
 1

Abstract—A growing need for ultra high-speed data transfers
has motivated continued improvements in physical network
layer transmission speeds. However, as researchers develop
protocols and software to operate over such networks, they
often fail to account for security. The processing power
required to encrypt or sign packets of data can significantly
decrease transfer rates, and thus security is often sacrificed for
throughput. Emerging multicore processors provide a higher
ratio of CPUs to network interfaces, and can in principle be
used to accelerate encrypted transfers by applying multiple
processing and network resources to a single transfer. We
discuss the attributes that network protocols and software must
have to exploit such systems. In particular, we study how
these attributes may be applied in the GridFTP code
distributed with the Globus Toolkit. GridFTP is a well
accepted and robust protocol for high speed data transfer. It
has been shown to scale to near network speeds. While
GridFTP can provide encrypted and protected data transfers, it
historically suffers transfer performance penalties when these
features are enabled. We present configurations to the Globus
GridFTP server that can achieve fully encrypted high speed
data transfers.

Index Terms—Secure data transfer, GridFTP, Encryption,
Parallel streams

I. EXTENDED ABSTRACT
In order to achieve processing parallelism on protected or
encrypted transfers we must ensure that secure processing is
performed on different portions of the data stream at the same
time and on different CPUs. While simple in principle, this
concept presents interesting problems for network protocols
and software implementations. Encryption protocols that use
cipher block chaining, such as TLS / SSL [1], require that data
be decrypted in the same order that it was encrypted. Further,
the way that bytes in a stream are processed varies with their
position in the stream. Thus, it matters not only what is the
value of the byte being processed, but also when it was
processed.

These issues introduce difficulties when breaking up the
streams for parallelization. For the reasons described above,
we cannot take portions of a single data stream and process
them in parallel against the same security context. To properly
follow secure protocols we cannot process any one byte until

the previous byte has been processed, thus there can be no
parallelism against a single security context.

We can solve this problem by creating a many distinct
security contexts for a single data transfer. A simple way to
realize this approach with existing network protocols is by
using parallel streams. Parallel streams are common in data
transfers as a means of network optimization [2,3]. To
minimize penalties associated with TCP slow start and
dropped packets, many TCP streams are used for the same
logical transfer, thus reducing the penalties associated with
any one packet loss. This technique can also be leveraged for
use in parallel encryption. Each stream has its own security
context and is independent with regard to security processing.
Thus, we can achieve parallel security processing.

A. Related Work
Hardware accelerators have been used to address the SSL
performance problems. Accelerator is a card that plugs into
PCI slot or SCSI port and contains a co-processor that
performs part of SSL processing. Network Interface Cards
with offloaded SSL and IPSec [4] have also been produced.
We want to achieve high-speed secure transfers with general-
purpose hardware so that it can be used more commonly. We
expect that multi-core processors would become more
common than SSL/IPSec offload engines. Further, we would
like to utilize the parallel and higher processing power that the
multi-core technology promises to achieve high-speed secure
data transfers. Also, the offload techniques do not help in
achieving processing parallelism for security processing on a
single node.

B. Asynchronous Event Model
Solving this problem in software requires some type of
threaded IO model. In order to get many parallel data streams
processing at once multiple threads of execution must be
occurring on different CPUs. This can happen via threads in a
single user process or by making use of multiple processes.
The Globus toolkit achieves this type of parallelism via an
asynchronous event model and thread pools [5]. We present
here the advantages of the asynchronous thread pool model.

In an asynchronous event model, the software developer
posts I/O requests to the system. When the request is fulfilled
(or an error occurs) the user is notified via a callback function
which the developer defines in their own process space.

Harnessing Multicore Processors for High Speed
Secure Transfer

John Bresnahan1,2,3, Rajkumar Kettimuthu1,2, Mike Link1,2, Ian Foster1,2,3

1Math and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

2Computation Institute, University of Chicago, Chicago, IL 60637
3Department of Computer Science, University of Chicago, Chicago, IL 60637

{bresnaha, kettimut, mlink, foster}@mcs.anl.gov

 2

Between the time of posting the request and the time the
application receives the callback, the developer’s code is free
to do whatever it likes, including post more I/O requests. The
I/O subsystem services the developer's request by creating
background threads. These threads handle the framing of I/O
and interact with the operating system to send and receive
messages without interfering with the developer's code.

