
Planning for workflow construction and maintenance on the Grid

Jim Blythe, Ewa Deelman, Yolanda Gil

USC Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292 USA
{blythe,deelman,gil}@isi.edu

Abstract
We describe an implemented grid planner that has been
used to compose workflows and schedule tasks on a
computational Grid to solve scientific problems. We then
discuss two issues that will demand further attention to
make Grid and web service planners a reality. First, the
planner must interact not only with external services that
are to be composed in the final workflow, but also with
external reasoners or knowledge bases containing
information that is needed for the planning task, for
example resource constraints and policies. Second, the
planning system must provide for monitoring and re-
planning strategies in order to manage the execution of a
workflow in a dynamic environment.

Introduction

Grid computing (Foster & Kesselman 99, Foster et al.
01) promises users the ability to harness the power of
large numbers of heterogeneous, distributed resources:
computing resources, data storage systems, instruments
etc. The vision is to enable users and applications to
seamlessly access these resources to solve complex large-
scale problems. Scientific communities ranging from
high-energy physics (GriPhyN 02), gravitational-wave
physics (Deelman et al. 02), geophysics (SCEC 02),
astronomy (Annis et al. 02), to bioinformatics (NPACI
02) are embracing Grid computing to manage and
process large data sets, execute scientific simulations and
share both data and computing resources. Scientific, data
intensive applications, such as those outlined above are
no longer being developed as monolithic programs.
Instead, standalone application components are
combined to process the data in various ways. The
applications can now be viewed as complex workflows,
which consist of various transformations performed on
the data. For example, in astronomy, workflows with
thousands of tasks need to be executed during the
identification of galaxy clusters within the Sloan Digital
Sky Survey (Annis et al. 02). Because of the large
amounts of computation and data involved, these
workflows require the power of the Grid to execute
efficiently.

The goal of our work is to automate this workflow
generation process as much as possible. Ideally, a user

should be able to request data by simply submitting an
application-level description of the desired data product.
The Grid infrastructure should then be able to generate a
workflow by selecting appropriate application
components, assigning the required computing resources
and overseeing the successful execution. This mapping
should be optimized based on criteria such as
performance, reliability and resource use. We cast
workflow generation as a planning problem, where the
goals are the desired data products and the operators are
the application components.

The application of planning to the Grid has much in
common with web services planning, with its emphasis
on composing tasks that are executed on shared,
distributed resources, and there is also convergence on
the representation of services (Foster et al. 02). Some
differences from other web service planning approaches
may be found in our current emphasis on Grid
applications for scientific and high-performance
computing, so that a set of hosts within a virtual
organization may be available to execute a component
application, and users are highly motivated to provide
correct models of these components. In addition, we use
the middleware infrastructure provided in Grid
environments such as Globus (Globus 02) for resource
and data discovery and for execution support.

In the next section we give a short overview of the Grid
environment that we use and describe an example
application that has driven our work. Next we describe
how we have modeled workflow construction for this
application as a planning problem, focusing on the
integration of the planner with the Grid. In the following
section we discuss how the distributed nature of task and
service knowledge on the Grid and the web impacts the
design of planners for these environments. Next we
discuss approaches for allocating hosts to workflows on
the grid, when host availability may change during the
execution of the workflow.

Overview of Grid environments

Grid environments such as Globus include middleware
services that enable users to obtain information about the
available resources, component software, data files, and
the execution environment. This section describes
several of these services, which we have used as sources

I n
te

r
fe

ro
m

e
te

r

raw channelsraw channels

Single Frame

Short
Fourier
Transform

Store

Hz

Time

Hz

Time

Time-frequency
Image

Find Candidate e
D

Extract
frequency
range

Construct
image

30 minutesIn
te

r
fe

ro
m

e
te

r
I n

te
r
fe

ro
m

e
te

r

raw channelsraw channels

Single Frame

raw channelsraw channels

Single Frame

Short
Fourier
Transform

Store

Hz

Time

Hz

Time

Time-frequency
Image

Find Candidate e
D

Extract
frequency
range

Construct
image

Store

Hz

Time

Hz

Time

Time-frequency
Image

Find Candidate e
D

Extract
frequency
range

Construct
image

30 minutes

Figure 2: The path of computations required for a pulsar
search.

of knowledge for our system. More details can be found
in (Deelman et al 03a; Deelman et al 03b).

