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Abstract 
 

The increasingly common practice of replicating 
datasets and using resources as distributed data stores in Grid 
environments has led to the problem of determining which 
replica can be accessed most efficiently.  Because of diverse 
performance characteristics and load variations of several 
components in the end-to-end path linking these various 
locations, selecting a replica from among many requires 
accurate prediction information of the data transfer times 
between the sources and sinks. 

In this paper we present a prediction system that is 
based on combining end-to-end application throughput 
observations and network load variations, capturing whole-
system performance and variations in load patterns, 
respectively. We develop a set of regression models to derive 
predictions that characterize the effect of network load 
variations on file transfer times. We apply these techniques to 
the GridFTP data movement tool, part of the Globus 
Toolkit™, and observe performance gains of up to 10% in 
prediction accuracy when compared with approaches based on 
past system behavior in isolation. 
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1. Introduction 
 

As the coordinated use of distributed resources, or Grid 
computing, becomes more commonplace, basic resource usage 
is changing. Many recent applications use Grid systems as 
distributed data stores [DataGrid02, GriPhyN02, HSS00, 
LIGO02, MMR+01, NM02, TPW+00], where pieces of large 
datasets are replicated over several sites.  For example, several 
high-energy physics experiments have agreed on a tiered Data 
Grid architecture [Holtman00, HJS+00] in which all data 
(approximately 20 petabytes by 2006) is located at a single 
Tier 0 site; various (overlapping) subsets of this data are 
located at national Tier 1 sites, each with roughly one-tenth the 
capacity; smaller subsets are cached at smaller Tier 2 regional 
sites; and so on.  Therefore, any particular dataset is likely to 
have replicas located at multiple sites.  

More often, these datasets are replicated for performance 
or proximity reasons. Variations in performance characteristics 
among these replica locations are bound to exist because of 

different architectures, network connectivity, network traffic, 
and system load. Thus, users may want to be able to determine 
the site from which particular datasets can be retrieved most 
efficiently, especially as datasets of interest tend to be large 
(1–1000 MB).  It is this replica selection problem that we 
address in this paper. 

One way a more intelligent replica selection can be 
achieved is by having replica locations expose performance 
information about past data transfers, which can then be used 
to predict future behavior between the sites involved. In 
previous work [VSF02], we examined the use of logs of past 
data transfers of large files to predict future behavior. The 
results had errors on average of about 20%, because of the 
sporadic nature of the transfers and the lack of current 
information about the network conditions.  

In this paper we examine the use of another data stream, 
lightweight regular sensors, and combine this information with 
past observations for better predictions. We develop a 
predictive framework that combines infrequent but very 
accurate end-to-end GridFTP [AFN+01] file transfer data with 
frequent Network Weather Service [Wolski98] small probe 
data. Since these values are correlated, we use regressive 
techniques to combine the two data. We analyze several 
approaches that use different data filling techniques, and we 
show a 5–10% improvement in prediction error over a small 
wide-area testbed.  
 
2. Related and Previous Work 
 

Our goal is to obtain an accurate prediction of file transfer 
times between a storage system and a client.  Achieving this 
can be challenging because numerous devices are involved in 
the end-to-end path between the source and the client, and the 
performance of each (shared) device along the end-to-end path 
may vary in unpredictable ways. 

One approach to predicting this information is to construct 
performance models for each system component (CPUs at the 
level of cache hits and disk access, networks at the level of the 
individual routers, etc.) and then use these models to determine 
a schedule for all data transfers [SC00], similar to classical 
scheduling [Adve93, Cole89, Crovella99, ML90, CQ93, 
Schopf97, TB86, ZLP96]. In practice, however, it is often 
unclear how to combine this data to achieve accurate end-to-
end measurements. Also, since system components are shared, 
their behavior can vary in unpredictable ways [SB98]. Further, 



    

modeling individual components in a system will not capture 
the significant effects these components have on each other, 
thereby leading to inaccuracies [GT99].  

Alternatively, observations from past application 
performance of the entire system can be used to predict end-to-
end behavior, which is typically what is of interest to the user.  
This technique is used by Downey [Downey97] and Smith et. 
al., [SFT98] to predict queue wait times and by numerous tools 
(Network Weather Service [Wolski98], NetLogger 
[NetLogger97], Web100 [Web100Project02], iperf [TF01], 
and Netperf [Jones02]) to predict the network behavior of 
small file transfers. 

