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Abstract

Metacomputing systems are intended to support remote and/or concurrent use of geo-
graphically distributed computational resources. Resource management in such systems is
complicated by five concerns that do not typically arise in other situations: site autonomy
and heterogeneous substrates at the resources, and application requirements for policy exten-
sibility, co-allocation, and online control. We describe a resource management architecture
that addresses these concerns. This architecture distributes the resource management prob-
lem among distinct local manager, resource broker, and resource co-allocator components,
and defines an extensible resource specification language to exchange information about re-
quirements. We describe how these techniques have been implemented in the context of the
Globus metacomputing toolkit and used to implement a variety of different resource man-
agement strategies. We report on our experiences applying our techniques in a large testbed,
GUSTO, incorporating 15 sites, 330 computers, and 3600 processors.

1 Introduction

Metacomputing systems allow applications to assemble and use collections of computational
resources on an as-needed basis, without regard to physical location. Various groups are
implementing such systems and exploring applications in distributed supercomputing, high-
throughput computing, smart instruments, collaborative environments, and data mining [10,
12, 18, 20, 22, 6, 25].

This paper is concerned with resource management for metacomputing: that is, with the
problems of locating and allocating computational resources, and with authentication, process
creation, and other activities required to prepare a resource for use. We do not address scheduling
(such as decomposition, assignment, and execution ordering of tasks) or the management of other
resources such as memory, disk, and networks.

The metacomputing environment introduces five challenging resource management problems:
site autonomy, heterogeneous substrate, policy extensibility, co-allocation, and online control.
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1. The site autonomy problem refers to the fact that resources are typically owned and
operated by different organizations, in different administrative domains [5]. Hence, we
cannot expect to see commonality in acceptable use policy, scheduling policies, security
mechanisms, and the like.

2. The heterogeneous substrate problem derives from the site autonomy problem, and refers to
the fact that different sites may use different local resource management systems [16], such
as Condor [18], NQE [1], CODINE [11], EASY [17], Condor [18], LSF [28], PBS [14], and
LoadLeveler [15]. Even when the same system is used at two sites, different configurations
and local modifications often lead to significant differences in functionality.

3. The policy extensibility problem arises because metacomputing applications are drawn
from a wide range of domains, each with their own requirements. A resource management
solution must support the frequent development of new domain-specific management struc-
tures, without requiring changes to code installed at participating sites.

4. The co-allocation problem arises because many applications have resource requirements
that can be satisfied only by using resources simultaneously at several sites. Site autonomy
and the possibility of failure during allocation introduces a need for specialized mechanisms
for allocating multiple resources, initiating computation on those resources, and monitoring
and managing those computations.

5. The online control problem arises because substantial negotiation can be required to adapt
application requirements to resource availability, particularly when requirements and re-
source characteristics change during execution. For example, a tele-immersive application
that needs to simulate a new entity may prefer a lower-resolution rendering, if the alter-
native is for the entity not to be modeled at all. Resource management mechanisms must
support such negotiation.

As we explain in Section 2 below, no existing resource management systems addresses all
five problems. Some batch queuing systems support co-allocation, but not site autonomy, policy
extensibility, and online control [16]. Condor supports site autonomy, but not co-allocation or
online control [18]. Legion [12] and Gallop [26] address online control and policy extensibility,
but not the heterogeneous substrate or co-allocation problems.

In this paper, we describe a resource management architecture that we have developed to
address the five problems listed above. In this architecture, developed in the context of the
Globus project [10], we address problems of site autonomy and heterogeneous substrate by
introducing entities called resource managers to provide a well-defined interface to diverse local
resource management tools, policies, and security mechanisms. To online control and policy
extensibility, we define an extensible resource specification language that supports negotiation
between different components of a resource management architecture, and introduce resource
brokers to handle the mapping of high-level application requests into requests to individual
managers. We address the problem of co-allocation by defining various co-allocation strategies,
which we encapsulate in resource co-allocators.