In Grid environments, an application component (e.g., a
Fast Fourier Transform or FFT) can be implemented in
different source files, each compiled to run in a different
type of target architecture. Both executable files and
data files can be replicated in various locations, helping
to reduce execution time. Each file has a description of
its contents in terms of application-specific metadata. A
distinction is made between “logical” file descriptions,
which uniquely identify the application component or
data, and “physical” file descriptions, which in addition
uniquely specify the location and name of a specific file.
The Metadata Catalog Service (MCS) (Chervenak et al.
02b) responds to queries based on application-specific
metadata and returns the logical names of files containing
the required data, if they already exist. Given a logical
file name that uniquely identifies a file without specifying
a location, the Replica Location Service (RLS)
(Chervenak et al. 02a) can be used to find physical
locations for the file on the Grid.

The Grid execution environment includes computing and
storage resources with diverse capabilities. A specific
application may require (possibly indicated in its
metadata description) a certain type of resource for
execution, for example the existence of certain number of
nodes to efficiently parallelize its execution. Executing
applications with minimal overhead may require
specifying which of the job queues available in the host
is more appropriate. The Monitoring and Discovery
service (MDS) (Czajkowski et al 01) allows the discovery
and monitoring of resources on the Grid. Resource
matchmakers find resources appropriate to the
requirements of application components.

Jobs that are completely specified for execution are sent
to schedulers that manage the resources and monitor
execution progress. Condor-G and DAGMan (Frey et al.
01) can be used to request a task to be executed on a
resource. Condor-G adds an individual task to a
resource’s queue, while DAGMan can manage the
execution of a partially-ordered workflow by waiting for
a task’s parents to be completed before scheduling a task.

Given that the planning system decides for the user
where to generate the data and what software and input
files to use, it is very important to provide the user and
others accessing this derived data with its provenance
information, or how the data arrived at its current form.
To achieve this, we have integrated our system with the
Chimera Virtual Data System (Annis et al. 02). Our
system generates a Virtual Data Language description of
the products produced in the workflow. Chimera uses this
description to populate its database with the relevant
provenance information.

Scenario: LIGO pulsar search

We have applied this approach in the context of the Laser
Interferometer Gravitational Wave Observatory (LIGO),

and we use this application to illustrate the work. We
have focused on a specific LIGO problem: pulsar search,
shown in Figure 2, where Grid resources are required to
search for evidence of gravitational waves possibly
emitted by pulsars. The data needed to conduct the
search is a long sequence (~4 months, 2x1011 points) of a
single channel—the gravitational wave strain channel
observed at the LIGO instrument. The output from the
observatory is in small segments of many channels that
are stacked to make a large frequency-time image,
perhaps 4x105 on each side. The pulsar search looks for
coherent signals in this image.

The pulsar search is both computation and data intensive
and requires more resources than those available within
the LIGO Scientific Collaboration. In order to take
advantage of the Grid resources, LIGO’s existing
analysis tools were integrated into the Grid environment.
The pulsar search conducted at SC 2002 used LIGO’s
data collected during the first scientific run of the
instrument and targeted a set of 1000 locations of known
pulsars as well as random locations in the sky. The
results of the analysis were made available to LIGO
scientists through the Grid.

Modeling the task as a planning problem

The problem of assigning a set of coordinated tasks in a
workflow and allocating the tasks to available resources
is formulated as an AI planning problem as follows. Each
application component that may take part in the
workflow is modeled as a planning operator. The effects
and preconditions of the operators reflect two sources of
information: data dependencies between the program
inputs and outputs, and resource constraints on the
programs, both hardware and software required to run
them.

The planner imposes a partial order on the tasks that is
sufficient for execution because it models their input and
output data dependencies: if the prerequisites of a task
are completed before the task is scheduled, then the

information required to run the associated program will
be available. Transferring files across the network is also
modeled with a planning operator, so any data movement
required is accounted for. The data dependencies
between tasks are modeled both in terms of metadata
descriptions of the information and in terms of files used
to represent the data in the system. Metadata
descriptions, for example a first-order logic predicate that
denotes the result of a pulsar search in a fixed point in
the sky across a fixed range of frequencies and at a fixed
time, allow the user to specify requests for information
without specific knowledge of programs or file systems,
with the planner filling in the details of the request. Since
the operators also model the files that are created and
used by a program, the planner knows how the
information is accessed and stored. It can then reason
about how tasks can share information, and plan for
moving information about the network. The planner’s
representation of information and files is kept up to date
with the state of the Grid, so that its plans are both
efficient and directly executable, as we describe below.

