map to
native, nondistributed, platform functions and
capabilities.

Service semantics: The Grid service
Our ability to virtualize and compose services

depends on more than standard interface defini-
tions. We also require standard semantics for ser-
vice interactions so that, for example, we have
standard mechanisms for discovering service prop-
erties and different services follow the same con-
ventions for error notification. To this end, OGSA
defines a Grid service—a Web service that provides
a set of well-defined interfaces and that follows spe-
cific conventions. The interfaces address discovery,
dynamic service creation, lifetime management,
notification, and manageability; the conventions
address naming and upgradeability. Grid services
also address authorization and concurrency con-
trol. This core set of consistent interfaces, from
which we implement all Grid services, facilitates
the construction of hierarchal, higher-order services
that can be treated uniformly across layers of
abstraction.

As Figure 1 shows, a set of interfaces configured
as a WSDL portType defines each Grid service.
Every Grid service must support the GridService
interface; in addition, OGSA defines a variety of
other interfaces for notification and instance cre-
ation. Of course, users also can define arbitrary
application-specific interfaces. The Grid service’s
serviceType, a WSDL extensibility element, defines
the collection of portTypes that a Grid service sup-
ports, along with some additional information
relating to versioning.

The ability to
adapt to operating
system functions
on specific hosts

is central to
virtualization of

resource behaviors.

Associated with each interface is a potentially
dynamic set of service data elements—named and
typed XML elements encapsulated in a standard con-
tainer format. Service data elements provide a stan-
dard representation for information about Grid
service instances. This important aspect of the OGSA
model provides the basis for discovery and manage-
ment of potentially dynamic Grid service properties.
Finally, as Figure 1 shows, users can implement a par-
ticular Grid service—as defined by its interfaces and
associated service data elements—in a variety of ways
and host it in different environments.

Grid services can maintain internal state for their
lifetime. The existence of state distinguishes one
instance of a service from another instance that pro-
vides the same interface. The term Grid service
instance refers to a particular instantiation of a Grid
service. The interfaces and conventions that define
a Grid service are concerned, in particular, with
behaviors related to the management of transient
service instances.

VO participants often want to instantiate new
transient service instances dynamically to handle
the management and interactions associated with
the state of particular requested activities. When the
activity’s state is no longer needed, the service can
be destroyed. For example, in a videoconferencing
system, establishing a videoconferencing session
might involve creating service instances at interme-
diate points to manage end-to-end dataflows
according to QoS constraints. A Web serving envi-
ronment might instantiate services dynamically to
provide a consistent user response time by manag-
ing application workload through dynamically
added capacity.

Other examples of activities that can be repre-
sented and managed as transient service instances
are a query against a database, a data mining oper-
ation, a network bandwidth allocation, a running

data transfer, and an advance reservation for pro-
cessing capability. These examples emphasize that
service instances can be extremely lightweight enti-
ties, created to manage even short-lived activities.

Because Grid services are dynamic and stateful,
we need a way to distinguish one dynamically cre-
ated service instance from another. Thus, every
Grid service instance receives a globally unique
name, the Grid service handle. This handle distin-
guishes a specific Grid service instance from all
other Grid service instances that have existed, exist
now, or will exist in the future.

An attractive feature of WSDL is that it allows
the definition of multiple protocol bindings for a
particular interface. A protocol binding can define
delivery semantics that address, for example, reli-
ability. Services interact with one another by
exchanging messages. In distributed systems prone
to component failure, however, we can never guar-
antee that a sent message has been delivered. The
existence of internal state can make it important
that we guarantee a service has received a message
once or not at all, even with failure-recovery mech-
anisms such as retry in use. In such situations, using
a protocol that guarantees exactly-once delivery or
similar semantics can be desirable, as can the pro-
tocol-binding behavior of mutual authentication
during communication. OGSA is defining such
bindings.
Standard interfaces. OGSA defines standard behav-
iors and associated interfaces.