One measure of success for an architecture such as this is its usability in a practical set-
ting. To this end, we have implemented and deployed this architecture on GUSTO, a large
computational grid testbed comprising 15 sites, 330 computers, and 3600 processors, using LSF,
NQE, LoadLeveler, EASY, Fork, and Condor as local schedulers. To date, this architecture
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and testbed have been used by ourselves and others to implement numerous applications and
half a dozen different higher-level resource management strategies. This successful experiment
represents a significant step forward in terms of number of global metacomputing services im-
plemented and number and variety of commercial and experimental local resource management
systems employed.

The rest of this paper is structured as follows. In the next section, we review current dis-
tributed resource management solutions. In subsequent sections we first outline our architecture
and then examine each major function in detail: the resource specification language, local re-
source managers, resource brokers, and resource co-allocators. We summarize the paper and
discuss future work in Section 8.

2 Resource Management Approaches

Previous work on resource management for metacomputing systems can be broken into two
broad classes:

• Network batch queuing systems. These systems focus strictly on resource management
issues for a set of networked computers. These systems do not address policy extensibility
and provide only limited support for online control and co-allocation.

• Wide-area scheduling systems. Here, resource management is performed as a component
of mapping application components to resources and scheduling their execution. To date,
these systems do not address issues of heterogeneous substrates, site autonomy, and co-
allocation.

In the following, we use representative examples of these two types of system to illustrate the
strengths and weaknesses of current approaches.

2.1 Networked Batch Queuing Systems

Networked batch queuing systems, such as NQE [1], CODINE [11], LSF [28], PBS [14], and
LoadLeveler [15], handle user-submitted jobs by allocating resources from a networked pool of
computers. The user characterizes application resource requirements either explicitly, by some
type of job control language, or implicitly, by selecting the queue to which a request is submitted
to. Networked batch queuing systems are typically designed for single administrative domains,
making site autonomy difficult to achieve. Likewise, the heterogenous substrate problem is also
an issue due to the fact that these systems generally assume that they are the only resource
management system in operation. One exception is the CODINE system which introduces the
concept of a transfer queue to allow jobs submitted to CODINE to be allocated by some other
resource management system, at a reduced level of functionality. An alternative approach to
supporting substrate heterogeneity is being explored by the PSCHED [13] initiative. This project
is attempting to define a uniform API through which a variety of batch scheduling systems may
be controlled. The goals of PSCHED are similar in many ways to those of the Globus Resource
Allocation Manager described in Section 5 below.

Batch scheduling systems provide a limited form of policy extensibility in that resource
management policy is set by either the system or the system administrator, by the creation of
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scheduling policy or batch queues. However, this capability is not available to the end user, who
has little control over how the batch scheduling system interprets their resource requirements.

Finally, we observe that batch queuing systems have limited support for on-line allocation, as
these systems are designed to support applications in which the requirements specifications are
in the form “get X done soon” where X is precisely defined but “soon” is not. In metacomputing
applications, we have more complex, fluid constraints, in which we will want to make tradeoffs
between time (when) and space (physical characteristics). This leads to a need for the resource
management system to provide capabilities such as negotiation, inquiry interfaces, information-
based control, co-allocation, etc., none of which are provided in these systems.

In summary, batch scheduling systems do not provide in themselves a complete solution
to metacomputing resource management problems. However, clearly some of the mechanisms
developed for resource location, distributed process control, remote file access, to name a few,
can be applied to wide area systems as well. Furthermore, we note that network batch queu-
ing systems will necessarily be part of the local resource management solution. Hence, any
metacomputing resource management architecture must be able to interface to these systems.

2.2 Wide-Area Scheduling Systems

We now examine how resource management is addressed within systems developed specifically
to schedule metacomputing applications. In order to gain a good perspective on the range of
possibilities, we discuss four different schedulers, designed variously to support specific classes
of applications (Gallop [26]), an extensible object-oriented system (Legion [12]), general classes
of parallel programs (PRM [22]), and high-throughput computation (Condor [18]).

The Gallop [26] system allocates and schedules tasks defined by a static task graph onto a
set of networked computational resources. (A similar mechanism has been used in Legion [27].)
Resource allocation is implemented by a scheduling manager, which coordinates scheduling
requests and a local manager, which manages the resources at a local site, potentially interfacing
to site-specific scheduling and resource allocation services. This decomposition, which we also
adopt, separates local resource management operations from global resource management policy
and hence facilitates solutions to the problems of site autonomy, heterogenous substrates, and
policy extensibility. However, Gallop does not appear to handle authentication to local resource
management services, limiting the level of site autonomy that can be achieved.

