

A Decentralized, Adaptive Replica Location Mechanism

Matei Ripeanu 1

1 Computer Science Department,
The University of Chicago

matei@cs.uchicago.edu

Ian Foster 1,2

2 Mathematics and Computer Science Division
Argonne National Laboratory

foster@cs.uchicago.edu

Abstract

We describe a decentralized, adaptive mechanism for

replica location in wide-area distributed systems. Unlike
traditional, hierarchical (e.g, DNS) and more recent (e.g.,
CAN, Chord, Gnutella) distributed search and indexing
schemes, nodes in our location mechanism do not route
queries, instead, they organize into an overlay network
and distribute location information. We contend that this
approach works well in environments where replica
location queries are prevalent but the dynamic component
of the system (e.g., node and network failures, replica
add/delete operations) cannot be neglected.

We argue that a replica location mechanism that
combines probabilistic representations of replica location
information with soft-state protocols and a flat overlay
network of nodes brings important benefits: genuine
decentralization, low query latency, and flexibility to
introduce adaptive communication schedules.

We support these claims in two ways. First, we provide
a rough resource consumption evaluation: we show that,
for environments similar to those encountered in large
scientific data analysis projects, generated network traffic
is limited and, more importantly, is comparable to the
traffic generated by a request routing scheme. Second, we
provide encouraging performance data from a prototype
implementation.

1. Introduction

Wide-area distributed systems often replicate entities

in order to improve reliability, access latency, or
availability. As a result, these systems need mechanisms
for locating replicas, i.e., mechanisms for mapping a
replica identifier to the one or more replica locations. A
number of distributed systems require such location
mechanisms. For example, nodes participating in a
cooperative Internet proxy cache [1-3] must locate a
cached Web page given its URL, while nodes in a
distributed object system need to find an instantiation of
an object given an object handle [4]. These systems need

to scale to millions of replicated entities and hundreds of
sites at least, all while operating in dynamic environments
where network outages or site failures are to be expected.

A recent paper [5] introduces the replica location
problem in a Data Grid [6, 7]: given a unique logical
identifier for desired data content, we need a mechanism
to determine the physical locations of one or more copies
of this content. A slightly different semantic makes this
problem different from cooperative Internet caching: a
replica location mechanism for Data Grids might have to
serve requests for many or all replicas corresponding to a
given logical identifier. Requests for many (or N) replicas
might be generated by a brokering service searching for a
replica with suitable performance characteristics. Requests
for all replicas might be generated, for example, by a
service implementing file system functionalities.
However, in a distributed, asynchronous environment,
where nodes leave the system without warning, it is
impossible to provide a completely consistent system view
[8, 9] - and thus impossible to serve “all replicas” requests
reliably in a decentralized manner.

Giggle [5] contends that the performance of the overall
system benefits from relaxed consistency semantics at
lower system levels, and that stronger guarantees can be
added within the limited set of high-level components
requiring them. (For example, a versioning mechanism
can be used to handle file updates.) Therefore, a replica
location service designed in this context can adopt
inconsistency as a ‘modus-operandi’ and make tradeoffs
between inconsistency levels and operational costs.

In this article, we present a probabilistic approach to
the replica location problem and show that relaxed
consistency constraints allow for a decentralized,
low-latency, low-overhead solution. In contrast to
traditional hierarchical, (e.g., DNS) and recent distributed
search and indexing schemes (e.g., CAN, Chord,
Gnutella), nodes in our location mechanism do not route
queries but organize into an overlay network and
distribute location information. Each node that participates
in the distribution network builds, in time, a view of the
whole system and can answer queries locally without
forwarding requests. This straightforward design brings
benefits (e.g., reduced query latency, load sharing,

robustness, etc.) in environments such as GriPhyn’s [10]
large-scale data analysis projects. These environments are
characterized by high query rates and significant, albeit
lower, rates of replica creation and deletion, and node and
network failures. However, as an environment becomes
more dynamic and replica create/delete operations start to
prevail over queries, query-routing schemes might sa
better tradeoff.

Our replica location system design integrates three
techniques: a flat overlay network of nodes (to obtain
genuine decentralization and resilience when facing
network and node failures), probabilistic representations
of replica location information (to achieve important space
and bandwidth reductions), and soft-state protocols (to
decouple node state and achieve robustness). These are
well-known techniques; the merit of this paper is to put
them together in a flexible design and investigate
emerging synergies.

The rest of this paper is organized as follows. The next
section details the replica location problem requirements
and the terminology we use. Section 3 briefly presents
related work while Section 4 introduces the three
techniques we use to build the location mechanism.
Section 5 presents the replica location service as a whole
and Section 6 documents our experience to date in
building this service. We conclude in Section 7.