The Globus Toolkit’s I/O library, Globus XIO, is a protocol
abstraction layer that allows developers to ignore the specific
protocol in use and just post requests for read and write. Part
of servicing secure protocol requests involves signing or
encrypting the posted data. In Globus XIO, this task is
performed as part of the event processing and is therefore
handled by one of the system’s background threads. If many
events are posted at once, as is the case for parallel TCP
protocols, many threads can be processing the posted events in
parallel. As part of this work we set the default number of
background threads used by Globus XIO (which can be set by
the system administrator to any value) to the CPU count plus
one. Because of this asynchronous thread pool model, the
developer at no point needs to be aware of the number of
background threads. It is a strictly site optimization parameter.

C. GridFTP Configuration
The Globus GridFTP server is built on the above described

asynchronous event model. The GridFTP protocol uses
parallel streams on the data channel. Because of these two
facts we can achieve parallel secure processing. When the
number of parallel streams is greater than or equal to the
number of system CPUs, processing parallelism occurs.

D. Striping
In some cases the number of CPUs on a single system
inadequate to match the processing requirements of secure
transfers. In these cases we can still achieve high throughput
secure data transfers by tying many computers together in a
striped transfer. Striped transfers allow portions of the data to
come from different network endpoints. Thus, we can use
CPUs in many machines for a single data transfer and
therefore scale the processing power up to network speeds.

When we require many stripes to achieve network speeds we
will unfortunately not max out the capabilities of the network
cards in each stripe. This situation is not ideal, but it does
provide a solution and gives us a test bed for finding the
optimal processor to NIC ratio. Upcoming multicore
technology promises to up the ratio of CPU to NIC in a single
system and thus solve this problem.

E. Results
Table 1 shows initial results of experiments in which we use
the asynchronous event model to take advantage of multiple
CPUs. The measurements were taken on UC TeraGrid Dual
1.5GHz Itanium machines. It shows how the use of one or two
streams (P1 and P2, respectively) affects transfer rates in a
single threaded system versus an asynchronous thread pool
system. We see that when a thread pool system is used with
two streams, we can basically double performance relative to a
single stream or to two streams without a thread pool system.

TABLE I: TRANSFER RATES (IN MEGABYTE/SEC) WITH DIFFERENT
THREADING MODELS

Security
Level

Single
P1

Single
P2

 Pool
P1

Pool
P2

Clear 903 905 903 906
Authenticated 899 899 899 899

Safe 488 517 488 770
Private 177 183 177 340

In the next set of results we show that it takes approximately
eight Intel Xeon 2.4 GHz CPUs to achieve fully encrypted
transfers at network speeds. Since eight core processors were
not available to us, our experiments were performed with
striped transfers of four dual CPU machines. Additional
stripes increase the amount of memory and network and bus
bandwidth resources available to a single transfer. However,
with the exception of network bandwidth, those resource
requirements are statically dependent on the bandwidth delay
product of the transfer. An encrypted transfer may require
more memory, but that requirement is still a function of the
bandwidth delay product. We used a value of 128KB and each
of our test bed nodes had 4GB of memory. Therefore a single
node had a surplus of memory and our results were not tainted
by the additional surplus of memory that comes with
additional stripes. However, the additional network resources
did allow us to exceed the 1 Gigabit network limit of a single
machine. Because our goal is to show that with enough
processing power we can meet network speeds exceeding it is
acceptable in that it shows when given enough parallel
processing power the bottleneck will shift from the CPU to the
NIC. This is in line with our goals. The graph in figure 1
shows the results of this experiment.

Figure 1: Extrapolation for more cores using striped transfers.

References
[1] T. Dierks and E. Rescorla, The Transport Layer Security
(TLS) Protocol Version 1.1, IETF RFC 4346, 2006.
[2] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu, and I. Foster, “The Globus striped
GridFTP framework and server,” in SC'05, ACM Press, 2005.
[3] T.J. Hacker et. al., Improving Throughput and Maintaining
Fairness using Parallel TCP. IEEE InfoCom, 2004.
[4] S. Kent and R. Atkinson, Security Architecture for the
Internet Protocol, IETF RFC 2401, 1998
[5] http://www.globus.org/toolkit/docs/3.2/developer/globus-
async.html

