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Abstract 
We describe an implemented grid planner that has been 
used to compose workflows and schedule tasks on a 
computational Grid to solve scientific problems. We then 
discuss two issues that will demand further attention to 
make Grid and web service planners a reality. First, the 
planner must interact not only with external services that 
are to be composed in the final workflow, but also with 
external reasoners or knowledge bases containing 
information that is needed for the planning task, for 
example resource constraints and policies. Second, the 
planning system must provide for monitoring and re-
planning strategies in order to manage the execution of a 
workflow in a dynamic environment. 

Introduction    

Grid computing (Foster & Kesselman 99, Foster et al. 
01) promises users the ability to harness the power of 
large numbers of heterogeneous, distributed resources: 
computing resources, data storage systems, instruments 
etc. The vision is to enable users and applications to 
seamlessly access these resources to solve complex large-
scale problems. Scientific communities ranging from 
high-energy physics (GriPhyN 02), gravitational-wave 
physics (Deelman et al. 02), geophysics (SCEC 02), 
astronomy (Annis et al. 02), to bioinformatics (NPACI 
02) are embracing Grid computing to manage and 
process large data sets, execute scientific simulations and 
share both data and computing resources. Scientific, data 
intensive applications, such as those outlined above are 
no longer being developed as monolithic programs. 
Instead, standalone application components are 
combined to process the data in various ways. The 
applications can now be viewed as complex workflows, 
which consist of various transformations performed on 
the data. For example, in astronomy, workflows with 
thousands of tasks need to be executed during the 
identification of galaxy clusters within the Sloan Digital 
Sky Survey (Annis et al. 02). Because of the large 
amounts of computation and data involved, these 
workflows require the power of the Grid to execute 
efficiently. 
 
The goal of our work is to automate this workflow 
generation process as much as possible. Ideally, a user 
                                                 
 
 

should be able to request data by simply submitting an 
application-level description of the desired data product. 
The Grid infrastructure should then be able to generate a 
workflow by selecting appropriate application 
components, assigning the required computing resources 
and overseeing the successful execution. This mapping 
should be optimized based on criteria such as 
performance, reliability and resource use. We cast 
workflow generation as a planning problem, where the 
goals are the desired data products and the operators are 
the application components. 
 
The application of planning to the Grid has much in 
common with web services planning, with its emphasis 
on composing tasks that are executed on shared, 
distributed resources, and there is also convergence on 
the representation of services (Foster et al. 02). Some 
differences from other web service planning approaches 
may be found in our current emphasis on Grid 
applications for scientific and high-performance 
computing, so that a set of hosts within a virtual 
organization may be available to execute a component 
application, and users are highly motivated to provide 
correct models of these components. In addition, we use 
the middleware infrastructure provided in Grid 
environments such as Globus (Globus 02) for resource 
and data discovery and for execution support. 
 
In the next section we give a short overview of the Grid 
environment that we use and describe an example 
application that has driven our work. Next we describe 
how we have modeled workflow construction for this 
application as a planning problem, focusing on the 
integration of the planner with the Grid. In the following 
section we discuss how the distributed nature of task and 
service knowledge on the Grid and the web impacts the 
design of planners for these environments. Next we 
discuss approaches for allocating hosts to workflows on 
the grid, when host availability may change during the 
execution of the workflow. 

Overview of Grid environments 

Grid environments such as Globus include middleware 
services that enable users to obtain information about the 
available resources, component software, data files, and 
the execution environment.  This section describes 
several of these services, which we have used as sources 
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Figure 2: The path of computations required for a pulsar 
search. 
 

of knowledge for our system. More details can be found 
in (Deelman et al 03a; Deelman et al 03b). 
 
