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Abstract

Despite recent excitement generated by the P2P
paradigm and despite surprisingly fast deployment of
some P2P applications, there are few quantitative
evaluations of P2P systems behavior. Due to its open
architecture and achieved scale, Gnutella is an
interesting P2P architecture case study. Gnutella, like
most other P2P applications, builds at the application
level a virtual network with its own routing mechanisms.
The topology of this virtual network and the routing
mechanisms used have a significant influence on
application properties such as performance, reliability,
and scalability. We built a ‘crawler’ to extract the
topology of Gnutella’s application level network. In this
paper we analyze the topology graph and evaluate
generated network traffic. We find that although Gnutella
is not a pure pOwer-law network, its current configuration
has the benefits and drawbacks of a power-law structure.
These findings lead us to propose changes to Gnutella
protocol and implementations that bring significant
performance and scalability improvements.

1. Introduction

Peer-to-peer systems (P2P) have emerged as a
significant social and technical phenomenon over the last
year. P2P systems provide infrastructure for communities
that share CPU cycles (e.g., Entropia [21],
SETI@Home[22]) and/or, storage space (e.g., FreeNet
[23], Gnutella [19]), or that support interpersonal
collaborative environments (Groove [20]). Two factors
have fostered the recent explosive growth of such
systems: first, the low cost and high availability of huge
computing and storage resources, and second, increased
network connectivity. As these trends continue, the P2P
paradigm can be expected to become more popular.

Peer-to-peer networks allow individual computers to
communicate directly with each other and to share

information and resources without using specialized
‘servers’. Early P2P applications often do not fully fit
this definition. Napster, for example, relies on centralized
databases to index and locate files and respond to
searches; only file transfers occur directly between peers.
Newer applications (e.g., Gnutella, FreeNet) are
completely decentralized: each member of the network
performs the same set of tasks and “serves” all other
network members.

A common characteristic of this new breed of
applications is that they build, at the application level, a
virtual network with its own routing mechanisms. The
topology of this virtual network and the routing
mechanisms used have a significant influence on
application properties such as performance, reliability,
and, in some cases, anonymity. The virtual topology also
determines the communication costs incurred when
running the P2P application.

These considerations have motivated us to conduct a
detailed study of the topology and protocol of a popular
P2P system, Gnutella. In this study, we benefited from
Gnutella’s large existing user base and open architecture,
and, in effect, use the public Gnutella network as a large-
scale, if uncontrolled, testbed. We capture the network
topology, the generated traffic, and the resources’
dynamic behavior. We use our findings to evaluate costs
and benefits of the P2P approach and to investigate
possible improvements to the routing protocol that would
allow for better scaling and increased reliability.

Recent research [1,7,8,13] shows that networks
ranging from natural networks such as molecules in a cell
or people in a social group to the Internet organize
themselves so that most nodes have few links and a small
number of nodes have many links. In [14], Albert finds
that networks following this organizational pattern
(power-law networks) display an unexpected degree of
robustness when facing random node failures: the ability
of the network to communicate is unaffected by high
failure rates. However, error tolerance comes at a high
price: these networks are extremely vulnerable to attacks,
i.e., to the selection and removal of a few nodes that play



the most important role in assuring the network's
connectivity. We show that Gnutella is similar to a
power-law network, thus being able to operate in highly
dynamic environments.

Related work: Distributed Search Solutions (DSS)
group publishes partial results of their Gnutella research
[4,5]. A number of other research projects build on
DSS’s data: [2] analyzes Gnutella user behavior while [6]
focuses on efficient search protocols in power-law
networks. T. Hong ([18]) uses medium scale simulations
(up to 1000 nodes) to explore Gnutella network
properties. However, our network crawling and analysis
technology (developed independently of this work) goes
significantly further in terms of scale (both spatial and
temporal) and sophistication. The present article
significantly extends previously published results: while
DSS presents only raw facts about the network, here we
analyze the generated network traffic and find underlying
patterns in network organization.