Discovery. Applications require mechanisms for
discovering available services, determining their
characteristics, and configuring themselves and
their requests to those services. In addition to the
service data element, which defines a standard rep-
resentation for information about Grid service
instances, OGSA defines a standard operation,
FindServiceData, which retrieves service informa-
tion from individual Grid service instances, and a
standard interface for registering information
about Grid service instances with registry services.

Dynamic service creation. The ability to dynam-
ically create and manage new service instances, a
basic tenet of the OGSA model, necessitates using
service-creation services. The model defines a stan-
dard interface, Factory, and semantics that any ser-
vice-creation service must provide.

Lifetime management. Because OGSA services
can be created and destroyed dynamically, they can
be destroyed explicitly. They also can be destroyed
or become inaccessible through a system failure such
as an operating system crash or a network partition.
Interfaces are defined for managing a service’s life-

42 Computer

Service
data

element

GridService
(required)

Service
data

element

Other interfaces
(optional)

Service
data

element

Implementation

Hosting environment/runtime
(C, J2EE, .NET, …)

OGSA-defined
• Notification
• Authorization
• Service creation
• Service registry
• Manageability
• Concurrency

Application-
specific interfaces

Service data access
Explicit destruction
Soft-state lifetime

Binding properties:
• Reliable invocation
• Authentication
…

Figure 1. OGSA Grid
service. The service
consists of data ele-
ments and various
required and
optional interfaces,
with potential
instantiation via dif-
ferent implementa-
tions, possibly in
different hosting
environments.

June 2002 43

time and, in particular, for reclaiming the services
and state associated with failed operations. For
example, termination of a videoconferencing session
might also require the termination of services cre-
ated at intermediate points to manage flows.

OGSA addresses this requirement by defining a
standard SetTerminationTime operation within the
required GridService interface for soft-state lifetime
management of Grid service instances. Soft-state
protocols10 let OGSA eventually discard the state
established at a remote location unless a stream of
subsequent keepalive messages refreshes it. Such
protocols have the advantages of being both
resilient to failure—a single lost message need not
cause irretrievable harm—and simple because they
require no reliable discard protocol message. The
GridService interface also defines an Explicit-
Destruction operation.

Notification. A collection of dynamic, distrib-
uted services must be able to notify each other
asynchronously of significant changes to their
state. OGSA defines common abstractions and ser-
vice interfaces for subscription to and delivery of
such notifications, so that services constructed by
the composition of simpler services can deal in
standard ways with notifications of, for example,
errors. Specialized protocol bindings can allow
OGSA notifications to exploit various commonly
and commercially available messaging systems for
the delivery of notification messages with a par-
ticular QoS.

Manageability. In operational settings, we may
need to monitor and manage potentially large sets
of Grid service instances. A manageability inter-
face defines relevant operations.

Role of hosting environments
OGSA defines the semantics of a Grid service

instance: how it is created and named, has its life-
time determined and communication protocols
selected, and so on. However, while it is prescrip-
tive on matters of basic behavior, OGSA does not
place requirements on what a service does or how
it performs that service. OGSA does not address
issues such as the implementation programming
model, programming language, implementation
tools, or execution environment.

In practice, a specific execution or hosting envi-
ronment instantiates Grid services. A hosting envi-
ronment defines not only the implementation
programming model, programming language,
development tools, and debugging tools, but also
how a Grid service implementation meets its oblig-
ations with respect to Grid service semantics.

Today’s e-science Grid applications typi-
cally rely on native operating system pro-
cesses as their hosting environment with, for
example, creation of a new service instance
involving the creation of a new process. Such
an environment can implement a service in a
variety of languages such as C, C++, Java,
Fortran, or Python. Grid semantics may be
implemented directly as part of the service,
or provided via a library linked into the appli-
cation. Typically, external services do not
provide semantics beyond those the operating sys-
tem provides. Thus, for example, lifetime manage-
ment functions must be addressed within the
application itself, if required.