In Grid environments, an application component (e.g., a 
Fast Fourier Transform or FFT) can be implemented in 
different source files, each compiled to run in a different 
type of target architecture.  Both executable files and 
data files can be replicated in various locations, helping 
to reduce execution time.  Each file has a description of 
its contents in terms of application-specific metadata.  A 
distinction is made between “logical” file descriptions, 
which uniquely identify the application component or 
data, and “physical” file descriptions, which in addition 
uniquely specify the location and name of a specific file.  
The Metadata Catalog Service (MCS) (Chervenak et al. 
02b) responds to queries based on application-specific 
metadata and returns the logical names of files containing 
the required data, if they already exist. Given a logical 
file name that uniquely identifies a file without specifying 
a location, the Replica Location Service (RLS) 
(Chervenak et al. 02a) can be used to find physical 
locations for the file on the Grid.  
 
The Grid execution environment includes computing and 
storage resources with diverse capabilities.  A specific 
application may require (possibly indicated in its 
metadata description) a certain type of resource for 
execution, for example the existence of certain number of 
nodes to efficiently parallelize its execution. Executing 
applications with minimal overhead may require 
specifying which of the job queues available in the host 
is more appropriate.  The Monitoring and Discovery 
service (MDS) (Czajkowski et al 01) allows the discovery 
and monitoring of resources on the Grid.  Resource 
matchmakers find resources appropriate to the 
requirements of application components.  
 
Jobs that are completely specified for execution are sent 
to schedulers that manage the resources and monitor 
execution progress.  Condor-G and DAGMan (Frey et al. 
01) can be used to request a task to be executed on a 
resource. Condor-G adds an individual task to a 
resource’s queue, while DAGMan can manage the 
execution of a partially-ordered workflow by waiting for 
a task’s parents to be completed before scheduling a task. 
 
Given that the planning system decides for the user 
where to generate the data and what software and input 
files to use, it is very important to provide the user and 
others accessing this derived data with its provenance 
information, or how the data arrived at its current form. 
To achieve this, we have integrated our system with the 
Chimera Virtual Data System (Annis et al. 02). Our 
system generates a Virtual Data Language description of 
the products produced in the workflow. Chimera uses this 
description to populate its database with the relevant 
provenance information. 

Scenario: LIGO pulsar search 
 
We have applied this approach in the context of the Laser 
Interferometer Gravitational Wave Observatory (LIGO), 

and we use this application to illustrate the work. We 
have focused on a specific LIGO problem: pulsar search, 
shown in Figure 2, where Grid resources are required to 
search for evidence of gravitational waves possibly 
emitted by pulsars. The data needed to conduct the 
search is a long sequence (~4 months, 2x1011 points) of a 
single channel—the gravitational wave strain channel 
observed at the LIGO instrument.  The output from the 
observatory is in small segments of many channels that 
are stacked to make a large frequency-time image, 
perhaps 4x105 on each side. The pulsar search looks for 
coherent signals in this image. 
 
The pulsar search is both computation and data intensive 
and requires more resources than those available within 
the LIGO Scientific Collaboration. In order to take 
advantage of the Grid resources, LIGO’s existing 
analysis tools were integrated into the Grid environment. 
The pulsar search conducted at SC 2002 used LIGO’s 
data collected during the first scientific run of the 
instrument and targeted a set of 1000 locations of known 
pulsars as well as random locations in the sky. The 
results of the analysis were made available to LIGO 
scientists through the Grid. 
 

Modeling the task as a planning problem 

The problem of assigning a set of coordinated tasks in a 
workflow and allocating the tasks to available resources 
is formulated as an AI planning problem as follows. Each 
application component that may take part in the 
workflow is modeled as a planning operator. The effects 
and preconditions of the operators reflect two sources of 
information: data dependencies between the program 
inputs and outputs, and resource constraints on the 
programs, both hardware and software required to run 
them. 
 