The planning operators also model constraints on the
resources required to perform the desired operations.
Hardware constraints may include a particular machine
type, minimum physical memory or hard disk space
available, or the presence of a certain number of nodes in
a distributed-memory cluster. Software constraints may
include the operating system and version, the presence of
scheduling software on the host machine and the
presence of support environments, for example to run
Java. In our work on the LIGO scenario, it was sufficient
to model requirements on the scheduling software
present, because of the close relationship between the
software and the hardware configurations of the
machines involved. More recently, we have described
different hardware requirements on operators using the
CIM model (CIM, 02).
The initial state given as input to the planner captures
information from several sources:

1. Hardware resources available to the user
described using the CIM ontology, and estimates
of bandwidths between the resources.

2. Relevant data files that have already been created
and their locations.

Our aim is for this information to be extracted
automatically. At present, some is automatically
extracted and some is hand-coded, as we describe below.

The goal given to the planner usually represents a meta-
data request for information and a location on the
network where the data should be available. If there is a
preference, the goals can also be used to specify
programs or host machines to be used, for intermediate
or final steps.

In addition to operators, an initial state and goals, our
implemented workflow planner also uses search control
rules, to help it quickly find good solutions based on
preferences for resources and component operators, and
to help it search the space of all plans more efficiently in
order to find high-quality plans given more search time.
For more details on the planning domain specification

and its implementation, see (Blythe et al. 03a; Blythe et
al. 03b).

Integration with the Grid environment
We now describe in more detail the integration of the
planning system with existing Grid services. The use of
the planner can be divided into three phases: preparing
the input problem specification for the planner, practical
considerations for using AI planning in this problem
domain, and interpreting the output plan as an executable
workflow.

Two modules shown in Figure 3 provide input for the
planner: the Current State Generator, which produces the
initial state description, and the Request Manager, which
produces the goal description from a user request. The
Current State Generator makes use of two tools that have
been independently built for the Grid: the Metadata
Catalog Service and the Replica Location Service.

Given knowledge of which data products already exist
and where they are located, the planner can choose
whether to transfer existing data across the network or re-
create it closer to the point where it is needed. This
choice is made either by search control heuristics or by
simulating a number of plans and picking the one with
the best expected run time.

An important design decision in our current
implementation was whether to encode information about
all possible required data products in the initial state
before planning begins, or allow the planner to query for
the existence of data products while planning. Although
the planner is capable of making these queries, we chose
to gather the information before planning because the
potentially large number of queries about files can then
be combined, reducing bandwidth and the load on the
MCS and RLS. The data products to be queried are
decided by the Current State Generator based on the goal
description. This could be done through a static analysis
of the planning operators, but is currently hard-coded.

Once the file information is retrieved, it is sent to the AI
planner, along with the goal from the Request Manager.
The planner merges this information with a static file
describing available resources to create the initial state
and goals used for planning. Our aim in the near future is
to use the Globus Monitoring and Discovery Service to
retrieve information about computer hosts, rather than
use a static file, and also to use the Network Weather
Service (Wolski 97) to retrieve timely information about
bandwidth estimates between resources. We also intend
to use a metadata service to retrieve information about
Grid users including their preferences and their access to
resources.

The planning operators are stored separately. We are
currently investigating ways to generate the operators
from metadata and resource information about the
application components.

Current state
generator

MCS

RLS

MDS

Request
manager

AI planner

VDL
generator

Submission
generator

for Condor - G

DAGMan
submission and

monitoring

Chimera Transformation
catalog

Condor - G
scheduler

Intelligent workflow generation
system Metadata attributes

Logical file names

Physical file names

User info

DAGMan
files

Resource
description

Figure 3: Architecture of the planning system and its
interactions with other Grid-based services.