The paper is structured as follows: the next section
provides a brief enumeration of P2P design goals and
Section 3 succinctly describes Gnutella’s protocol.
Section 4 introduces the crawler we developed to
discover Gnutella’s virtual network topology. In section 5
we thoroughly analyze the network. We conclude in
Section 6 with proposed changes to the protocol and its
implementations that could bring significant scalability
improvements.

2. Design Goals of P2P File Sharing Systems

Most P2P file sharing applications attempt to fulfill the

following design goals:

= Ability to operate in a dynamic environment — P2P
applications operate in dynamic environments where
hosts are likely to often join or leave the network.
Applications must achieve flexibility to keep operating
transparently despite a constantly changing set of
resources.

= Performance and Scalability (aggregate storage size,
response time, availability, query throughput) —
Ideally, when increasing the number of nodes, storage
space and file availability should grow linearly,
response time should remain constant, while search
throughput should remain high or grow.
We believe P2P shows its full potential only on large-
scale deployments where the limits of the client/server
paradigm become obvious. Moreover, scalability is
important as P2P applications exhibit what economists
call “network effect” [10]: the value of a network to an
individual user increases with the total number of users
participating in the network.

= Reliability — External attacks should not cause
significant data or performance loss.

= Anonymity - Anonymity is valued as a means of
protecting the privacy of people seeking or providing
unpopular information.

3. Gnutella Protocol Description

Gnutella nodes, called servents by developers, perform
tasks normally associated with both SERVers and cliENTS,
They provide client-side interfaces through which users
can issue queries and view search results, accept queries
from other servents, check for matches against their local
data set, and respond with corresponding results. These
nodes are also responsible for managing the background
traffic that spreads the information used to maintain
network integrity.

In order to join the system a new node/servent initially
connects to one of several known hosts that are almost
always available (e.g., gnutellahosts.com). Once attached
to the network (having one or more open connections
with nodes already in the network), nodes send messages
to interact with each other. Messages can be broadcasted
(i-e., sent to all nodes with which the sender has open TCP
connections) or simply back-propagated (i.e., sent on a
specific connection on the reverse of the path taken by an
initial, broadcasted, message). Several features of the
protocol  facilitate  this  broadcast/back-propagation
mechanism.  First, each message has a randomly
generated identifier. Second, each node keeps a short
memory of the recently routed messages, used to prevent
re-broadcasting and implement back-propagation. Third,
messages are flagged with time-to-live (TTL) and “hops
passed” fields.

The messages allowed in the network are:
= Group Membership (PING and PONG) Messages. A

node joining the network initiates a broadcasted PING

message to announce its presence. When a node
receives a PING message it forwards it to its neighbors
and initiates a back-propagated PONG message. The

PONG message contains information about the node

such as its IP address and the number and size of

shared files.
= Search (QUERY and QUERY RESPONSE) Messages.

QUERY messages contain a user specified search

string, each receiving node matches against locally

stored file names. QUERY messages are broadcasted.

QUERY RESPONSES are back-propagated replies to

QUERY messages and include information necessary to

download a file.
= File Transfer (GET and PUSH) Messages. File

downloads are done directly between two peers using

GET/PUSH messages.

To summarize: to become a member of the network, a
servent (node) has to open one or many connections with
nodes that are already in the network. In the dynamic



environment where Gnutella operates, nodes often join
and leave and network connections are unreliable. To
cope with this environment, after joining the network, a
node periodically PINGs its neighbors to discover other
participating  nodes. Using this information, a
disconnected node can always reconnect to the network.
Nodes decide where to connect in the network based only
on local information, and thus form a dynamic, self-
organizing network of independent entities. This virtual,
application-level network has Gnutella servents at its
nodes and open TCP connections as its links. In the
following sections we describe how we discover this
network topology and analyze its characteristics.