A substantial difference in performance can arise between 
a small NWS probe (lightweight with 64 KB size) and an 
actual file transfer using GridFTP (with tuned TCP buffers and 
parallelism). We show this in Figure 1, which depicts 64 KB 
NWS measurements that indicate that the bandwidth is about 
0.3 MB/sec, and end-to-end GridFTP measurements, that 
indicate a significantly higher transfer rate. In this case, the 
NWS by itself is not sufficient to predict end-to-end GridFTP 
throughput. In addition, we see a much larger variability in  
GridFTP measurements, ranging from 1.5 to 10.2 MB/sec (due 
to different transfer sizes and also load variations in the end-to-
end components), so that it is unlikely that a simple data 
transformation will improve the resulting prediction. 

 

Figure 1:  LBL-ANL GridFTP (approximately 400
transfers at irregular intervals) end-to-end
bandwidth and NWS (approximately 1,500 probes
every five minutes) probe bandwidth for the two-
week August’01 dataset.

3.1. GridFTP and NWS Data Streams 
 
GridFTP [AFN+01] is part of the Globus Toolkit™  

[FK98] and is widely used as a secure, high-performance data 
transfer protocol [AFN+01, CFK+01, DataGrid02, GriPhyN02, 
SS01]. It extends standard FTP implementations with several 
features needed in Grid environments, such as security, parallel 
transfers, partial file transfers, and third party transfers.  

In [VSF02], we analyzed the use of GridFTP data in 
isolation by developing a series of predictors to predict transfer 
times. We observed a 15–24% error on average. While the log 
data used for the predictions reflected the end-to-end path 
accurately, the sporadic nature of large data transfers meant 
that often there was no data available about current conditions. 
A similar effect was addressed by Faerman et.al., [FSW+99] 
using the NWS and adaptive linear regression models  for the 
Storage Resource Broker [BMR+98] and SARA [SARA02]. 
That work compared transfer times obtained from a raw 
bandwidth model (Transfer-Time = 
ApplicationDataSize/NWS-Probe-Bandwidth, with 64 KB 
NWS probes) with predictions from regression models and 
observed accuracy improvements ranging from 20% to almost 
100% for the sites examined.  

We instrumented the GridFTP server to log the source 
address, file name, file size, number of parallel streams, 
stripes, TCP buffer size for the transfer, start and end 
timestamps, nature of the operation (read/write), and logical 
volume to and from which file was transferred [VSF02]. The 
GridFTP data measures the end-to-end application throughput, 
including component overheads, and is gathered only when a 
file is transferred between two sites. 

The Network Weather Service monitors the behavior 
of various resource components by sending out probes at 
regular intervals [Wolski98]. NWS sensors exist for 
components such as CPU, disk, and network. Of interest to us 
is the network bandwidth sensor that uses small, lightweight, 
periodic probes (64 KB) to estimate the current network 
throughput.  

In this paper we consider similar techniques for GridFTP 
but extend the body of work by considering multiple data 
filling techniques (instead of throwing away the non-matching 
data, as described in Section 3.3.2) and regression models 
ranging from linear to quartic (polynomial) to improve 
prediction accuracy.  

 
3.2. Correlation  
 

The first step in analyzing whether a combination of 
data streams will result in better predictions is to evaluate how 
highly correlated they are. The correlation coefficient is a 
measure of the linear relationship between two variables and 
can have a value between –1.0 and +1.0 depending on the 
strength of the relation. A coefficient near zero suggests that 
the variables may not be linearly related. However, they may 
exhibit nonlinear dependencies [Edwards84, OM88]. The 
correlation coefficient for GridFTP, (G), and NWS, (N), data is 
computed by using the formula 

 
3. Predicting GridFTP Throughput by Using 

Regression 
 

To obtain an accurate prediction for selecting replicas, we 
analyze the use of NWS bandwidth data in combination with 
GridFTP log data. In this section we describe the two 
monitoring approaches, an initial correlation test, and our 
regression techniques for predictions.  