2. Replica location problem

In this section we briefly introduce the terminology

(mainly adopted from [5]) used throughout this paper, as
well as functional and performance requirements for a
replica location service.

2.1. Terminology

 A logical file name (LFN) is a unique logical

identifier for desired data content. The location service
must identify one or more physical copies (replicas) of the
logical file. Each physical copy is identified by a physical
file name (PFN), which specifies its location on a storage
site.

A number of storage sites (SS) collaborate to share
their storage capabilities to all users. A replica location
node (RLN) aggregates LFN to PFN mappings from one
or more SSs and collaborates with other RLNs to build a
distributed catalog of LFN mappings.

RLNs offer both a query interface to clients and a
registration interface that SSs can use enlist PFN to LFN
mappings for files stored locally. RNLs also organize into
a search network to allow remote searches. Nodes in this
network distribute compressed information on the set of
LFN mappings stored locally in the form of node digests.

2.2. Functional requirements

The main task of the location service is to find a

specified number of PFNs given a LFN. Requests might
contain multiple LFNs, and thus the location system
should also handle efficiently requests for PFNs
associated with ad-hoc sets of LFNs.

Below, we briefly enumerate other functional
requirements (documented extensively in [5]):
��Autonomy: Failure of various components (RLNs,

network outages) should not prevent the remaining
healthy parts of the system operate correctly.

��Best-effort consistency [11]: RLNs might have
incomplete and/or outdated views of the system. The
system tries to be eventually consistent, but only does
the best it can without impeding performance.

��Adaptiveness: Nodes get overloaded, networks get
congested, sometimes users get frantic and all submit
queries at the same time. Overall system performance
should degrade smoothly when facing bursts in
demand or the quality of resources used decays.

2.3. Scale requirements

The total numbers of files/replicas, the numbers of

storage sites and their geographical distribution, as well as
aggregated query and update rates ultimately determine
the design of the location mechanism. We use
requirements for high energy physics (HEP) data-analysis
projects [12, 13] as a realistic starting point.

The HEP community estimates an initial target of
500 million replicas to be kept track of by our system. (To
put things into perspective, note that Google indexes
2 billion documents, so we are on approximately the same
scale as the Web). Query and update rates estimates are
more likely to change but the current estimates are:
aggregate query rates 100,000 queries/sec (peak) and
10,000 queries/sec (average), with update rates one order
of magnitude lower.

The number of participating organizations and their
need to ‘own’ individual RLN for latency-hiding and/or
security or administrative reasons determines the total
number of RLNs. HEP projects estimate around two
hundred RLNs, but this number could easily grow larger.

3. Related work

Distributed search and indexing mechanisms have

been a topic of extensive research. The most relevant to
our current work are CAN [14], Chord [15], Tapestry
[16], Past [17], and Gnutella [18], in which queries are
routed through an overlay network. CAN, Chord,
Tapestry, and Past build structured, search-efficient
indexing structures that provide good scalability and

Figure 1: Bloom filter’s false positive rate vs. the
size of the filter. The plot presents (analytically obtained
data for) the variation of false positive rates with size of the
filter (bits/entry) for 2, 4, 8 or 16 perfect hash functions used.
Note that filter size can be traded for a higher false positive rate.

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

64321684
Filter size (bits/entry)

F
al

se
 p

os
it

iv
es

 r
at

e

16

8

4

2

search performance, although increasing the cost of file
and node insertion and removal. Gnutella does not use
indexing mechanisms; its relatively good search
performance (as measured in number of hops) is offset by
intensive network usage.

Compared to the above location schemes based on
query routing and forwarding, our system, based on
location information dissemination, makes an explicit
tradeoff: reduced query latency for increased memory
requirements at nodes. Additionally, one scheme or
another will generate more network traffic depending on
the ratio of query rates vs. system dynamic behavior
(replica add and delete rates).

Structured query routing schemes, similar to CAN or
Chord, are unsuitable mechanisms for our replica location
service for an additional reason: site autonomy requires
that a RLN and its associated local SSs serve local users
even when network outages disconnect the site from the
external Internet.