The planner imposes a partial order on the tasks that is 
sufficient for execution because it models their input and 
output data dependencies: if the prerequisites of a task 
are completed before the task is scheduled, then the 



information required to run the associated program will 
be available. Transferring files across the network is also 
modeled with a planning operator, so any data movement 
required is accounted for. The data dependencies 
between tasks are modeled both in terms of metadata 
descriptions of the information and in terms of files used 
to represent the data in the system. Metadata 
descriptions, for example a first-order logic predicate that 
denotes the result of a pulsar search in a fixed point in 
the sky across a fixed range of frequencies and at a fixed 
time, allow the user to specify requests for information 
without specific knowledge of programs or file systems, 
with the planner filling in the details of the request. Since 
the operators also model the files that are created and 
used by a program, the planner knows how the 
information is accessed and stored. It can then reason 
about how tasks can share information, and plan for 
moving information about the network. The planner’s 
representation of information and files is kept up to date 
with the state of the Grid, so that its plans are both 
efficient and directly executable, as we describe below. 
 
The planning operators also model constraints on the 
resources required to perform the desired operations. 
Hardware constraints may include a particular machine 
type, minimum physical memory or hard disk space 
available, or the presence of a certain number of nodes in 
a distributed-memory cluster. Software constraints may 
include the operating system and version, the presence of 
scheduling software on the host machine and the 
presence of support environments, for example to run 
Java. In our work on the LIGO scenario, it was sufficient 
to model requirements on the scheduling software 
present, because of the close relationship between the 
software and the hardware configurations of the 
machines involved. More recently, we have described 
different hardware requirements on operators using the 
CIM model (CIM, 02). 
The initial state given as input to the planner captures 
information from several sources: 

1. Hardware resources available to the user 
described using the CIM ontology, and estimates 
of bandwidths between the resources. 

2. Relevant data files that have already been created 
and their locations. 

Our aim is for this information to be extracted 
automatically. At present, some is automatically 
extracted and some is hand-coded, as we describe below.  
 
The goal given to the planner usually represents a meta-
data request for information and a location on the 
network where the data should be available. If there is a 
preference, the goals can also be used to specify 
programs or host machines to be used, for intermediate 
or final steps. 
 
In addition to operators, an initial state and goals, our 
implemented workflow planner also uses search control 
rules, to help it quickly find good solutions based on 
preferences for resources and component operators, and 
to help it search the space of all plans more efficiently in 
order to find high-quality plans given more search time. 
For more details on the planning domain specification 

and its implementation, see (Blythe et al. 03a; Blythe et 
al. 03b). 

Integration with the Grid environment 
We now describe in more detail the integration of the 
planning system with existing Grid services. The use of 
the planner can be divided into three phases: preparing 
the input problem specification for the planner, practical 
considerations for using AI planning in this problem 
domain, and interpreting the output plan as an executable 
workflow. 
 
Two modules shown in Figure 3 provide input for the 
planner: the Current State Generator, which produces the 
initial state description, and the Request Manager, which 
produces the goal description from a user request. The 
Current State Generator makes use of two tools that have 
been independently built for the Grid: the Metadata 
Catalog Service and the Replica Location Service. 
 
Given knowledge of which data products already exist 
and where they are located, the planner can choose 
whether to transfer existing data across the network or re-
create it closer to the point where it is needed. This 
choice is made either by search control heuristics or by 
simulating a number of plans and picking the one with 
the best expected run time. 
 
An important design decision in our current 
implementation was whether to encode information about 
all possible required data products in the initial state 
before planning begins, or allow the planner to query for 
the existence of data products while planning. Although 
the planner is capable of making these queries, we chose 
to gather the information before planning because the 
potentially large number of queries about files can then 
be combined, reducing bandwidth and the load on the 
MCS and RLS. The data products to be queried are 
decided by the Current State Generator based on the goal 
description. This could be done through a static analysis 
of the planning operators, but is currently hard-coded. 
 
Once the file information is retrieved, it is sent to the AI 
planner, along with the goal from the Request Manager. 
The planner merges this information with a static file 
describing available resources to create the initial state 
and goals used for planning.  Our aim in the near future is 
to use the Globus Monitoring and Discovery Service to 
retrieve information about computer hosts, rather than 
use a static file, and also to use the Network Weather 
Service (Wolski 97) to retrieve timely information about 
bandwidth estimates between resources. We also intend 
to use a metadata service to retrieve information about 
Grid users including their preferences and their access to 
resources.  
 