More sophisticated container- or component-
based hosting environments such as J2EE, Web-
sphere, .NET, and Sun ONE can implement Web
services. Such environments define a framework
within which to instantiate and compose compo-
nents adhering to environment-defined interface
standards for building complex applications.
Compared with the low levels of functionality that
native hosting environments provide, container and
component hosting environments tend to offer supe-
rior programmability, manageability, flexibility, and
safety. Consequently, these environments enjoy
widespread use for building e-business services.

In the OGSA context, the container has primary
responsibility for ensuring that the services it sup-
ports adhere to Grid service semantics and for
offloading some service responsibilities from the
service implementer. Thus, OGSA may motivate
modifications or additions to the container or com-
ponent interface.

By defining service semantics, OGSA specifies
interactions between services independent of any
hosting environment. However, specifying baseline
characteristics that all hosting environments must
possess—defining the internal interface from the
service implementation to the global Grid envi-
ronment—can facilitate successful implementation
of Grid services. These characteristics would then
be rendered into different implementation tech-
nologies such as J2EE, .NET, or shared libraries.

A hosting environment should address the fol-
lowing:

• mapping of Grid-wide names, or Grid service
handles, into implementation-specific entities
such as C pointers and Java object references;

• dispatch of Grid invocations and notification
events into implementation-specific actions
such as events and procedure calls;

OGSA specifies
interactions

between services
independent of

any hosting
environment.

• protocol processing and data formatting for
network transmission;

• lifetime management of Grid service instances;
and

• interservice authentication.

An important consequence of OGSA’s support
for virtualization is that the user need not be aware
of how a particular hosting environment imple-
ments OGSA interfaces and behaviors. Figure 2
illustrates this point, showing how a simple hosting
environment, a virtual hosting environment, and
collective services can implement the same inter-
faces.

Simple hosting environment. A simple execution
environment provides a set of resources located
within a single administrative domain that sup-
ports native facilities for service management, such
as a J2EE application server, Microsoft .NET sys-
tem, or Linux cluster. In OGSA, the user interface
to such an environment will typically be structured
as a registry, one or more factories, and a
handleMapper for mapping from a globally unique
Grid service handle to binding information. Each
factory is recorded in the registry so that clients
can discover available factories.

Virtual hosting environment. In more complex envi-
ronments, the resources associated with a VO will
span heterogeneous, geographically distributed
hosting environments. For example, in Figure 2
these resources span two simple hosting environ-
ments. Nevertheless, this virtual hosting environ-
ment, which could, for example, correspond to the
set of resources associated with a B2B partnership,
can be made accessible to a client via exactly the
same interfaces used for the simple hosting envi-
ronment.

Collective services. We can also construct a virtual
hosting environment that provides VO participants
with more sophisticated virtual, collective, or end-
to-end services. In this case, the registry tracks and
advertises factories that create higher-level service
instances. Such instances are implemented by ask-
ing lower-level factories to create multiple service
instances and by composing the behaviors of those
instances into a single, higher-level service instance.

EXAMPLE: A DATA MINING SERVICE
Figure 3 illustrates some aspects of OGSA’s use

and operation. This figure depicts a situation in
which a user wants to discover, acquire, and
employ remote capabilities to create a new data-
base using data mined from a number of online
databases. The figure illustrates the following steps:

1. The user—or, more likely, a program or service
acting on the user’s behalf—contacts a registry
that a relevant VO maintains to identify service
providers who can provide the required data
mining and storage capabilities. The user
request can specify requirements such as cost,
location, or performance.

2. The registry returns handles identifying a miner
factory and database factory maintained by ser-
vice providers that meet user requirements—or
perhaps a set of handles representing candidate
services. In either case, the user identifies
appropriate services.

3. The user issues requests to the miner and data-
base factory specifying details such as the data
mining operation to be performed, the form of
the database to be created to hold results, and
initial lifetimes for the two new service
instances.

44 Computer

Mapper

Registry

Service Service Service…

Factory

Factory

…
Mapper

Registry

Service Service Service…

Factory

Factory

…

M

R

S S S

F

F

M

R

S S S

F

F

E2E
mapper

E2E
registry

E2E
factory

…

M

R

S S S

M

R

S S S

F
2

F
1

E2E S E2E S E2E S

Figure 2. Three
different VO struc-
tures, from left to
right: a simple host-
ing environment,
a virtual hosting
environment, and
collective services.