Cooperative Internet proxy-caches [1-3, 19] offer
comparable functionality to our location mechanism. A
cooperative proxy-cache receives requests for an URL and
locates one cached replica at other collaborating proxies
(unlike our replica location mechanism that might locate a
specified number of replicas). Hierarchical caching in
proxy servers has been extensively analyzed [2]. Two
distinct solutions that do not use hierarchies are Summary
Cache and the Cache Array Routing Protocol. Summary
Cache [19] uses Bloom filters (dubbed “cache
summaries”): each cache periodically broadcasts its
summary to all members of the distributed cache. We use
a similar scheme but, unlike nodes in a Summary Cache
that uses fixed communication schedules, RLNs use an
adaptive soft-start protocol to distribute node summaries
(or digests). The Cache Array Routing Protocol [20] uses
consistent hashing [21, 22] to partition the name space and
route requests. Site autonomy requirements prevent us
from using a similar solution in this context.

Although apparently similar, Content Distribution
Networks (CDNs) [23] face a different problem: in this
case individual nodes are not autonomous, a single
authority controls replication decisions and the request
forwarding mechanism.

4. Building blocks

This section details the three techniques on which our

replica location service design is built: (1) an overlay
network to obtain decentralization and reliability, (2)
compressed probabilistic representation of sets that bring
important space and bandwidth savings, and (3) soft-state
mechanisms to decouple node states.

4.1. Over lay network

Overlay networks have been used to implement

features unavailable at lower network layers, such as
multicast [24, 25] and security [26, 27]. A recent project
[28] shows that aggressively optimized custom routing
over an overlay network can significantly improve
performance and availability of network paths between
Internet hosts. The proven versatility and achieved scale
of P2P systems based on overlay networks (e.g., Gnutella,
FastTrack) provide another argument for using this
technique.

An additional argument for an overlay network is
reduced security overhead. In a traditional system, nodes
might need to authenticate at each message exchange. In
an overlay, nodes need to authenticate only when entering
the overlay and establishing a connection. Then, if
necessary, all traffic can be secured through an
application-level encryption scheme.

RLNs organize into an overlay network and distribute
compact, probabilistic representations of the set of LFNs
registered locally.

4.2. Compact set representation with Bloom filters

Bloom filters [29, 30] are compact data structures used

for probabilistic representation of a set in order to support
membership queries (“ Is element x in set Y?”). The cost of
this compact representation is a small rate of false
positives: the structure sometimes incorrectly recognizes
an element as a set member. We describe Bloom filters in

detail in the Appendix. However, to give a taste of
achievable compression rates, we note that a set of N
elements can be represented using 2N bytes with less than
0.1% false positive rates and lookup time of about 100� s.

In the rest of this paper, we borrow a term from the
cooperative Internet proxy caching community [1] and use
the term ‘node digest’ for the Bloom filter compressed
representation of the set of LFNs registered at a RLN.
Initially, RLNs multicast their digests. Updates are
handled via a combination of periodic multicasts of both
complete digests and shorter update messages. An
additional useful feature is that, when a node determines
that the available bandwidth is insufficient to keep up with
offered traffic, or when memory at a node is scarce,
digests can be further compressed (although with
precision loss) at intermediary nodes within the multicast
network (Figure 1). This strategy offers an elegant
mechanism for smooth QoS degradation when facing
bursts in demand.

In summary we use Bloom filters for their efficient
compression, low query overhead, incremental update
ability, and tunable size vs. false positive rates.

4.3. Soft-state updates

Generally in soft-state mechanisms [31, 32] a state

producer sends its state to one or more receivers over a
(lossy) communication channel. Receivers maintain
copies of this state together with associated timeouts. State
is deleted if not refreshed within a timeout interval. This
mechanism is used in a number of Internet (RSVP, RIP)
and Grid protocols (MDS-2) and works well in practice.

Soft-state mechanisms have two main advantages:
��‘Eventual’ state. As information introduced by failed

nodes is eventually eliminated through timeouts, there
is no need for explicit failure detection and state
removal. Similarly, new nodes do not set up an explicit
state-gathering protocol when joining; state simply
flows through the network and a long-lived node
eventually collects all available state. (One could argue
that making full state available only in time creates an
incentive for nodes to participate longer in the system).

��Adaptiveness. Traditionally, soft state systems have
used fixed, empirically determined send rates.
However, state producers can also obey more complex
policies that save network bandwidth (e.g. “generate an
update each hour and each time the set of files stored
locally has changed by 10%, but make sure not to
employ more than 1% of the available network
bandwidth”). In this case, receivers have to estimate
timeouts dynamically [32]. In order to further reduce
generated network traffic the soft-state mechanism
could combine full state announcements with
incremental updates.

Administrative
domain borders

RLN

Storage sites
Figure 2: Replica location service organization.
Storage sites publish LFN to PFN mappings for files stored
locally to Replica Location Nodes (RLNs). RLNs (black
circles in the figure) store these mappings and compute
digests: compressed representations for the set of LFNs
stored at local SSs. RLNs organize into an overlay network
and distribute digests using a soft-state protocol.