    

3.3.1. Matching ∑NG – (∑N∑G/size) 
corr =       _______________   _______________  

In our datasets, two points from the two data sources 
rarely have the same timestamp. Therefore, before this data 
can be analyzed, the closest related pairs between the two data 
streams must be matched. For each GridFTP data point (TG, 
G), we match a corresponding NWS data point (TN, N), 
such that TN is the closest to TG, is established. By doing this, 
the pair (Ni,Gj) represents an observed end-to-end GridFTP 
bandwidth (Gj) resulting from a data transfer that occurred 
with the network probe value (Ni). At the end of the matching 
process the sequence looks like the following: 

√(∑G2 – (∑G)2/size)  √(∑N2 – (∑N)2/size) 
where “size” is the number of values in the data stream.  

We compute the rank-order correlation for each of our 
two-week datasets. Rank correlation provides a distribution-
free, nonparametric alternative to determine whether the 
observed correlation is significant. Rank correlation converts 
data to ranks by assigning a specific rank to each value in the 
data stream, as determined by the position of the value when 
the data stream is sorted. 

Figure 2 shows a tabulated listing of the 95% 
confidence interval for the correlation coefficients. The 
confidence interval denotes that the correlation for 95% of the 
sample falls within a certain upper and lower limit and is 
determined by obtaining a Fisher transformation (a normal 
distribution) for the coefficient, finding the standard error for 
the distribution and then computing the interval [Edwards84]. 
From the figure, we can infer the presence of a moderate 
correlation between GridFTP and NWS data streams, 
encouraging the application of several regression models on 
these two datasets. 

(Ni, Gj)(Ni+1, _)…(Ni+(k-1), _)( Ni+k, Gj+1), 
where Gj, and Gj+1 are two successive GridFTP file transfers 
and Ni, and Ni+k are NWS measurements that occurred in the 
same timeframe as the two GridFTP transfers. The sequence 
also consists of a number of NWS measurements between the 
two transfers for which there are no equivalent GridFTP 
values, such as (Ni+1, _). 
 

 

 
3.3. Regression Techniques and Algorithm 
 

Regression uses various models to support 
relationships between datasets and is a powerful tool that can 
be used to derive predictions. Regression provides techniques 
to study the impact of the independent variable NWS (N), on 
the dependent variable GridFTP (G). Additional processing on 
the data must be done, however, to result in the one-to-one 
mapping expected by these techniques. 

3.3.2 Filling-in Techniques 

 Aug’01 Dec’01 Jan’02 
 Upper Lower Upper Lower Upper Lower 
LBL-ANL 0.8 0.5 0.5 0.3 0.6 0.2 
LBL-UFL 0.7 0.5 0.7 0.4 0.6 0.1 
ISI-ANL 0.8 0.5 0.6 0.4 0.7 0.3 
ISI-UFL 0.9 0.4 0.6 0.2 0.5 0.1 
ANL-UFL 0.5 0.2 0.6 0.2 0.6 0.1 

 
Figure 2: 95% Confidence for the upper and lower 
limits of the rank-order correlation coefficient for 
the GridFTP and NWS datasets between four sites 
in our testbed. Denotes coefficients for our three 
datasets. 

(Ni, Gj)(Ni+1, GFill)…(Ni+(k-1), GFill)( Ni+k, Gj+1) 

Matched set

Filling-in Techniques
| NoFill | LV | Avg |

(Ni, Gj)(Ni+1, _)…(Ni+(k-1), _)( Ni+k, Gj+1) 

G

N
Match 
values 
close in 
time 

Limit set to “n” 
days worth of data 

Temporal Filter 

Regression Functions 
| Linear | Quadratic | Cubic | Quartic |

Prediction 

Figure 3: Algorithm for deriving predictions from
GridFTP (G) and NWS (N) data streams by using
regression techniques. 

 
Two successive GridFTP transfers are almost always 

interspersed with many NWS values, given the nature of these 
datasets. In the matched sequence above, these values are 
represented as (Ni+1, _)…(Ni+(k-1), _). Regression techniques 
expect a one-to-one mapping between NWS and GridFTP 
datasets, so we need mechanisms to compensate for the lack of 
sufficient GridFTP data. We use three techniques: NoFill, LV, 
and Avg. 