June 2002 45

4. Assuming that this negotiation process pro-
ceeds satisfactorily, two new service instances
are created with appropriate initial state,
resources, and lifetimes.

5. The miner service initiates queries against
appropriate remote databases, in effect now
acting as a client on the user’s behalf as it
engages in further remote operations. OGSA
security mechanisms address the delegation
issues that arise in this context.

6. Results are returned from queries, either to the
miner or, as Figure 3 shows, directly to the
newly created database. Meanwhile, depend-
ing on the initially negotiated lifetimes, the user
may have started to issue periodic keepalive
messages to indicate continued interest.

A successful outcome of this process is that the
miner service instance notifies the user of comple-
tion and terminates. The user then retains a handle
for the newly created database, which it can retain
and use for as long as it wants or can afford, with
periodic keepalives signaling continued interest. On
the other hand, the failure of the user’s computa-
tion will result in eventual reclamation of service
provider resources, due to lifetime expiry.

OGSA’s service orientation means that it can
implement the components shown in Figure 2 in
various ways. For example, the registry could be a
distributed service that integrates information from
several sources, while the “database factory” could
be a broker that negotiates with a variety of service
providers to identify resources that meet user

requirements. From the user’s perspective, these
implementation details are visible only to the extent
that they affect delivered performance.

G rid concepts and technologies are transition-
ing from scientific collaborations to industry.
We believe that the Open Grid Services

Architecture will help accelerate that transition by
recasting the Grid technologies that the Globus
Toolkit provides in a uniform service-oriented
architecture and integrating those technologies with
emerging Web services standards. OGSA thus rep-
resents a natural evolution of both Grid technolo-
gies and Web services.

By integrating support for transient, stateful ser-
vice instances with existing Web services technolo-
gies, OGSA extends the power of the Web services
framework significantly, while requiring only minor
extensions to existing technologies. OGSA facili-
tates the realization of Grid concepts in practical
settings by adopting an industry-standard interface
definition language and enabling the use of Web
services tooling.

OGSA abstractions and services provide build-
ing blocks that developers can use to implement a
variety of higher-level Grid services, for example
for data and resource management.11,12 We are
working within the Global Grid Forum with both
industry and the academic and open source com-
munities to define a variety of such services that
will, collectively, address the diverse requirements
of e-business and e-science applications. �

Community
registry

User
application

Find a data
mining service,
and somewhere
to store data

1 Handles for
miner and
database
factories

2

I want to create a
personal database
containing data on
E.coli metabolism

Miner
factory

Miner

Create
instance

4

Compute service provider

Database
factory

Database

Storage service provider

Create miner
service with
lifetime 10

3

Create miner
service with
lifetime 1000

3

Query5

Query5

Keepalive6

Results6
Keepalive6

Results6

Bio
database

1

Database
service

Bio
database

n

Database
service

……

Create
instance

4

Figure 3. OGSA data
mining example.
The user contacts
a registry, which
returns handles
identifying miner
and database facto-
ries. User requests
to those factories
result in the
creation of a miner
service, which initi-
ates queries against
remote databases—
in effect, now act-
ing as a client on
the user’s behalf—
and a database ser-
vice that stores the
mining results.

Acknowledgments
We thank Karl Czajkowski, Jeffrey Frey, Steve

Graham, Thomas Sandholm, Jarek Gawor, John
Bresnahan, Ravi Madduri, and Peter Lane for their
many contributions to the Open Grid Services
Architecture. We also thank the many colleagues
who provided helpful comments on versions of this
paper, particularly Malcolm Atkinson, Brian
Carpenter, Andrew Grimshaw, Keith Jackson, Bill
Johnston, Kate Keahey, Gregor von Laszewski,
Miron Livny, Norman Paton, Jean-Pierre Prost,
and Von Welch. This work was supported in part
by the Mathematical, Information, and Compu-
tational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, US
Department of Energy, under Contract W-31-109-
Eng-38; by the National Science Foundation; by
the NASA Information Power Grid program; and
by IBM.