5. Assembling the pieces

In a nutshell, RLNs organize into a flat overlay

network and distribute their digests using a soft-state
mechanism (Figure 2).

A broader description of the location mechanism starts
with the three functionalities offered by a RLN:
��Storage site (SS) registration. An RLN allows SS(s) to

register/delete pairs of (LFN, PFN) with the replica
location service. The details of the SS-RLN interaction
are outside the scope of this paper. However, we note
that a soft-state mechanism can be used here as well.

��Querying. When receiving a query (an LFN for which
the associated PFN is required), a RLN checks first to
see if a LFN mapping is stored locally. If it is, then the
RLN returns the associated PFN(s). Otherwise, it
checks the digests available locally to see which remote
RLN might store mappings for the requested LFN
(remember digests allow for false positives). If one is
found, the local RLN contacts the remote RLN to
obtain the associated PFN(s) that are subsequently sent
back to the client. Alternatively the remote RLN
address(es) could be returned, and the querying client
could contact each of them and obtain PFN(s). The
latter scheme takes some burden off the RLN, but
prevents caching at the RLN level.

This mechanism extends intuitively to requests for
many (exactly N) or all PFNs associated with a given
LFN. It also handles requests for PFNs associated with
sets of LFNs.

��Digest distribution network. This component is the core
of the location system and its performance is key to

overall performance. RLNs distribute digests through
the overlay using the soft-state mechanism. Nodes have
hard upper limits on the network traffic that they
generate into the overlay and soft lower (in)consistency
limits (e.g., “generate a soft-state update each time a
X% of the content has been modified with at most Y%
inaccuracy. Generated traffic should not be above Z
bps”).
We use a bootstrap mechanism similar to that used in

Gnutellas: a new node obtains, through an out-of-band
channel, the location of a node already in the network. It
then connects to the network and uses the information
flowing in the overlay to discover other nodes and create
new connections if necessary.

Undoubtedly, the topology of the overlay network
determines its efficiency in using the underlying
networking infrastructure [18]. Creating a self-organizing
overlay that matches the underlying network topology is a
challenging topic that we are currently investigating.

5.1. Overall benefits

The mix of techniques that we use brings important

benefits:
��Low query latency. Looking up one PFN implies, with

high probability, at most two calls across the network.
This cost compares favorably with other distributed
index systems (CAN, Tapestry) that route queries and
thus incur larger query latencies.

��Adaptive. When the system is overloaded, source nodes
reduce their update rate while intermediary nodes may
combine update messages.

��Robust, high availability. There is no single point of
failure in the system. As long as the overlay network
remains connected, node failures do not prevent the
remaining parts of the system from operating correctly.

��Manageability. Manual configuration and maintenance
of even medium-sized sets of resources becomes
quickly a daunting task. Our solution based on a self-
configuring overlay network reduces administration
overhead to a minimum.

��High throughput. Searches for sets of files (as opposed
to searches for one file at a time) are likely to be the
norm. In this case query routing protocols do not help
much as a multiple-LFN query generates a large
number of individual queries to be routed in the
network. Our system benefits from the (approximate)
global image available at each node and can process
requests in batches, taking advantage of request locality
characteristics (i.e., a single request issued for LFNs
that are mapped on the same remote RLN).

5.2. Rough resource consumption evaluation

Our decentralized system is designed to provide low

latency, robustness and high-availability in an unreliable,
wide-area environment. There are two types of resources
it consumes ‘at large’ : system memory and network
bandwidth.

Each node maintains a compressed image of the whole
system: in the limit, one digest for each node in the
system. Assuming 500 million replicas and digests sized
at 2 bytes per entry, one node needs 1 GB to represent the
whole system state with a false positive rate of 0.05%.

We provide a crude evaluation for the generated traffic
when using the maximal requirements outlined in
Section 2. Assume 500 RLNs, each maintaining
information about 1 million replicas. Assume an average
add/drop rate of 2 replica/sec at each node and a 1%
change trigger to generate a soft-state update message
(i.e., an update message is generated if 1M * 1% = 10,000
replicas have been added or deleted). Assume further that
one in ten generated messages describes the state
completely; the others are incremental updates. In this
case a RLN has to support digest traffic of about 25 kBps
for each of its overlay links. Generating one complete
digest for every 100 updates reduces the traffic to 4 kBps.
Assuming 20 queries/sec per node and 200 bytes per
query, a further 8 kBps are necessary to support local
query traffic. Thus, we see that a mechanism based on
query forwarding will not fare significantly better:
assuming an average of 10 forwarding hops, the generated
traffic is about the same.