The use of a static task-graph model makes online control in Gallop difficult. Resource
selection is performed by attempting to minimize the execution time of task graph as predicted
by a performance model for the application and the prospective resource. However, because the
minimization procedure and the cost model is fixed, there is no support for policy extensibility.
Legion [12] overcomes this limitation by leveraging its object-oriented model. Two specialized
objects, an application-specific Scheduler and a resource-specific Enactor negotiate with one
another to make allocation decisions.

Gallop supports co-allocation for resources maintained within an administrative domain,
but depends for this purpose on the ability to reserve resources. Unfortunately, reservation
is not currently supported by most local resource management systems. For this reason, our
architecture does not rely on reservation to perform co-allocation, but rather uses a separate
co-allocation management service to perform this function.

The Prospero Resource Manager [22] (PRM) provides resource management functions
for parallel programs written using the PVM message passing library. PRM consists of three
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components: a system manager, a job manager, and a node manager. The job manager makes
allocation decisions, while the system and node manager actually allocate resources. The node
manager is solely responsible for implementing resource allocation functions, thus PRM does
not address issues of site autonomy or substrate heterogeneity. A variety of job managers can
be constructed, allowing for policy extensibility, although there is no provision for composing
job managers so as to extend an existing management policy. As in our architecture, PRM
has both an information infrastructure (Prospero [21]) and a management API, providing the
infrastructure needed to perform online control. However, unlike our architecture, PRM does
not support co-allocation of resources.

Condor [18] is a resource management system designed to support high-throughput compu-
tations by discovering idle resources on a network and allocating those resources to application
tasks. While Condor does not interface with existing resource management systems, resources
controlled by Condor are deallocated as soon as the “rightful” owner starts to use them. In
this sense, Condor supports site autonomy and heterogeneous substrates. However, Condor cur-
rently does not interoperate with local resource authentication, limiting the degree of autonomy
a site can assert. Condor provides an extensible resource description language, called classified
ads which provides limited control over resource selection to both the application and resource.
However, the matching of application component to resource is performed by a system classifier,
which defines how matches—and consequently resource management—takes place, limiting the
extensibility of this selection policy. Finally, Condor provides no support for co-allocation or
online control.

In summary, our review of current resource management approaches revealed a range of
valuable services, but no single system provides solutions to all five metacomputing resource
management problems posed in the introduction.

3 Our Resource Management Architecture

Our approach to the metacomputing resource management problem is illustrated in Figure 1.
In this architecture, an extensible resource specification language (RSL), discussed in Section 4
below, is used to communicate requests for resources between components: from applications to
resource brokers, resource co-allocators and resource managers. At each stage in this process,
information about resource requirements is coded an an RSL expression by the application or by
refined by one or more resource brokers and co-allocators; information about resource availability
and characteristics can be is obtained from an an information service.

Resource brokers are responsible for taking high-level RSL specifications and transforming
them into more concrete specifications through a process we call specialization. As illustrated in
Figure 2, multiple brokers may be involved in servicing a single request, with application-specific
brokers translating application requirements into more concrete resource requirements, and dif-
ferent resource brokers being used to locate available resources that meet those requirements.

Transformations effected by resource brokers generate a specification in which the locations
of the required resources are completely specified. Such a ground request can be passed to a
co-allocator, which is responsible for coordinating the allocation and management of resources
at multiple sites. As we describe in Section 7 below, a variety of co-allocators will be required
in a metacomputing system, providing different co-allocation semantics.

Resource co-allocators break a multirequest—that is, a request involving resources at mul-
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Figure 1: The Globus resource management architecture, showing how RSL specifications pass
between application, resource brokers, resource co-allocators, and local managers (GRAMs).
Notice the central role of the information service.

tiple sites—into its constituent elements and pass each component to the appropriate resource
manager. As discussed in Section 5, each resource manager in the system is responsible for taking
a RSL request and translating it into operations in the local, site-specific resource management
system.