Synthesizing planning knowledge from
distributed sources

Planning systems have typically made the assumption
that all the required information is stored in local files or
memory throughout the duration of the planning task.
Examples of systems that relax this assumption include
those that reason about uncertainty (Boutilier et al. 99,
Blythe 99) or work in teams and communicate with their
peers (Tambe et al. 99). Similar information gathering in
web services was explored in the Optop planner
(McDermott 02). In these cases, however, the action
models are assumed to be fixed, as are the domain
modeling primitives for state descriptions, goals and plan
metrics. Web service and Grid planners that integrate
resource discovery must work with a set of operators that
may change as resources are discovered or become
unavailable. We expect that domain modeling primitives
will also be dynamic when these planners reason with
distributed sources of knowledge about constraints and
preferences associated with tasks, resources and users.

The impact that this will have on planners has been little
discussed in the literature to this point. However it will
have a significant effect both on architectural choices for

web or grid enabled planning systems and also on
appropriate planning algorithms and the guarantees they
can provide. Here we briefly discuss why and how
planning knowledge may be distributed, and the issues
that are presented for planning systems.

Relevant knowledge for a planning episode, including
constraints and preferences as well as object-level
information, is likely to be stored at several different
locations based both on the distributed execution
environment and on the different kinds of knowledge
being stored. On the grid, for example, services that
allow a task to be scheduled on a host machine are
independent of the task that is to be run: rather, they
accept and schedule arbitrary tasks as long as the
executable can be addressed. Thus, in order for a
planning system to reason about a task allocated to a host
using a single operator, information from at least two
separate sources, about tasks and about hosts, must be
combined to produce the operator description. While the
planner could in principle enter a dialog with each host to
decide where each task can be allocated, it will be
necessary for the planner to reason declaratively about
the host constraints to perform efficiently. Figure 4
describes other sources of knowledge that are relevant
during the process of composing and executing a
workflow.

Figure 4: Sources of knowledge that must be combined
by a workflow planner and execution monitor.

Knowledge about host usage policies will be stored by
each available host and made available through a
discovery process. Currently, most policy information on
the Grid is typically not codified, but informally known
to users and built implicitly into scripts or other
representations that are used to compose tasks. In our
initial working LIGO application, for example, available
hosts are declared by the user and automatically added to
the planner’s initial state when the planner starts.

Resource policies, once encoded, are likely to be
represented in a constraint or rule-based format that is
independent of any particular planning system, e.g.
(Tangmunarunkit et al. 03). There are two ways a
planning component could handle knowledge represented
in such a format. First, it may be possible to re-write the
rules or constraints into the planner’s internal format. For

Task
selector

Resource
selector

Plan
monitor

Planner Task
requirements

Available
resources

Resource
policies

Existing data
products

Network
bandwidth

Resource
queues

User
policies

example, suppose we have a collection of rules, each of
which can conclude separately that a user can access a
resource. Each could be represented as an operator that
adds this conclusion, and the conclusion could be made a
precondition of all operators that assign tasks to
resources. This approach clearly requires a mapping from
the semantics of the rule or constraint representation into
the planner’s reasoning capabilities. This mapping must
not only adequately capture the inferential power of the
representation, but must also allow any object-level
information that is accessed by the policy reasoner to be
represented in the planner. If this can be done, however,
it has the advantage that the planner can reason about
aspects of policy as they arise in the context of the
problem, propagating and reformulating constraints as
needed.

An alternative approach is to have the planner access an
external knowledge service that answers queries based on
the policy rules. This approach has the advantage that no
mapping is required, so the planner can make use of a
knowledge-based policy system even if we are ignorant
of the representation and inference schemes that it uses.
However, this approach may have efficiency problems
because (1) the planner may need to post a large number
of queries as it performs search and (2) the planner may
rely on regression techniques, for example, that are not
supported by such a query interface.

We intend to explore these two approaches for
integrating planners with heterogeneous reasoners and
knowledge bases distributed in a Grid or on the web. It is
quite likely that a combination of both approaches will be
used. A large body of work in the semantic web
(Berners-Lee et al. 01) aims to allow knowledge to be
shared between different reasoners, and representations
to share rule-based knowledge and operator knowledge
are becoming well used (Ankolekar et al. 01), however
the implications of these approaches for planning systems
has not been studied.