4. Data Collection: The Crawler

We have developed a crawler that joins the network as
a servent and uses the membership protocol (the PING-
PONG mechanism) to collect topology information. In this
section we briefly describe the crawler and discuss other
issues related to data collection.

The crawler starts with a list of nodes, initiates a TCP
connection to each node in the list, sends a generic join-in
message (PING), and discovers the neighbors of the node it
contacted based on the replies it gets back (PONG
messages). Newly discovered neighbors are added to the
list. For each discovered node the crawler stores its IP
address, port, the number of files and the total space
shared. We started with a short, publicly available list of
initial nodes, but in time we have incrementally built our
own list with more than 400,000 nodes that have been
active at one time or another.

We first developed a sequential version of the crawler.
Using empirically determined optimal values for
connection establishment timeout as well as for
connection listening timeout (the time interval the crawler
waits to receive PONGs after it has sent a PING), a
sequential crawl of the network proved slow: about 50
hours even for a small network (4000 nodes). This slow
search speed has two disadvantages: not only it is not
scalable, but the dynamic network behavior means that
the result is far from a network topology snapshot.

In order to reduce the crawling time, we next
developed a distributed crawling strategy. Our distributed
crawler has a client/server architecture: the server is
responsible with managing the list of nodes to be
contacted, assembling the final graph, and assigning work
to clients. Clients receive a small list of initial points and
discover the network topology around these points.
Although we could use a large number of clients (easily in
the order of hundreds), we decided to use only up to 50
clients in order to reduce the invasiveness of our search.
These techniques have allowed us to reduce the crawling
time to a couple of hours even for a large list of starting

points and a discovered topology graph with more than
30,000 active nodes.

Note that in the following we use a conservative
definition of network membership: we exclude the nodes
that, although were reported as part of the network, our
crawler could not connect to. This situation might occur
when the local servent is configured to allow only a
limited number of TCP connections or when the node
leaves the network before the crawler contacts it.

S. Gnutella Network Analysis

Figure 1 presents the growth of the Gnutella network
in the past 6 months. We ran our crawler during
November 2000, February/March 2001, and May 2001.
While in November 2000 the Ilargest connected
component of the network found had 2,063 hosts, this
grew to 14,949 hosts in March, and 48,195 hosts in May
2001. Although Gnutella’s failure to scale has been
predicted time and again, the number of nodes in the
largest network component grew about 25 times
(admittedly from a low base) in the past 6 months.
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Figure 1: Gnutella network growth. The plot presents
the number of nodes in the largest connected component
in the network. Data collected during Nov. 2000, March
2001 and May 2001.

We identify three factors that allowed the network this
exceptional growth in response to user pressure. First, as
we argue in Section 5.1, careful engineering led to
significant overhead traffic decreases over the last six
months. Second, the network connectivity of Gnutella
participating machines improved significantly. Our
rough estimate (based on tracing DNS host names) is that
the number of DSL- or cable-connected machines grew
twice as fast as the overall network size. While in
November 2000 about 24% of the nodes were DSL or
cable modem enabled, this number grew to about 41% six
months later. Finally, the efforts made to better use
available networking resources by sending nodes with



low available bandwidth at the edges of the network
eventually paid off.

It is worth mentioning that the number of connected
components is relatively small: the largest connected
component always includes more than 95% of the active
nodes discovered, while the second biggest connected
component usually has less than 10 nodes.

Using records of successive crawls, we investigated
the dynamic graph structure over time. We discovered
that about 40% of the nodes leave the network in less than
4 hours, while only 25% of the nodes are alive for more
than 24 hours. Given this dynamic behavior, it is
important to find the appropriate tradeoff between
discovery time and invasiveness of our crawler.
Increasing the number of parallel crawling tasks reduces
discovery time but increases the burden on the
application. Obviously, the Gnutella map our crawler
produces is not an exact ‘snapshot’ of the network.
However, we argue that the network graph we obtain is
close to a snapshot in a statistical sense: all properties of
the network: size, diameter, average connectivity, and
connectivity distribution are preserved.
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Figure 2: Gnutella generated traffic classified by
message type over a 376 minute period in November
2000. Note that overhead traffic (PING messages serve
only to maintain network connectivity) forms more than
50% of the traffic. For backward compatibility, flooding is
also used to deliver some file download requests (PusH
messages). The only ‘true’ user traffic is QUERY
messages.