We stress that we do not claim that the approach
described here scales better than current distributed hash
table solutions (CAN, Chord, Tapestry, etc.) based on
structured overlays. Rather, we contend that for a realistic
class of problems this approach generates comparable (if
not less) traffic and allows for significantly lower query
latencies. The class of problems for which our approach
works well is precisely those envisaged by GriPhyN’s
data intensive projects: hundreds to thousands of RLNs
and query rates one order of magnitude greater than
replica add/delete rates. In addition, we note that our use
of unstructured overlays should allow our solution to cope
better with node and network failures.

6. Implementation and per formance data

We currently use Python to implement a proof-of-

concept prototype of the replica location service described
here. We have tested the main components of the system
separately and on small-scale deployments. We present
below our preliminary performance results.
��Bloom Filters. We have experimented with various

configurations of Bloom filters and obtained

compression and false positive rates close to those
predicted by theory (see Appendix A for details), and
lookup times in the order of 100µs per lookup.

��Replica Location Node (RLN). A single client querying,
over a LAN, an isolated RLN storing 10 million LFN
to PFN mappings achieved over 300 queries per second
(without authentication); with multiple clients,
throughput to the RLN peaked at 3,000 queries per
second. While we still have to evaluate the cost of
authentication, these initial results are encouraging.

��Overlay Network. We have experimented with small-
scale overlays (24 RLNs, 50 million replicas) with
manually configured topologies. In this configuration,
our system achieves 2,000 query/sec rates concurrently
with 1,200 updates/sec. While these setups do not test
the reliability of our system, or its ability to adapt, they
do provide an initial (and encouraging) idea of
achievable overall performance. We stress that to date
we have been more concerned with implementing RLN
functionality than optimizing for performance.
Currently we are adding authentication (using Grid

Security Infrastructure [33]) and self-configuring
overlays, and experimenting with various configurations
of the soft-state update mechanism.

7. Summary

This paper describes a decentralized, adaptive

mechanism for replica location in wide-area distributed
systems. Unlike traditional, hierarchical (e.g, DNS) and
more recent (e.g., CAN, Chord, Gnutella) distributed
search and indexing schemes, nodes in our location
mechanism do not route queries, instead, they organize
into an overlay network and distribute location
information. We contend that this approach works well in
environments where replica location queries are prevalent
but the dynamic component of the system (e.g., node and
network failures, replica add/delete operations) cannot be
neglected.

This paper argues that a replica location mechanism
that combines probabilistic representations of replica
location information with soft-state protocols and a flat
overlay network of nodes brings important benefits:
genuine decentralization, resilience when facing network
and node failures, low query latency, and flexibility to
introduce adaptive communication schedules.

We support these claims with two arguments. First, we
provide a rough resource consumption evaluation: we
show that, for environments similar to GriPhyN’s large
data-analysis projects, generated network traffic is limited
and, more importantly, is comparable to the traffic
generated by a request routing scheme. Second, we
provide encouraging early performance data from our
prototype implementation.

We are currently investigating hybrid approaches that
combine query forwarding with information dissemination
in self-organizing, unstructured overlays. One possible
approach [34] benefits from data sharing patterns in
scientific collaborations and organizes the overlay
network so as follow the small-world sharing patterns that
emerge in these collaborations. Nodes within a small-
world (a cluster) use an information dissemination
mechanism similar to that discussed in this paper to serve
requests for files available within the cluster. Requests for
other files are forwarded to different clusters.

8. Appendix: Bloom filters

Bloom filters [29] are compact data structures for

probabilistic representation of a set in order to support
membership queries (i.e., queries that ask: “ Is element x in
set Y?”). This compact representation is achieved at the
cost of a small rate of false positives in membership
queries; that is, queries might incorrectly recognize an
element as a set member.

8.1. Usage

Since their introduction in [29], Bloom filters have

seen various uses:
��Web cache sharing. Collaborating Web caches use

Bloom filters (called “cache digests” or “cache
summaries”) as compact representations for the local
set of cached files. Each cache periodically broadcasts
its summary to all other members of the distributed
cache. Using all summaries received, a cache node has
a (partially outdated, partially wrong) global image
about the set of files stored in the aggregated cache.

��Query filtering and routing ([35-37]) The Secure
Discovery Service [35] subsystem of the Ninja project
[38] organizes service providers in a hierarchy. Bloom
filters are used as summaries for the set of services
offered by a node. Summaries are sent upwards in the
hierarchy and aggregated. A query is a description for a
specific service, also represented as a Bloom filter.
Thus, when a member node of the hierarchy
generates/receives a query, it has enough information at
hand to decide where to forward the query: downward,
to one of its descendants (if a solution to the query is
present in the filter for the corresponding node), or
upward, toward its parent (otherwise).