References
1. I. Foster and C. Kesselman, eds., The Grid: Blueprint

for a New Computing Infrastructure, Morgan Kauf-
mann, San Francisco, 1999.

2. W.E. Johnston, D. Gannon, and B. Nitzberg, “Grids
as Production Computing Environments: The Engi-
neering Aspects of NASA’s Information Power Grid,”
Proc. 8th Int’l Symp. High-Performance Distributed
Computing (HPDC8); http://www.computer.org/
proceedings/hpdc/0287/02870034abs.htm (current
June 2002).

3. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy
of the Grid: Enabling Scalable Virtual Organizations,”
Int’l J. High-Performance Computing Applications,
vol. 15, no. 3, 2001, pp. 200-222; http://www.globus.
org/research/papers/anatomy.pdf (current June 2002).

4. I. Foster et al., “The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems
Integration,” tech. report, Glous Project; http://www.
globus.org/research/papers/ogsa.pdf (current June
2002).

5. S. Graham et al., Building Web Services with Java:
Making Sense of XML, SOAP, WSDL, and UDDI,
Sams Technical Publishing, Indianapolis, Ind., 2001.

6. E. Christensen et al., “Web Services Description Lan-
guage (WSDL) 1.1,” W3C Note, 15 Mar. 2001; http://
www.w3.org/TR/wsdl (current June 2002).

7. C. Catlett and L. Smarr, “Metacomputing,” Comm.
ACM, June 1992, pp. 44-52.

8. M. Shapiro, “SOS: An Object-Oriented Operating
System—Assessment and Perspectives,” Computing
Systems, vol. 2, no. 4, 1989, pp. 287-337.

9. A.S. Grimshaw and W.A. Wulf, “The Legion Vision
of a Worldwide Virtual Computer,” Comm. ACM,
vol. 40, no. 1, 1997, pp. 39-45.

10. S Raman and S. McCanne, “A Model, Analysis, and
Protocol Framework for Soft State-Based Commu-
nication,” Computer Communication Rev., vol. 29,
no. 4, 1999, pp. 15-25.

11. N.W. Paton et al., “Database Access and Integration
Services on the Grid,” tech. report UKeS-2002-3, Na-
tional e-Science Centre; http://www.nesc.ac.uk, 2002.

12. M. Livny, “High-Throughput Resource Manage-
ment,” The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, San Francisco,
1999.

Ian Foster is a senior scientist and associate direc-
tor of the Mathematics and Computer Science Divi-
sion at Argonne National Laboratory, a professor
of computer science at the University of Chicago
and a Senior Fellow in the Computation Institute
at the University of Chicago. His research interests
include distributed and collaborative computing
and computational science. Foster received a PhD
in computer science from Imperial College, Lon-
don. He is a member of the ACM and the Ameri-
can Association for the Advancement of Science.
Contact him at foster@mcs.anl.gov.

Carl Kesselman is a senior project leader at the
University of Southern California’s Information
Sciences Institute. His research interests include dis-
tributed computing and networking. Kesselman
received a PhD in computer science from the Uni-
versity of California at Los Angeles. He is a mem-
ber of the IEEE. Contact him at carl@isi.edu.

Steven Tuecke is a software architect in the Dis-
tributed Systems Laboratory in the Mathematics
and Computer Science Division at Argonne
National Laboratory and a Fellow in the Compu-
tation Institute at the University of Chicago.
Tuecke is also the codirector of the Global Grid
Forum Security area. He received a BA in mathe-
matics and computer science from St. Olaf College.
Contact him at tuecke@mcs.anl.gov.

Jeffrey M. Nick, an IBM Fellow and Director of
Advanced Systems Architecture working in Pough-
keepsie, New York, is chief architect for IBM’s Pro-
ject eLiza and Grid computing initiative. He is a
member of the IBM Academy of Technology. Nick
received a BS in computer science from Marist Col-
lege. Contact him at jnick@us.ibm.com.

46 Computer