5.1. Gnutella Generated Traffic

We also used the crawler to eavesdrop the traffic
generated by the network. In Figure 2 we classified
Gnutella generated traffic in November 2000, according
to message type. We detected that the volume of
generated traffic is the main obstacle for better scaling

and wider deployment. After adjusting for message size,
we determined that, on average, only 36% of the total
traffic was user-generated traffic (QUERY messages). 55%
of the traffic was pure overhead (PING and PONG
messages) while 9% of the traffic contained either bogus
messages (1%) or PUSH messages that were broadcasted
by servents that were not fully compliant with the latest
version of the protocol.

By June 2001 (presumably due to the arrival of newer
Gnutella implementations), unnecessary overhead traffic
was cut down: generated traffic contained 92% QUERY
messages, 8% PING messages and insignificant levels of
other message types. A large part of the network’s ability
to grow can be attributed to this significant reduction of
overhead traffic.

5.2. Shared Data Distribution

Figure 3 presents the correlation between the amount
of data shared and the number of links a node maintains.
While most nodes share few files and maintain only a
couple of connections, a small group provides more than
half of the information shared, while another, distinct,
group provides most of the essential connectivity (this
characteristic of the network is also mentioned in [2]).

@ 12
% 4 ¢
2 10
0]
3
o 8
= .
o .
g 6 A 4 * & .
e o %
4
>
2 M *
® .
. .
0
0 20 40 60 80 100
Node connectivity

Figure 3: Correlation between the amount of data
shared by a node and the number of links it maintains.
Gnutella network on 12/03/2000 with 1876 nodes and
0.93TB of shared disk space. The picture is similar for
other network snapshots.

In Figure 4 we eliminate the ‘free-riders’ (nodes that
do not share any files) and plot the distribution of the
number of files shared by each node. We discover a
power-law distribution for the number of nodes N that
share files: the number of nodes sharing K files is N=k ©,
where € is a constant. This distribution holds for the
majority of our Gnutella network measurements,
regardless of the time when they were taken, with a
constant € in the range 0.8 to 0.95. This result is only
partially surprising as the power law is manifest in a large



number of instances in the WWW and Internet world
[1,9,12]: the number of pages served by an HTTP server,
the number of hits received by an HTTP server, the
number of in/out-links from a Web page, and the number
of network connections to an Internet host are all
distributed according to a power-law. Moreover, there are
strong similarities between power-law and Zipf’s
distributions ([15] shows how one of these distribution
laws can be expressed in the other’s terms). A large
number of man-made and naturally occurring phenomena
including incomes, word frequencies, earthquake
magnitudes, web-cache object popularity and even
Gnutella queries [17] are distributed according to a Zipf’s
law distribution.

The power-law distribution observed makes the
network extremely dependent on the information provided
by the largest. Thus, the largest 1% of all nodes provide
30% of the files available in the network, while the largest
10% of nodes provide 71% of the files available. Free
riding (i.e., participating in the network without sharing
files) can only exacerbate this dependency.
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Figure 4: Power-law data distribution: The number of
nodes that share a particular number of files is roughly
proportional to the number of files raised to a negative
constant power.

5.3. Node Connectivity and Network Topology
Analysis

One interesting feature of the network is that, over a
seven-month period, with the network scaling up almost
two orders of magnitude, the average number of
connections per node remained constant (Figure 5).
Assuming this invariant holds, it is possible to estimate
the number of connections a larger network will create
and find scalability limits based on available bandwidth (a
detailed analysis is presented in [16]).