The planning operators are stored separately. We are 
currently investigating ways to generate the operators 
from metadata and resource information about the 
application components. 
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Figure 3: Architecture of the planning system and its 
interactions with other Grid-based services. 
 
 

Synthesizing planning knowledge from 
distributed sources 

Planning systems have typically made the assumption 
that all the required information is stored in local files or 
memory throughout the duration of the planning task. 
Examples of systems that relax this assumption include 
those that reason about uncertainty (Boutilier et al. 99, 
Blythe 99) or work in teams and communicate with their 
peers (Tambe et al. 99). Similar information gathering in 
web services was explored in the Optop planner 
(McDermott 02). In these cases, however, the action 
models are assumed to be fixed, as are the domain 
modeling primitives for state descriptions, goals and plan 
metrics. Web service and Grid planners that integrate 
resource discovery must work with a set of operators that 
may change as resources are discovered or become 
unavailable. We expect that domain modeling primitives 
will also be dynamic when these planners reason with 
distributed sources of knowledge about constraints and 
preferences associated with tasks, resources and users.  
 
The impact that this will have on planners has been little 
discussed in the literature to this point. However it will 
have a significant effect both on architectural choices for 

web or grid enabled planning systems and also on 
appropriate planning algorithms and the guarantees they 
can provide. Here we briefly discuss why and how 
planning knowledge may be distributed, and the issues 
that are presented for planning systems. 
 
Relevant knowledge for a planning episode, including 
constraints and preferences as well as object-level 
information, is likely to be stored at several different 
locations based both on the distributed execution 
environment and on the different kinds of knowledge 
being stored. On the grid, for example, services that 
allow a task to be scheduled on a host machine are 
independent of the task that is to be run: rather, they 
accept and schedule arbitrary tasks as long as the 
executable can be addressed. Thus, in order for a 
planning system to reason about a task allocated to a host 
using a single operator, information from at least two 
separate sources, about tasks and about hosts, must be 
combined to produce the operator description.  While the 
planner could in principle enter a dialog with each host to 
decide where each task can be allocated, it will be 
necessary for the planner to reason declaratively about 
the host constraints to perform efficiently. Figure 4 
describes other sources of knowledge that are relevant 
during the process of composing and executing a 
workflow. 
 
 

 
Figure 4: Sources of knowledge that must be combined 
by a workflow planner and execution monitor. 
 
Knowledge about host usage policies will be stored by 
each available host and made available through a 
discovery process. Currently, most policy information on 
the Grid is typically not codified, but informally known 
to users and built implicitly into scripts or other 
representations that are used to compose tasks. In our 
initial working LIGO application, for example, available 
hosts are declared by the user and automatically added to 
the planner’s initial state when the planner starts.  
 
Resource policies, once encoded, are likely to be 
represented in a constraint or rule-based format that is 
independent of any particular planning system, e.g. 
(Tangmunarunkit et al. 03). There are two ways a 
planning component could handle knowledge represented 
in such a format. First, it may be possible to re-write the 
rules or constraints into the planner’s internal format. For 
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example, suppose we have a collection of rules, each of 
which can conclude separately that a user can access a 
resource. Each could be represented as an operator that 
adds this conclusion, and the conclusion could be made a 
precondition of all operators that assign tasks to 
resources. This approach clearly requires a mapping from 
the semantics of the rule or constraint representation into 
the planner’s reasoning capabilities. This mapping must 
not only adequately capture the inferential power of the 
representation, but must also allow any object-level 
information that is accessed by the policy reasoner to be 
represented in the planner. If this can be done, however, 
it has the advantage that the planner can reason about 
aspects of policy as they arise in the context of the 
problem, propagating and reformulating constraints as 
needed. 
 
An alternative approach is to have the planner access an 
external knowledge service that answers queries based on 
the policy rules. This approach has the advantage that no 
mapping is required, so the planner can make use of a 
knowledge-based policy system even if we are ignorant 
of the representation and inference schemes that it uses. 
However, this approach may have efficiency problems 
because (1) the planner may need to post a large number 
of queries as it performs search and (2) the planner may 
rely on regression techniques, for example, that are not 
supported by such a query interface.  
 