In Figure 3 we show the process we use to derive 
predictions. The key components are the two data sources (G 
and N), filling-in techniques, temporal filter, and the set of 
possible regression functions. Each dataset entry consists of a 
timestamp, the observed throughput value pair (TG, G) for 
GridFTP and (TN, N) for NWS.    
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(c) Last Value Filling (LV) 
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Figure 4: (a) Six measured successive GridFTP transfers and NWS observations during those transfers
between LBL and ANL (August 2001). (b) Discarding NWS values to match GridFTP transfers. Here (N26,
G2) denotes that the 26th NWS measurement and the 2nd GridFTP transfer occur in the same timeframe.
(C) Filling-in the last GridFTP value for NWS values between six successive file transfers. The graph
follows a step function. Actual transfers are shown along with the filling. (d) Average of previous
GridFTP transfers as a filling for NWS values. 



    

4. Results and Analysis I. Discard unaccounted NWS data (NoFill):  With no-fill we 
simply omit the unmatched NWS data. The drawback of this 
approach, shown in Figure 4b, is that we throw away useful 
data. This was the approach used in [FSW+99]. 

 
We evaluated the performance of our regression 

techniques on datasets collected over three distinct two-week 
durations: August 2001, December 2001, and January 2002. In 
the following sections we describe the experimental setup, 
prediction error calculations, and our results obtained from 
these datasets. 

 
II. Last Value filling (LV): In this approach we fill in the last 

GridFTP value for each unmatched NWS value, as shown in 
Figure 4c. 

  
III. Average filling (Avg): This is similar to the LV approach 

except that, instead of the last GridFTP value, an average 
over the past day’s worth of data transfers is computed and 
is used as a filling, as shown in Figure 4d. 

4.1. Experimental Setup 
 

Our experiments comprised controlled GridFTP 
transfers and NWS network sensor measurements between four 
sites in our testbed: Argonne National Laboratory (ANL), the 
University of Southern California Information Sciences 
Institute (ISI), Lawrence Berkeley National Laboratory (LBL) 
and the University of Florida at Gainesville (UFL).  

 
3.3.3. Temporal Filters 
 

Regression techniques can function over a variety of 
data sizes with differing results. We use a temporal filter to 
truncate the dataset, much in the same way as a sliding window 
is used in averages.  

GridFTP experiments included transfers comprising 
several file sizes ranging from 10 MB to 1 GB, performed at 
random time intervals within 12-hour periods. These transfers 
were performed with tuned TCP buffer settings (1 MB) and 
eight parallel streams to achieve enhanced throughput. Logs of 
these transfers were maintained at the respective sites and can 
be found at [Vazhkudai02]. In our previous work [VSF02] we 
observed that GridFTP throughput varied with transfer file 
sizes, and thus we grouped several file sizes into categories:  
0–50 MB as 10M, 50–250 MB as 100M, 250–750 MB as 
500M, and more than 750 MB as 1G, based on the achievable 
bandwidth, for the sites we examined. Our results in the next 
section are based on these settings. 

 
3.3.4 Regression Models 
   

After this preprocessing, a set of pairs is fed to the 
regression function to calculate the coefficients necessary to 
obtain predictions. We use regression models ranging from 
linear to quartic to account for diverse relations between 
variables. 

Linear regression attempts to build linear models 
between NWS (N) and GridFTP (G) data. We constructed a 
linear model between the two variables N and G as follows: 
G|=a+bN, where G| is the prediction of the observed value of G 
for the corresponding value of N. The coefficients a and b are 
calculated based on a regression function that accounts for 
previous Ns and Gs, using the method of least squares. The 
regression coefficient a is calculated by using the formula 

Configuring NWS among a set of resources involves 
setting up a nameserver and memory to which sensors at 
various sites can register and log measurements [Wolski98]. In 
our experiments, we used ANL as a registration and memory 
resource. NWS network monitoring sensors between these 
sites were setup to measure bandwidth every five minutes with 
64 KB probes. a = Mean(G) – b * Mean(N) 

while the coefficient b is calculated by using the formula The accuracy of a regression function depends on the 
size of the dataset, which can be minimal initially. For this 
reason we use a training set of 15 GridFTP and NWS data 
points so the regression function can adjust. 

∑NG – (∑N∑G/size) 
          b= 
       ∑G2 – (∑G)2/size   
where “size” is the total number of values in the dataset  
[Edwards84]. 