The information service is responsible for providing efficient and pervasive access to infor-
mation about the current availability and capability of resources. This information is used to
locate resources with particular characteristics, to identify the resource manager associated with
a resource, to determine properties of that resource, and for numerous other purposes during
the process of translating high-level resource specifications into requests to specific managers.
We use the Globus system’s Metacomputing Directory Service (MDS) [8] as our information ser-
vice. MDS uses the data representation and application programming interface (API) defined
on the Lightweight Directory Access Protocol (LDAP) to meet requirements for uniformity,
extensibility, and distributed maintenance. It defines a data model suitable for distributed com-
puting applications, able to represent computers and networks of interest, and provides tools for
populating this data model. LDAP defines a hierarchical, tree-structured name space called a
directory information tree (DIT). Fields within the namespace are identified by a unique distin-
guished name (DN). LDAP supports both distribution and replication. Hence, the local service
associated with MDS is exactly an LDAP server (or a gateway to another LDAP server, if
multiple sites share a server), plus the utilities used to populate this server with up-to-date
information about the structure and state of the resources within that site. The global MDS
service is simply the ensemble of all these servers. An advantage of using MDS as our informa-
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Figure 2: This view of the Globus resource management architecture shows how different types
of broker can participate in a single resource request
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Figure 3: The GlobusView tool uses MDS information about resource manager status to present
information about the current status of a metacomputing testbed

tion service is that resource management information can be used by other tools, as illustrated
in Figure 3.

4 Resource Specification Language

We now discuss the resource specification language itself. The syntax of an RSL specification,
summarized in Figure 4, is based on the syntax for filter specifications in the Lightweight Di-
rectory Access Protocol (LDAP) and MDS. An RSL specification is constructed by combining
simple parameter specifications and conditions with the operators &, to specify conjunction
of parameter specifications, |, to express the disjunction of parameter specifications, or +, to
combine two or more requests into a single compound request, or multirequest.

The set of parameter-name terminal symbols is extensible: resource brokers, co-allocators,
and resource managers can each define a set of parameter names that they will recognize. For
example, a resource broker that is specialized for tele-immersive applications might accept as
input specification containing a frames-per-second parameter and generate as output a spec-
ification containing a mflops-per-second parameter, to be passed to a broker that deals with
computational resources. Resource managers, the system components that actually talk to local
scheduling systems, recognize two types of parameter-name terminal symbols:

• MDS attribute names, used to express constraints on resources: e.g., memory>=64, network=atm.
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specification := request
request := multirequest | conjunction | disjunction | parameter
multirequest := + request-list
conjunction := & request-list
disjunction := | request-list
request-list := ( request ) request-list | ( request )
parameter := parameter-name op value
op := = | > | < | >= | <= | !=
value := ([a..Z][0..9][ ])+

Figure 4: BNF grammar describing the syntax of a RSL request

In this case, the parameter name refers to a field defined in the MDS entry for the resource
being allocated. The truth of the parameter specification is determined by comparing the
value provided with the specification with the current value associated with the corre-
sponding field in the MDS. Arbitrary MDS fields can be specified by providing their full
distinguished name.

• Scheduler parameters, used to communicate information regarding the job, such as count
(number of nodes required), max time (maximum time required), executable, arguments,
directory, and environment (environment variables). Schedule parameters are inter-
preted directly by the resource manager.

For example, the following specification:

&(executable=myprog)
(|(&(count=5)(memory>=64))(&(count=10)(memory>=32)))

requests 5 nodes with at least 64 MB memory, or 10 nodes with at least 32 MB. In this request,
executable and count are scheduler attribute names, while memory is an MDS attribute name.

Our current RSL parser and resource manager disambiguate between these two parameter
types on the basis of the parameter name. That is, the resource manager knows which fields
it will accept as scheduler parameters and assumes all others are MDS attribute names. Name
clashes can be disambiguated by using the complete distinguished name for the MDS field in
question.

The ability to include constraints on MDS attribute values in RSL specifications is important.
As we discuss in Section 5 below, the state of resource managers is stored in MDS. Hence,
resource specifications can refer to resource characteristics such as queue-length, expected wait
time, number of processors available, etc. This technique provides a powerful mechanism for
controlling how an RSL specification is interpreted.

The following example of a multirequest is derived from the example shown in Figure 2.