��Compact representation of a differential file [39]. A
differential file contains a batch of database records to
be updated. For performance reasons, the database is
updated only periodically (e.g., at midnight) or when
the differential file grows above a certain threshold.
However, in order to preserve integrity, each
reference/query to the database has to access the

differential file to see if a particular record is scheduled
to be updated. To speed up this process, with little
memory and computational overhead, the differential
file is represented as a Bloom filter.

��Free text searching [40]. The set of words that appear
in a text is succinctly represented using a Bloom filter

8.2. Constructing Bloom filters

Consider a set },...,,{ 21 naaaA = of n elements.

Bloom filters describe membership information of A using
a bit vector V of length m. For this, k hash functions,

khhh ,...,, 21 with }..1{: mXhi → , are used. The
following procedure builds an m bits Bloom filter,
corresponding to a set A using khhh ,...,, 21 hash
functions:

Pr ocedur e Bl oomFi l t er (set A,

 hash_f unct i ons_set h, i nt m)
 r et ur ns f i l t er
 f i l t er = new m bi t vect . i ni t i al i zed t o 0
 f or each ai i n A:
 f or each hash f unct i on hj:
 f i l t er [hj(ai)] = 1
 end f or each
 end f or each
r et ur n f i l t er

Therefore, if ai is member of a set A, in the resulting

Bloom filter V all bits obtained corresponding to the
hashed values of ai are set to 1. Testing for membership of
an element elm is equivalent to testing that all
corresponding bits of V are set:

Pr ocedur e Member shi pTest (el m,

 f i l t er , hash_f unct i ons h)
 r et ur ns yes/ no
 f or each hash f unct i on hj:
 i f f i l t er [hj(elm)] ! = 1 r et ur n No
 end f or each
r et ur n Yes

An important feature of the algorithm is that filters can

be built incrementally: as new elements are added to a set
the corresponding positions are computed through the
hash functions and bits are set in the filter. Moreover, the
filter expressing the reunion of two sets is simply
computed as the bit-wise OR applied over the two
corresponding Bloom filters.

8.3. Bloom filters: the math

In this section we follow the same lines of reasoning

as [41]. One prominent feature of Bloom filters is that
there is a clear tradeoff between the size of the filter and

the rate of false positives. Observe that after inserting n
keys into a filter of size m using k hash functions, the
probability that a particular bit is still 0 is:

 m

knkn

e
m

p
−

−≈�
�

�
�
�

� −= 1
1

10 . (1)

Note that we assume perfect hash functions that spread
the elements of A evenly throughout the space { 1..m} . In
practice, good results have been achieved using MD5 and
other hash functions [40].

Hence, the probability of a false positive (the
probability that all k bits have been previously set) is:

()
k

m

kn
kkn

k
err e

m
pp �

�

�

�

�
�

�

�
−≈

�
�

�

�

�
�

�

�
�
�

�
�
�

� −−=−=
−

1
1

111 0
 (2)

In (2) perr is minimized for 2ln
n

m
k = hash

functions. In practice however, a smaller number of hash
functions are used. The reason is that the computational
overhead of each hash additional function is constant
while the incremental benefit of adding a new hash
function decreases after a certain threshold (Figure 3).

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 4 7 10 13 16 19 22 25 28 31
Number of hash functions

F
al

se
 p

os
it

iv
es

 r
at

e
(l

og
 s

ca
le

)

Figure 3: False positive rate as a function of the
number of hash functions used. The size of the
Bloom filter is 32 bits per entry (m/n=32). In this case using
22 hash functions minimizes the false positive rate. Note
however that adding a hash function does not significantly
decrease the error rate when more than 10 hashes are
already used

The central formula for engineering Bloom filters, (2),
helps us computing minimal memory requirements (filter
size) and number of hash functions given the maximum
acceptable false positive rate and number of elements in
the set (as we detail in Figure 4).

�
�

�

�

�
�

�

�
−

−=
k

perr

e

k

n

m
ln

1ln

 (bits per entry) (3)

0

10

20

30

40

50

60

70

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

Error rate (log scale)

B
it

s
 p

er
 e

nt
ry k=2

k=4

k=8

k=16

k=32

Figure 4: Size of Bloom filter (bits/entry) as a
function of the error rate desired. Different lines
represent different numbers of hash keys used. Note that,
for the error rates considered, using 32 keys does not
bring significant benefits over using only 8 keys.