We intend to explore these two approaches for 
integrating planners with heterogeneous reasoners and 
knowledge bases distributed in a Grid or on the web. It is 
quite likely that a combination of both approaches will be 
used. A large body of work in the semantic web 
(Berners-Lee et al. 01) aims to allow knowledge to be 
shared between different reasoners, and representations 
to share rule-based knowledge and operator knowledge 
are becoming well used (Ankolekar et al. 01), however 
the implications of these approaches for planning systems 
has not been studied. 
 

Workflow scheduling and maintenance  

A complete planning-based solution for Grid or web 
services composition must address execution as well as 
construction of workflows. Grid and web planning 
systems make decisions in dynamic environments in 
which the services that are composed as part of a plan 
may become unavailable during its execution. Clearly, a 
successful workflow system must include a plan 
monitoring component, that checks the availability of a 
service on a host when or before a task is due to be run 
on it, and re-submits to an alternative host if necessary. 
Two metrics of workflow execution are the reliability of 
the workflow, measured for example as the average 
number of times a job fails and must be re-submitted, and 
the expected execution time. In this section we first 
discuss processor allocation in static environments, and 
then extend to dynamic environments. 
 

Finding an optimal allocation of processors for tasks in a 
workflow is NP-hard (Papadimitriou and Yannakis 90) 
and tools must focus on finding reasonable heuristics or 
on identifying families of problems that can be solved 
efficiently. On many current Grid-based systems, an 
abstract workflow is first created as a DAG whose nodes 
represent tasks, with a directed edge from task T1 to T2 if 
T1 must be completed before T2 begins. No allocation of 
tasks to machines is made in the abstract DAG, however, 
and a separate service, for example DAGMan (Frey et al. 
01) is used to schedule tasks on machines, making a local 
decision for each task as it becomes ready to be executed. 
The default rule in DAGMan is greedy, scheduling the 
most expensive task on the best available processor at 
each decision point. 
 
This is a reasonable default, but the local decision rule 
can lead to arbitrarily poor assignments of tasks. 
Consider the abstract DAG shown in Figure 5, with three 
tasks. Task A and B can be started immediately, and task 
C can be started after task B ends. Task A will take 3 
time units, task B will take 1 and task C will take 5. 
Suppose there are two processors available, one (called 
fast) that takes the times as shown to make a computation 
and one (called slow) that takes twice the time. Using the 
default local rule, a scheduler would allocate task A to 
processor fast and tasks B and C to processor slow. This 
allocation will take 12 time units to complete. The 
optimal allocation uses processor fast for tasks B and C 
and takes 6 time units. An identical argument can be 
made to show that one must reason about the whole DAG 
in order to allocate processors to optimize for reliability, 
if each processor has a different, stationary probability of 
failure over a given time interval. 

 
Figure 5. An abstract DAG showing three tasks and their 
execution times. Arrows point upwards, meaning that 
lower tasks must be completed before higher tasks in the 
DAG are started.  
 
The above argument makes use of the parallelism in the 
DAG. Even if a workflow is completely serialized, 
however, a greedy allocation may be poor if the tasks are 
coupled in other ways. For example, if the tasks will be 
performed in order A, B, C and a user can use at most 5 
time units on the fast processor, a greedy scheduler might 
allocate the fast processor to tasks A and B, leaving task 
C to the slow processor and resulting in a total execution 
time of 14, while the best is 13. In a more faithful model, 
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where each task can only be run on a subset of the 
available machines, the greedy approach may lead the 
scheduler to fail to complete a workflow that can be 
completed within the resource limitations. When we also 
consider the amount of data that needs to be transferred 
between tasks, bandwidth differences create 
dependencies between machines that lead to similar non-
local effects. Finally, all these considerations are made 
for a single DAG, however there may be alternative 
compositions of services to achieve the same goal, 
leading to multiple possible DAGs, any of which might 
lead to the optimal allocation. 
 