+(&(count=80)(memory>=64M)(executable=sf_express)
(resourcemanager=ico16.mcs.anl.gov:8711))

(&(count=256)(network=atm)(executable=sf_express)
(resourcemanager=neptune.cacr.caltech.edu:755))
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(&(count=300)(memory>=64M)(executable=sf_express)
(resourcemanager=modi4.ncsa.edu:4000))

Notice that this is a ground request: every component of the multirequest specifies a resource
manager. A co-allocator can use the resourcemanager parameters specified in this request to
determine to which resource manager each component of the multirequest should be submitted.

Notations intended for similar purposes include the Condor “classified ad” [18] and Chapin’s
“task description vector” [5]. Our work is novel in three respects: the tight integration with a
directory service, the use of specification rewriting to express broker operations (as described
below), and the fact that the language and associated tools has been implemented and demon-
strated effective when layered on top of numerous different low-level schedulers.

We conclude this section by noting that it is the combination of resource brokers, information
service, and RSL that makes online control possible in our architecture. Together, these services
make it possible to construct requests dynamically, based on current system state and negotiation
between the application and the underlying resources.

5 Local Resource Management

We now proceed to describe the lowest level of our resource management architecture, namely
the local resource managers. The implementation of this entity in our architecture is called a
Globus Resource Allocation Manager (GRAM), which is responsible for

1. processing RSL specifications representing resource requests, by either denying the request
or by creating one or more processes (a “job”) that satisfy that request;

2. enabling remote monitoring and management of jobs created in response to a resource
request; and

3. periodically updating the MDS information service with information about the current
availability and capabilities of the resources that it manages.

As indicated above, a GRAM is intended to serve as the interface between a wide area
metacomputing environment and an autonomous entity able to create processes, such as a
parallel computer scheduler or a Condor pool. Notice that this means that a resource manager
need not correspond to a single host or a specific computer, but rather to a service that acts on
behalf of one or more computational resources. This use of local scheduler interfaces was first
explored in the software environment for the I-WAY networking experiment [9], but is extended
and generalized here significantly to provide a richer and more flexible interface.

A resource specification passed to a GRAM is assumed to be ground: that is, to be suffi-
ciently concrete that the GRAM can identify local resources that meet the specification without
further interaction with the entity that generated the request. A particular GRAM implemen-
tation may achieve this goal by scheduling resources itself or, more commonly, by mapping the
resource specification into a request to some local resource allocation mechanisms. (To date, we
have interfaced GRAM to six different schedulers or resource allocators: Condor, EASY, Fork,
LoadLeveler, LSF, and NQE.) Hence, the GRAM API plays for resource management a similar
role to that played by IP for communication: it can co-exist with local mechanisms, just as IP
rides on top of ethernet, FDDI, or ATM networking technology.
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Figure 5: State transition diagram for resource allocation requests submitted to the GRAM
resource management API

The GRAM API provides functions for submitting and for canceling a job request, and for
asking when a job (submitted or not) is expected to run. An implementation of the latter
function may use queue time estimation techniques [24]. When a job is submitted, a globally
unique job handle is returned that can then be used to monitor and control the progress of
the job. In addition, a job submission call can request that the progress of the requested job
be signaled asynchronously to a supplied callback URL. Job handles can be passed to other
processes, and callbacks do not have to be directed to the process that submitted the job
request. These features of the GRAM design facilitate the implementation of diverse higher-
level scheduling strategies. For example, a high-level broker or co-allocator can make a request
on behalf of an application, while the application monitor the progress of the request.

5.1 GRAM Scheduling Model

We discuss briefly the scheduling model defined by GRAM, as this is relevant to subsequent dis-
cussion of co-allocation. This model is illustrated in Figure 5, which shows the state transitions
that may be experienced by a GRAM job.

When submitted, the job is initially pending, indicating that resources have not yet been
allocated to the job. At some point in time, the job is allocated the requested resources and
the application starts running. The job then transitions to the active state. At any point prior
to entering the done state, the job can be terminated, causing it to enter the failed state. A
job can fail due to explicit termination, an error in the format of the request, a failure in the
underlying resource management system or a denial of access to the resource. The source of the
failure is provided as part of the notification of state transition. When all of the processes in the
job have terminated and resources have been deallocated, the job then enters the done state.