To summarize: Bloom filters are compact data
structures for probabilistic representation of a set in order
to support membership queries. The main design tradeoffs
are the number of hash functions used (driving the
computational overhead), the size of the filter and the
error (collision) rate. Formula (2) is the main formula for
tuning parameters according to application requirements.

8.4. Compressed Bloom filters

Applications that use Bloom filters may need to

communicate them across a network. In this case, besides
the three performance metrics we have seen so far: (1) the
computational overhead to look up a value (related to the
number of hash functions used), (2) the size of the filter in
memory, and (3) the error rate, a fourth metric can be
used: the size of the filter transmitted across the network.
Mitzenmacher shows that compressing Bloom filters
might lead to significant bandwidth savings at the cost of
higher memory requirements (larger uncompressed filters)
and some additional computation time to compress the
filter that is sent across the network [30].

Acknowledgements

We are grateful to Ann Chervernak, Carl Kesselman,
Wolfgang Hoschek, Peter Kunszt, Adriana Iamnitchi,
Heinz Stockinger, Kurt Stockinger, and Brian Tierney for
discussions and support. This work was supported by the
National Science Foundation under contract ITR-0086044
(GriPhyN).

References

[1] “Squid Web Proxy Cache”, http://www.squid-cache.org/.

[2] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A.
Karlin, and H. M. Levy, "On the scale and performance of
cooperative Web proxy caching," presented at 17th ACM
Symposium on Operating Systems Principles (SOPS'99),
Kiawah Island Resort, SC, USA, 1999.

[3] P. S. Yu and E. A. MacNair, "Performance study of a
collaborative method for hierarchical caching in proxy
servers," presented at 7th International World Wide Web
Conference (WWW7), 1998.

[4] M. v. Steen, P. Homburg, and A. S. Tanenbaum, "Globe: A
Wide-Area Distributed System," IEEE Concurrency, vol.
7, pp. 70-78, 1999.

[5] A. Chervenak, I. Foster, A. Iamnitchi, C. Kesselman, W.
Hoschek, P. Kunszt, M. Ripeanu, H. Stockinger, K.
Stockinger, and B. Tierney, "Giggle: A Framework for
Constructing Scalable Replica Location Services,"
presented at Global Grid Forum, Toronto, Canada, 2001.

[6] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke, "The Data Grid: Towards an Architecture for
the Distributed Management and Analysis of Large
Scientific Data Sets," J. Network and Computer
Applications, pp. 187-200, 2001.

[7] R. Moore, C. Baru, R. Marciano, A. Rajasekar, and M.
Wan, "Data-Intensive Computing," in The Grid: Blueprint
for a New Computing Infrastructure, I. Foster and C.
Kesselman, Eds.: Morgan Kaufmann, 1999, pp. 105-129.

[8] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-
Bost, "On the Impossibility of Group Membership,"
presented at 15th Annual ACM Symposium on Principles
of Distributed Computing (PODC'96), New York, USA,
1996.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson,
"Impossibility of Distributed Consensus with One Faulty
Process," Journal of the ACM, vol. 32, pp. 374-382, 1985.

[10] P. Avery and I. Foster, "The GriPhyN Project: Towards
Petascale Virtual Data Grids," Technical Report GriPhyN-
2001-15, 2001.

[11] J. Yin, L. Alvisi, M. Dahlin, and C. Lin, "Hierarchical
Cache Consistency in WAN," presented at The 1999
USENIX Symposium on Internet Technologies and
Systems (USITS99), Boulder, Colorado, 1999.

[12] K. Holtman, "CMS Data Grid System Overview and
Requirements," Technical Report GriPhyN-2001-1, 2001.

[13] M. Wilde, "Replica Catalog Performance and Capacity
Requirements (v.6)," MCS-ANL, 2001.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, "A Scalable Content-Addressable Network,"
presented at SIGCOMM 2001, San Diego USA, 2001.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan, "Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications," presented at
SIGCOMM 2001, San Diego, USA, 2001.

[16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph,
"Tapestry: An infrastructure for fault-tolerant wide-area
location and routing," UC Berkeley, Technical Report
CSD-01-1141, 2001.

[17] P. Druschel and A. Rowstron, "PAST: A large-scale,
persistent peer-to-peer storage utility," presented at 8th
Workshop on Hot Topics in Operating Systems (HotOS-
VIII), Elmau/Oberbayern, Germany, 2001.

[18] M. Ripeanu, I. Foster, and A. Iamnitchi, "Mapping the
Gnutella Network: Properties of Large-Scale Peer-to-Peer
Systems and Implications for System Design," IEEE
Internet Computing Journal special issue on peer-to-peer
networking, vol. 6, 2002.