Workflow scheduling and maintenance

A complete planning-based solution for Grid or web
services composition must address execution as well as
construction of workflows. Grid and web planning
systems make decisions in dynamic environments in
which the services that are composed as part of a plan
may become unavailable during its execution. Clearly, a
successful workflow system must include a plan
monitoring component, that checks the availability of a
service on a host when or before a task is due to be run
on it, and re-submits to an alternative host if necessary.
Two metrics of workflow execution are the reliability of
the workflow, measured for example as the average
number of times a job fails and must be re-submitted, and
the expected execution time. In this section we first
discuss processor allocation in static environments, and
then extend to dynamic environments.

Finding an optimal allocation of processors for tasks in a
workflow is NP-hard (Papadimitriou and Yannakis 90)
and tools must focus on finding reasonable heuristics or
on identifying families of problems that can be solved
efficiently. On many current Grid-based systems, an
abstract workflow is first created as a DAG whose nodes
represent tasks, with a directed edge from task T1 to T2 if
T1 must be completed before T2 begins. No allocation of
tasks to machines is made in the abstract DAG, however,
and a separate service, for example DAGMan (Frey et al.
01) is used to schedule tasks on machines, making a local
decision for each task as it becomes ready to be executed.
The default rule in DAGMan is greedy, scheduling the
most expensive task on the best available processor at
each decision point.

This is a reasonable default, but the local decision rule
can lead to arbitrarily poor assignments of tasks.
Consider the abstract DAG shown in Figure 5, with three
tasks. Task A and B can be started immediately, and task
C can be started after task B ends. Task A will take 3
time units, task B will take 1 and task C will take 5.
Suppose there are two processors available, one (called
fast) that takes the times as shown to make a computation
and one (called slow) that takes twice the time. Using the
default local rule, a scheduler would allocate task A to
processor fast and tasks B and C to processor slow. This
allocation will take 12 time units to complete. The
optimal allocation uses processor fast for tasks B and C
and takes 6 time units. An identical argument can be
made to show that one must reason about the whole DAG
in order to allocate processors to optimize for reliability,
if each processor has a different, stationary probability of
failure over a given time interval.

Figure 5. An abstract DAG showing three tasks and their
execution times. Arrows point upwards, meaning that
lower tasks must be completed before higher tasks in the
DAG are started.

The above argument makes use of the parallelism in the
DAG. Even if a workflow is completely serialized,
however, a greedy allocation may be poor if the tasks are
coupled in other ways. For example, if the tasks will be
performed in order A, B, C and a user can use at most 5
time units on the fast processor, a greedy scheduler might
allocate the fast processor to tasks A and B, leaving task
C to the slow processor and resulting in a total execution
time of 14, while the best is 13. In a more faithful model,

 Start

B (1)

C (5)

A (3)

Finish

where each task can only be run on a subset of the
available machines, the greedy approach may lead the
scheduler to fail to complete a workflow that can be
completed within the resource limitations. When we also
consider the amount of data that needs to be transferred
between tasks, bandwidth differences create
dependencies between machines that lead to similar non-
local effects. Finally, all these considerations are made
for a single DAG, however there may be alternative
compositions of services to achieve the same goal,
leading to multiple possible DAGs, any of which might
lead to the optimal allocation.

Exhaustive search would of course find the optimal
allocation for problem descriptions that model machines
with different speeds that can accept different subsets of
tasks and have different user access polices and network
connections with different bandwidths. However, this can
quickly become intractable even in a static environment
where host availability and idle times do not change. In a
dynamic environment, the system needs to make time-
dependent decisions when an initial workflow allocation
is found to be inappropriate during execution. For this
reason, a two-phase approach has been widely used, in
which an abstract allocation of some sort is created
before execution and used to guide online processor
allocation during execution.

Within this framework, many tradeoffs are possible
between the amount of time spent in each of the phases,
and the way that the initial structure guides online
allocation decisions. We have already discussed the use
of DAGMan with abstract workflows, which is an
example of this approach. Another example is provided
by clustering techniques in processor allocation in
multiprocessors (Liou and Palis 97).

In this approach, before execution it is assumed that tasks
can run on any host, that there is a constant finite
bandwidth between any two different hosts and that all
hosts are equally fast. These assumptions work well for
allocating tasks on a multiprocessor, for which the
approach was developed. It is also assumed that the
number of available processors is unknown before
execution. The initial structure is a clustering of tasks in
the DAG, such that tasks in the same cluster will be
performed on the same processor. For example in the
DAG in Figure 5, with a non-zero communication cost
between Tasks B and C, the optimal clustering will be
{A} and {B, C}.