 
4.2. Performance 

To improve prediction accuracy, we also developed a 
set of nonlinear models adding polynomial terms to the linear 
equation. For instance, a quadratic model is as follows: 
G|=a+b1N+b2N2; cubic and quartic models have additional 
terms b3N

3 and b4N
4, respectively. Similar to the linear model 

the coefficients in quadratic, cubic, and quartic models b2, b3, 
and b4 are computed by using the method of least squares. 
Adding polynomial terms to the regression model can reach a 
saturation point (no significant improvement in prediction 
accuracy observed), suggesting that a particular model 
sufficiently captures the relationship between the two variables 
[OM88, Pankratz91]. 

 
In this section we discuss the performance of our 

regressive techniques, compare the various approaches used to 
account for network data, compare linear and nonlinear 
models, and analyze the effect of window sizes on prediction 
error. We use our August 2001 dataset to illustrate these 
points. Complete results for all our datasets can be found at 
[Vazhkudai02]. 

We calculate the prediction accuracy using the 
normalized percentage error calculation  
 
 

 



    

  ∑ | MeasuredBW – PredictedBW | 
         % Error =          * 100 

 Figures 7 through 10 study the effect of filling in 
techniques for various transfer sizes. We show our predictions 
for various site pairs and for several file sizes, highlighting the 
fact that our predictors work well for several transfer sizes. For 
almost all transfer sizes, filling-in techniques performed better 
than discarding network data. We observe error rate 
improvements of up to 10% when we use last value (LV) or 
average (Avg) filling as against simply discarding (NoFill) 
NWS data or using past predictors. 

(size * MeanBW) 
where “size” is the total number of predictions and the 
MeanBW, is the average measured GridFTP throughput.  

In Figure 5, we show the average performance (based 
on all transfer sizes) for our predictors. We compare the 
normalized percent errors for predictors based on past GridFTP 
behavior and predictors based on linear regression between our 
various site pairs. For our datasets, we consistently observed a 
5 to 10% improvement in prediction accuracy when regression 
techniques with LV or AVG filling were used. Regression with 
NoFill provides us with no significant improvement when 
compared with past predictors.  
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Figure 7: Prediction accuracy using filling-in
techniques for all file transfers between LBL and
ANL.
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Figure 8: Prediction accuracy using filling-in
techniques for all file transfers between ISI and
ANL. 



    

For our datasets, we observed no noticeable 
improvement in prediction accuracy by using polynomial 
models for our site pairs. Figure 11 shows the performance of 
linear, quadratic, cubic, and quartic regression models for 
various transfer sizes between LBL and ANL with Avg filling. 
All our models performed similarly. 
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We also studied the impact of different window sizes 
on regression error rates. In general, we observed that 
regression functions perform better with more data. Figure 12 
depicts regression with Avg filling over five days, over ten 
days, and over all the data. We noticed no substantial 
improvements, this is likely due to the fact that our datasets 
were collected over short durations. 
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Figure 9:  Prediction accuracy using filling-in
techniques for all file transfers between LBL and
UFL. 
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 Figure 12: Average filling (LBL-ANL) with
temporal windows of 5 days (Avg5d), 10 days
(Avg10d) and over all data (Avg).  

 
 
 
  

 
 
 

Figure 10: Prediction accuracy using filling-in
techniques for all file transfers between ISI and
UFL. 

5. Conclusion 
 

In this paper we have described the need for 
predicting the performance of GridFTP data transfers in the 
context of replica selection in Data Grids. This extends our 
previous work predicting transfer times based on past GridFTP 
behavior alone by extending it to compensate for the spondaic 
nature of large data transfers 
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We used regressive techniques between GridFTP and 
NWS network data streams to generate better predictions. By 
including information about current conditions, we saw a 
significant improvement in the resulting predictions. We used 
several data-filling techniques (NoFill, LV and Avg) and 
developed a set of regression models (linear, quadratic, cubic 
and quartic) to account for the relations between GridFTP and 
NWS data. With this approach, we obtained a 5-10% increase 
in prediction accuracy when compared with predictions based 
on only past GridFTP behavior. For our datasets, nonlinear 
regression offered no significant benefits. 

 
 
 
 

Figure 11: Average filling (LBL-ANL) for the
linear, quadratic, cubic, and quartic regression
models.  

As a next step, we plan to examine the effects of disk 
I/O load on application throughput using similar techniques 
explained in this paper. 
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