[19] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, "Summary
Cache: A Scalable Wide-area Web Cache Sharing
Protocol," IEEE/ACM Transactions on Networking, vol. 8,
pp. 281-293, 2000.

[20] V. Valloppillil and K. W. Ross, "Cache array routing
protocol v1.0," in Internet Draft, 1988.

[21] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R.
Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and Y.
Yerushalmi, "Web Caching with Consistent Hashing,"
presented at The Eighth International World Wide Web
Conference (WWW8), Toronto, Canada, 1999.

[22] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M.
S. Levine, and D. Lewin, "Consistent Hashing and
Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web," presented
at Symposium on Theory of Computing, 1997.

[23] B. Krishnamurthy, C. Wills, and Y. Zhang, "On the Use
and Performance of Content Distribution Networks,"
presented at ACM SIGCOMM Internet Measurement
Workshop, San Francisco, CA, USA, 2001.

[24] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O'Toole, "Overcast: Reliable Multicasting with
an Overlay Network," presented at 4th Symposium on
Operating Systems Design and Implementation (OSDI
2000), San Diego, California, 2000.

[25] Y.-h. Chu, S. G. Rao, S. Seshan, and H. Zhang, "Enabling
Conferencing Applications on the Internet Using an
Overlay Multicast Architecture," presented at SIGCOMM
2001, San Diego, CA, 2001.

[26] J. Touch, "Dynamic Internet Overlay Deployment and
Management Using the X-Bone," Computer Networks, vol.
36, pp. 117-135, 2001.

[27] J. Touch and S. Hotz, "The X-Bone," presented at Third
Global Internet Mini-Conference at Globecom, Sydney,
Australia, 1998.

[28] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R.
Morris, "Resilient Overlay Networks," presented at 18th
ACM SOPS, Banff, Canada, 2001.

[29] B. Bloom, "Space/time Trade-offs in Hash Coding with
Allowable Errors," Communications of the ACM, vol. 13,
pp. 422-426, 1970.

[30] M. Mitzenmacher, "Compressed Bloom Filters," presented
at Twentieth ACM Symposium on Principles of

Distributed Computing (PODC 2001), Newport, Rhode
Island, 2001.

[31] S. Raman and S. McCanne, "A Model, Analysis, and
Protocol Framework for Soft State-based Communication,"
Computer Communication Review, vol. 29, 1999.

[32] P. Sharma, D. Estrin, S. Floyd, and V. Jacobson, "Scalable
Timers for Soft State Protocols," presented at IEEE
Infocom '97, 1997.

[33] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J.
Volmer, and V. Welch, "Design and Deployment of a
National-Scale Authentication Infrastructure," IEEE
Computer, vol. 33, pp. 60-66, 2000.

[34] A. Iamnitchi, M. Ripeanu, and I. Foster, "Locating Data in
(Small-World?) P2P Scientific Collaborations," presented
at 1st International Workshop on Peer-to-Peer Systems,
Cambridge, MA, USA, 2002.

[35] T. D. Hodes, S. E. Czerwinski, B. Zhao, A. D. Joseph, and
R. H. Katz, "An Architecture for Secure Wide-Area
Service Discovery," Wireless Networks, 2001.

[36] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D.
Culler, "Scalable, Distributed Data Structures for Internet
Service Construction," presented at Fourth Symposium on
Operating Systems Design and Implementation (OSDI
2000), San Diego, CA, 2000.

[37] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao, "OceanStore: An
Architecture for Global-Scale Persistent Storage,"
presented at 9th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS 2000), Cambridge, MA, 2000.

[38] S. D. Gribble, M. Welsh, R. v. Behren, E. A. Brewer, D.
Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A.
D. Joseph, R. H. Katz, Z. Mao, S. Ross, and B. Zhao, "The
Ninja Architecture for Robust Internet-Scale Systems and
Services," Special Issue of Computer Networks on
Pervasive Computing, 2001.

[39] J. K. Mullin, "A second look at Bloom filters,"
Communications of the ACM, vol. 26, pp. 570-571, 1983.

[40] M. V. Ramakrishna, "Practical performance of Bloom
filters and parallel free-text searching," Communications of
the ACM, vol. 32, pp. 1237-1239, 1989.

[41] L. Fan, P. Cao, J. Almeida, and A. Broder, "Summary
Cache: A Scalable Wide-Area Web Cache Sharing
Protocol," presented at ACM SIGCOMM'98, Vancouver,
Canada, 1998.