When the DAG is to be executed, processors are
allocated to clusters rather than individual tasks. If there
are more clusters than processors, a greedy approach can
be used to merge clusters attempting to balance processor
load or communication traffic. For the DAG in Figure 5
and the two processors discussed earlier, a greedy
allocation method would assign the cluster containing
tasks B and C to the fast processor, yielding the optimal
allocation. In general, it is NP-hard to find an optimal
clustering, so heuristics are used. The optimal clustering
may not lead to the optimal processor allocation, since
constraints on processors and non-uniform bandwidths

have been ignored until the time of execution, when
decisions are made locally.

Clustering is an interesting approach to dividing the
computational effort between reasoning before execution
and reasoning during execution. Essentially it ignores
availability of non-uniform processors before execution,
but considers the DAG’s critical path and task
communication requirements. We plan to further explore
the tradeoffs in the division of labor in a two-phase
planning and processor allocation approach. For
example, in full-ahead planning, the structure created
before execution is a fully specified candidate plan,
created by our planner following local heuristics and
trying as many alternative global solutions as time
allows. At execution time, the processor specified for a
task is used if available, and a greedy substitution is
made otherwise. This approach has the advantage that it
reasons about the whole workflow to allocate processors
and the concrete plan is very fast to use if it is still
appropriate. However, re-planning is likely to be required
more often than with more abstract initial structures. An
interesting problem is how to compile the dependencies
that might be found between tasks during global
reasoning into constraints that can be applied locally
when re-planning is done.

A similar tradeoff between initial plan structures and
execution is discussed in (Jonsson et al. 00) for the RAX
system. Their theoretical treatment is very general,
however in the implemented system, the initial structure
is completely specified except for temporal intervals,
leading to an approach similar to full-ahead planning.

Conclusions

Planning for grid applications has many similarities with
web services planning as well as widely-used middleware
infrastructures such as Globus. Our implemented system
for planning on the grid offers a platform grounded in
real daily applications that can be used to explore the
decision space for both architecture and algorithms for
planning systems on the grid. In this paper we described
two key issues that need to be addressed in the near
future: interaction of planners with other reasoning KBs
or services, and workflow monitoring and maintenance
on the Grid. We are interested both in developing sound
principles for web and grid planners and in putting useful
AI-based systems in the hands of grid users, and look
forward to many other challenges in this exciting area.

Acknowledgements

We gratefully acknowledge helpful discussions on these
topics with our colleagues, including Carl Kesselman,
Hongsuda Tangmunarunkit and Karan Vahi. This
research was supported in part by the National Science
Foundation under grants ITR-0086044 (GriPhyN) and
EAR-0122464 (SCEC/ITR), and in part by an internal
grant from USC’s Information Sciences Institute.