Exhaustive search would of course find the optimal 
allocation for problem descriptions that model machines 
with different speeds that can accept different subsets of 
tasks and have different user access polices and network 
connections with different bandwidths. However, this can 
quickly become intractable even in a static environment 
where host availability and idle times do not change. In a 
dynamic environment, the system needs to make time-
dependent decisions when an initial workflow allocation 
is found to be inappropriate during execution. For this 
reason, a two-phase approach has been widely used, in 
which an abstract allocation of some sort is created 
before execution and used to guide online processor 
allocation during execution.  
 
Within this framework, many tradeoffs are possible 
between the amount of time spent in each of the phases, 
and the way that the initial structure guides online 
allocation decisions. We have already discussed the use 
of DAGMan with abstract workflows, which is an 
example of this approach. Another example is provided 
by clustering techniques in processor allocation in 
multiprocessors (Liou and Palis 97). 
 
In this approach, before execution it is assumed that tasks 
can run on any host, that there is a constant finite 
bandwidth between any two different hosts and that all 
hosts are equally fast. These assumptions work well for 
allocating tasks on a multiprocessor, for which the 
approach was developed. It is also assumed that the 
number of available processors is unknown before 
execution. The initial structure is a clustering of tasks in 
the DAG, such that tasks in the same cluster will be 
performed on the same processor. For example in the 
DAG in Figure 5, with a non-zero communication cost 
between Tasks B and C, the optimal clustering will be 
{A} and {B, C}. 
 
When the DAG is to be executed, processors are 
allocated to clusters rather than individual tasks. If there 
are more clusters than processors, a greedy approach can 
be used to merge clusters attempting to balance processor 
load or communication traffic. For the DAG in Figure 5 
and the two processors discussed earlier, a greedy 
allocation method would assign the cluster containing  
tasks B and C  to the fast processor, yielding the optimal 
allocation. In general, it is NP-hard to find an optimal 
clustering, so heuristics are used. The optimal clustering 
may not lead to the optimal processor allocation, since 
constraints on processors and non-uniform bandwidths 

have been ignored until the time of execution, when 
decisions are made locally. 
 
Clustering is an interesting approach to dividing the 
computational effort between reasoning before execution 
and reasoning during execution. Essentially it ignores 
availability of non-uniform processors before execution, 
but considers the DAG’s critical path and task 
communication requirements. We plan to further explore 
the tradeoffs in the division of labor in a two-phase 
planning and processor allocation approach. For 
example, in full-ahead planning, the structure created 
before execution is a fully specified candidate plan, 
created by our planner following local heuristics and 
trying as many alternative global solutions as time 
allows. At execution time, the processor specified for a 
task is used if available, and a greedy substitution is 
made otherwise. This approach has the advantage that it 
reasons about the whole workflow to allocate processors 
and the concrete plan is very fast to use if it is still 
appropriate. However, re-planning is likely to be required 
more often than with more abstract initial structures. An 
interesting problem is how to compile the dependencies 
that might be found between tasks during global 
reasoning into constraints that can be applied locally 
when re-planning is done. 
 
A similar tradeoff between initial plan structures and 
execution is discussed in (Jonsson et al. 00) for the RAX 
system. Their theoretical treatment is very general, 
however in the implemented system, the initial structure 
is completely specified except for temporal intervals, 
leading to an approach similar to full-ahead planning. 
 

Conclusions 

Planning for grid applications has many similarities with 
web services planning as well as widely-used middleware 
infrastructures such as Globus. Our implemented system 
for planning on the grid offers a platform grounded in 
real daily applications that can be used to explore the 
decision space for both architecture and algorithms for 
planning systems on the grid. In this paper we described 
two key issues that need to be addressed in the near 
future: interaction of planners with other reasoning KBs 
or services, and workflow monitoring and maintenance 
on the Grid. We are interested both in developing sound 
principles for web and grid planners and in putting useful 
AI-based systems in the hands of grid users, and look 
forward to many other challenges in this exciting area. 
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