5.2 GRAM Implementation

The GRAM implementations that we have constructed have the structure shown in Figure 6.
The principal components are the GRAM client library, the gatekeeper, the RSL parsing library,
the job manager, and the GRAM reporter. The Globus security infrastructure (GSI) is used for
authentication and for authorization.

The GRAM client library is used by an application or a co-allocator acting on behalf of an
application. It interacts with the GRAM gatekeeper at a remote site to perform mutual authen-
tication and transfer a request, which comprises a resource specification, a callback (described
below), and a few other components that are not relevant to the current discussion.
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Figure 6: Major components of the GRAM implementation. Those represented by thick-lined
ovals are long-lived processes, while the thin-lined ovals are short-lived processes created in
response to a request.
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The gatekeeper is an extremely simple component that responds to a request by doing three
things: performing mutual authentication of user and resource, determining a local user name
for the remote user, and starting a job manager which executes as that local user and actually
handles the request. The first two security-related tasks are performed by calls to the Globus
security infrastructure (GSI), which handles issues of site autonomy and substrate heterogeneity
in the security domain. In order to start the job manager, the gatekeeper must run as a privileged
program: on Unix systems, this is achieved via suid or inetd. However, because the interface
to the GSI is small and well defined, it is easy for organizations to easily and approve the
gatekeeper code. In fact, the gatekeeper code has successfully undergone security reviews at a
number of large supercomputer centers. The mapping of remote user to locally recognized user
name minimizes the amount of code that must run as a privileged program; it also allows us to
delegate most authorization issues to the local system.

A job manager is responsible for creating the actual processes requested by the user. This
task typically involves submitting a resource allocation request to the underlying resource man-
agement system, although if no such system exists on a particular resource, a simple fork may
be performed. Once processes are created, the job manager is also responsible for monitoring
the state of the created processes, notifying the callback contact of any state transitions, and
implementing control operations such as process termination. A job manager terminates once
the job for which it is responsible has terminated.

The GRAM reporter is responsible for storing into MDS various information about scheduler
structure (e.g., whether the scheduler supports reservation and the number of queues) and state
(e.g., total number of nodes, number of nodes currently available, currently active jobs, and
expected wait time in a queue). An advantage of implementing the GRAM reporter as a distinct
component is that MDS reports can continue even when no gatekeeper or job manager is running:
for example, when the gatekeeper is run from inetd.

As noted above, GRAM implementations have been constructed for six local schedulers
to date: Condor, LSF, NQE, Fork, EASY, and LoadLeveler. Much of the GRAM code is
independent of the local scheduler and so only a relatively small amount of scheduler-specific code
needed to be written in each case. In most cases, this code comprises shell scripts that make use
of the local scheduler’s user-level API. State transitions are mostly handled by polling, because
this proved to be more reliable than monitoring job process by using mechanisms provided by
the local schedulers.

6 Resource Brokers

As noted above, we use the term resource broker to denote an entity in our architecture that
translates abstract resource specifications into more concrete specifications. As illustrated in Fig-
ure 2, this definition is broad enough to encompass a variety of behaviors, including application-
level schedulers [3] that encapsulate information about the types of resource required to meet
a particular performance requirement, resource locators that maintain information about the
availability of various types of resource, and (ultimately) traders that create markets for re-
sources. In each case, the broker uses information maintained locally, obtained from MDS, or
contained in the specification to specialize the specification, mapping it into a new specification
that contain more detail. Requests can be passed to several brokers, effectively composing the
behaviors of those brokers, until eventually the specification is specialized to the point that it
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identifies a specific resource manager. This specification can then be passed to the appropriate
GRAM or, in the case of a multirequest, to a resource co-allocator.

We claim that our architecture makes it straightforward to develop a variety of higher-level
schedulers. In support of this claim, we note that following the definition and implementation of
GRAM services, a variety of people, including people not directly involved in GRAM definition,
were able to construct half a dozen resource brokers quite quickly. We describe three of these
here.