References

J. Annis, Y. Zhao, J. Voeckler, M. Wilde, S. Kent, and I.
Foster, "Applying Chimera Virtual Data Concepts to
Cluster Finding in the Sloan Sky Survey," Technical
Report GriPhyN-2002-05, 2002.
Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O.,
Martin, D., McIlraith, S., Narayanan, S., Paolucci, M.,
Payne, T., Sycara, K., Zeng, H., DAML-S: Semantic
Markup for Web Services, Proceedings of the
International Semantic Web Working Symposium
(ISWWS), 2001.
Annis, J., Zhao, Y., Voeckler, J., Wilde, M., Kent, S. and
Foster, I., Applying Chimera Virtual Data Concepts to
Cluster Finding in the Sloan Sky Survey. in
Supercomputing. 2002. Baltimore, MD.
Berners-Lee, T., James Hendler and Ora Lassila. "The
Semantic Web" Scientific American, May 2001.
Blythe, J. "Decision-Theoretic Planning," AI Magazine,
vol. 20, 1999.
Blythe, J., Deelman, E., Gil, Y., Kesselman, C., Agarwal,
A., Mehta, G., Vahi, K., The Role of Planning in Grid
Computing, in Proc. Intl. Conf. on AI Planning and
Scheduling, (ICAPS) 2003
Blythe, J., Deelman, E., Gil, Y., Kesselman, C.
Transparent Grid Computing: a Knowledge-Based
Approach, Proc. Innovative Applications of Artificial
Intelligence Conference (IAA) 2003
Boutilier, C., Dean, T., Hanks, S., Decision-Theoretic
Planning: Structural Assumptions and Computational
Leverage, Journal of Artificial Intelligence Research, 11,
1-94, 1999.
Chervenak, A., E. Deelman, I. Foster, L. Guy, W.
Hoschek, A. Iamnitchi, C. Kesselman, P. Kunst, M.
Ripenu, B. Schwartzkopf, H. Stockinger, K. Stockinger,
B. Tierney (2002). Giggle: A Framework for
Constructing Scalable Replica Location Services. in
Supercomputing. 2002. Baltimore, MD.
CIM, 2002,
http://www.dmtf.org/standards/standard_cim.php
Chervenak, A., Deelman, E., Kesselman, C., Pearlman,
L. and Singh, G., A Metadata Catalog Service for Data
Intensive Applications. 2002, GriPhyN technical report,
2002-11.
Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman,
C., Grid Information Services for Distributed Resource
Sharing. in 10th IEEE International Symposium on High
Performance Distributed Computing. 2001: IEEE Press.
Deelman, E., J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, K. Blackburn, A. Lazzarini, A. Arbree, R.
Cavanaugh and S. Koranda, "Mapping Abstract Complex
Workflows onto Grid Environments", Journal of Grid
Computing, vol. 1, 2003
E. Deelman, K. Blackburn, P. Ehrens, C. Kesselman, S.
Koranda, A. Lazzarini, G. Mehta, L. Meshkat, L.
Pearlman, K. Blackburn, and R. Williams., "GriPhyN
and LIGO, Building a Virtual Data Grid for Gravitational
Wave Scientists," 11th Intl Symposium on High
Performance Distributed Computing, 2002.

Deelman, E., et al., From Metadata to Execution on the
Grid: The Pegasus Pulsar Search. 2003, GriPhyN 2003-
15.
I. Foster and C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann,
1999.
I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of
the Grid: Enabling Scalable Virtual Organizations,"
International Journal of High Performance Computing
Applications, vol. 15, pp. 200-222, 2001
Foster, I., Kesselman, C., Nick, J., Truecke, S., The
physiology of the grid: an open grid services architecture
for distributed systems integration. Open Grid Service
Infrastructure WG, Global Grid Forum, 2002
Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke,
S., Condor-G: A Computation Management Agent for
Multi-Institutional Grids. in 10th International
Symposium on High Performance Distributed
Computing. 2001: IEEE Press.
Globus, 2002 www.globus.org
GriPhyN 2002, www.griphyn.org.
Jonsson, A., Morris, P., Muscettola, N., Rajan, K., Smith,
B., Planning in interplanetary space: theory and practice,
International Conference on Artificial Intelligence
Planning Systems, (AIPS) 2000
Liou, J. and Palis, M. A comparison of general
approaches to multiprocessor scheduling, International
Parallel Processing Symposium (IPPS) 1997
McDermott, D. "Estimated-Regression Planning for
Interactions with Web Services". in Sixth International
Conference on Artificial Intelligence Planning Systems,
(AIPS) 2002.
McIlraith, S. and Son, T., “Adapting Golog for
Composition of Semantic Web Services”. in Eighth
International Conference on Knowledge Representation
and Reasoning, 2002
NPACI 2002, "Telescience,
https://gridport.npaci.edu/Telescience/."
Papadimitriou, C. and Yannakis, M., Towards an
architecture-independent analysis of parallel algorithms,
SIAM J. on Computing, 19:2 (1990), 322-328
Tambe, M., Adibi, J., Alonaizon, Y., Erdem, A.,
Kaminka, G., Marsella, S. and Muslea, I. Building agent
teams using an explicit teamwork model and learning.
Artificial Intelligence, volume 110, pages 215-240, 1999.
SCEC 2002. Southern California Earthquake Center's
Community Modeling Environment,
http://www.scec.org/cme/.
Tangmunarunkit, H., Decker, S., Kesselman, C.
Ontology-based Resource Matching---The Grid meets the
Semantic Web. Semantics in Peer2Peer and Grid
Computing Workshop, International World Wide Web
Conference, 2003.