6.1 Nimrod-G

David Abramson and Jonathan Giddy are using GRAM mechanisms to develop Nimrod-G, a
wide-area version of the Nimrod [2] tool. Nimrod automates the creation and management of
large parametric experiments. It allows a user to run a single application under a wide range of
input conditions and then to aggregate the results of these different runs for interpretation. In
effect, Nimrod transforms file-based programs into interactive “meta-applications” that invoke
user programs much as we might call subroutines.

When a user first requests a computational experiment, Nimrod/G queries MDS to locate
suitable resources. It uses information in MDS entries to identify sufficient nodes to perform the
experiment. The initial Nimrod-G prototype operates by generating a number of independent
jobs, which are then allocated to computational nodes using GRAM. This module hides the
nature of the execution mechanism on the underlying platform from Nimrod, hence making it
possible to schedule work using a variety of different queue managers without modification to the
Nimrod scripts. As a result, a reasonably complex cluster computing system could be retargeted
for wide area execution with relatively little effort.

In the future, the Nimrod-G developers plan to provide a higher level broker that allows the
user to specify time and cost constraints. These constraints will be used to select computational
nodes that can meet user requirements for time and cost or, if constraints cannot be met, to
explain the nature of the cost/time tradeoffs. As part of this work, a dynamic resource allocation
module is planned that will monitor the state of each system, and relocate work when necessary
in order to meet the deadlines.

6.2 AppLeS

Rich Wolski has used GRAM mechanisms to construct an application-level scheduler (Ap-
pLeS) [3] for a large loosely coupled problem from computational mathematics. As in Nimrod-
G, the goal was to map a large number of independent tasks to a dynamically varying pool
of available computers. GRAM mechanisms were used to locate resources (including parallel
computers) and to initiate and manage computation on those resources. AppLeS itself provided
fault tolerance, so that errors reported by GRAM would result in a task being resubmitted
elsewhere.

6.3 A Graphical Resource Selector

The graphical resource selector (GRS) illustrated in Figure 7 is an example of an interactive
resource selector constructed with our services. This Java application allows the user to build
up a network representing the resources required for an application; another network can be
constructed to monitor the status of candidate physical resources. A combination of automatic
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Figure 7: A screen shot of the Graphical Resource Selector. A more interesting shot will be
provided in the final paper.

and manual techniques are then used to guide resource selection, eventually generating an RSL
specification for the resources in question. MDS services are used to obtain the information used
for resource monitoring and selection, and resource co-allocator services to generate the GRAM
requests required to execute a program once a resource selection is made.

7 Resource Co-allocation

Through the actions of one or more resource brokers, the requirements of an application are
refined into a ground RSL expression. If the expression consists of a single resource request, it
can be submitted directly to the manager that controls that resource. However, as discussed
above, it is often the case that a metacomputing application requires that several resources—
such as two or more computers and intervening networks—be allocated simultaneously. In these
cases, a resource broker produces a multirequest and co-allocation is required. The challenge
in responding to a co-allocation request is to allocate the requested resources in a distributed
environment, across two or more resource managers, where global state, such as availability of
a set of resources, is difficult to determine.

Within our resource management architecture, multirequests are handled by an entity called
a resource co-allocator. In brief, the role of a co-allocator is to split a request into its constituent
components, submit each component to the appropriate resource manager, and then provide a
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means for manipulating the resulting set of resources as a whole: for example, for monitoring job
status or terminating the job. Within these general guidelines, a range of different co-allocation
service can be constructed. For example, we can imagine allocators that:

• mirror current GRAM semantics: that is, require all resources to be available before the
job is allowed to proceed, and fail globally if failure occurs at any resource;

• allocate at least N out of M requested resources then return; or

• return immediately, but gradually return more resources as they become available.

Each of these services is useful to a class of applications. To date, we have had the most ex-
perience with a co-allocator that takes the first of these approaches: that is, extends GRAM
semantics to provide for simultaneous allocation of a collection of resources, enabling the dis-
tributed collection of processes to be treated as a unit. We discuss this co-allocator in more
detail.

Fundamental to a GRAM-style concurrent allocation algorithm is the ability to determine
if the desired set of resources is available at some time in the future. If the underlying local
schedulers support reservation, this question can be easily answered by obtaining a list of avail-
able time slots from each participating resource manager, and choosing a suitable timeslot [23].
Ideally, this scheme would use transaction-based reservations across a set of resource managers,
as provided by Gallop [26]. In the absence of transactions, the ability to either make a tentative
reservation or to retract an existing reservation in needed. However, in general, a reservation-
based strategy is limited due to the fact that currently deployed local resource management
solutions do not support reservation.

In the absence of reservation, we are forced to use indirect methods to achieve concurrent
allocation. These methods optimistically allocate resources in the hope that the desired set will
be available at some “reasonable” time in the future. Guided by sources of information, such
as the current availability of resources (provided by MDS) or queue-time estimation [24, 7], a
resource broker can construct a RSL request that is likely, but not guaranteed, to succeed. If
for some reason the allocation eventually fails, all of the started jobs must be terminated. This
approach has several drawbacks:

• It is inefficient in that computational resource are wasted while waiting for all of the
requested to become available.

• We need to ensure that application components do not start to execute before the co-
allocator can determine if the request will succeed. Therefore, the application must perform
a barrier operation to synchronize startup across components, meaning that the application
must be altered beyond what is required for GRAM.

• Detecting failure of a request can be difficult if some of the request components are directed
to resource managers that interface to queue-based local resource management systems.
In these situations, a timeout must be used to detect failure.

However, in spite of all of these drawbacks, co-allocation can frequently be achieved in practice as
long as the resource requirements are not large compared to the capacity of the metacomputing
system.
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We have implemented a GRAM-compatible co-allocator that implements a job abstraction
in which multiple GRAM subjobs are collected into a single distributed job entity. State infor-
mation for the distributed job is synthesized from the individual states of each subjob and job
control (e.g., cancellation) is automatically propagated to the resource managers at each subjob
site. Subjobs are started independently and as discussed above must perform a runtime checkin
operation. With the exception of this checkin operation, the co-allocator interface is a drop-in
replacement for GRAM.

We have used this co-allocator to manage resources for SF-Express [19, 4], a large scale
distributed interactive simulation application. Using our co-allocator and the GUSTO testbed,
we were able to simultaneously obtain 852 compute nodes on three different architectures located
at six different computer centers, controlled by three different local resource managers. The use
of a co-allocation service significantly simplified the process of resource allocation and application
startup.

Running SF-Express “at scale” on a realistic testbed allowed us to study the scalability of
our co-allocation strategy. One clear lesson learned is that the strict “all or nothing” semantics
of the distributed job abstraction severely limited scalability. Even if each individual parallel
computer is reasonably reliable and well understood, the probability of subjob failure due to
improper configuration, network error, authorization difficulties, etc., increases rapidly as the
number of subjobs increases. Yet many such failure modes resulted simply from a failure to
allocate a specific instance of a commodity resource, for which an equivalent resource could easily
have been substituted. Because such failures frequently occur after a large number of subjobs
have been successfully allocated, it would be desirable to make the substitution dynamically,
rather than to cancel all the allocations and start over.

We plan to extend the current co-allocation structure to support such dynamic job structure
modification. By passing information about the nature of the subjob failure out of the co-
allocator, a resource broker can edit the specification, effectively implementing a backtracking
algorithm for distributed resource allocation. Note that we can encode the necessary information
about failure in a modified version of the original RSL request, which can be returned to the
component that originally requested the co-allocation services. In this way, we can iterate
through the resource-broker/co-allocation components of the resource management architecture
until an acceptable collection of resources has been acquired on behalf of the application.

8 Conclusions

We have described a resource management architecture for metacomputing systems that ad-
dresses requirements for of site autonomy, heterogeneous substrates, policy extensibility, co-
allocation, and online control. This architecture has been deployed and applied successfully in a
large testbed comprising 15 sites, 330 computers, and 3600 processors, within which LSF, NQE,
LoadLeveler, EASY, Fork, and Condor were used as local schedulers.

The primary focus of our future work in this area will be on the development of more
sophisticated resource broker and resource co-allocator services within our architecture, and on
the extension of our resource management architecture to encompass other resources such as
disk and network. We are also interested in the question of how policy information can be
encoded so as to facilitate automatic negotiation of policy requirements by resources, users, and
processes such as brokers acting as intermediaries.
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