When analyzing global connectivity and reliability
patterns in the Gnutella network, it is important to keep in

mind the self-organized network behavior: users decide
only the maximum number of connections a node should
support, while nodes decide to whom to connect or when
to drop/add a connection based only on local information.
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Figure 5: Average node connectivity. Each point
represents one Gnutella network. Note that, as the
network grows, the average number of connections per
node remains constant (average node connectivity is 3.4).

Recent research [1,7,8,13] shows that many natural
networks such as molecules in a cell, species in an
ecosystem, and people in a social group organize
themselves as so called power-law networks. In these
networks most nodes have few links and a tiny number of
hubs have a large number of links. More specifically, in a
power-law network node connectivity follows a power
law distribution (i.e. the fraction of nodes with L links is

proportional to L_k, where K is a network dependent
constant as introduced in Section 5.2.).

This structure helps explaining why networks ranging
from metabolisms to ecosystems to the Internet are
generally highly stable and resilient, yet prone to
occasional catastrophic collapse [14]. Since most nodes
(molecules, Internet routers, Gnutella servents) are
sparsely connected, little depends on them: a large
fraction can be taken away and the network stays
connected. But, if just a few highly connected nodes are
eliminated, the whole system could crash. One
implication is that these networks are extremely robust
when facing random node failures, but vulnerable to well-
planned attacks.

Given the diversity of networks that exhibit power-law
structure and their properties, we were interested to
determine whether Gnutella falls into the same category.
Figure 6 presents the connectivity distribution in
November 2000. Although data are noisy (due to the
small size of the networks), we can easily recognize the
signature of a power-law distribution: the connectivity
distribution appears as a line on a log-log plot. [6,4]



confirm that early Gnutella networks were power-law.
Later measurements (Figure 7), however, show that more
recent networks move away from this organization: there
are too few nodes with low connectivity to form a pure
power-law network. In these networks the power-law
distribution is preserved for nodes with more than 10
links while nodes with fewer links follow an almost
constant distribution.
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Figure 6: Connectivity distribution during November
2000. Each series of points represents one Gnutella
network topology we discovered at different times during
that month. Note the log scale on both axes. Gnutella
nodes organized themselves into a power-law network.
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Figure 7. Connectivity distribution during March 2001.
Each series of points represents one Gnutella network
topology discovered during March 2001. Note the log
scale on both axes. Networks crawled during May/June
2001 show a similar pattern.

An interesting issue is the impact of this new, multi-
modal distribution on network reliability. We believe that
the more uniform connectivity distribution preserves the
network capability to deal with random node failures
while reducing the network dependence on highly
connected, easy to single out (and attack) nodes.
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Figure 8: Distribution of node-to-node shortest paths.
Each curve represents one network measurement. Note
that, although the largest network diameter (the longest
node-to-node path) is 12, more than 95% of node pairs
are at most 7 hops away.

Another interesting issue is the combined impact of
network growth and node connectivity distribution on
node-to-node distance in the network. Remarkably, while
the network scaled up in size about 50 times, the average
node-to-node distance grew only 26% from an average of
4.24 in November to an average of 5.35 in May 2001.
Figure 8 shows the distribution on node-to-node distances
and confirms the average one hop increase over the past 6
months: the three left-most curves represent network
measurements from November 2000 while the other
represent network measurements from May 2001. It is
easy to see that the curves that represent more recent
measurements have uniformly shifted right about one hop.

6. Summary and Potential Improvements

Gnutella is an open, decentralized, P2P search protocol
that is mainly used to find and share files. Computers
running Gnutella protocol-compatible software form an
application-level network. We have developed tools to
discover and analyze this network. Our analysis shows
that Gnutella node connectivity follows a multi-modal
distribution, combining a power law and a quasi-constant
distribution. This property keeps the network as reliable
as a pure power-law network when assuming random
node failures, and makes it harder to attack by a malicious
adversary. Gnutella takes few precautions to ward off
potential attacks. For example, the network topology
information that we have obtained here is easy to obtain
and would permit highly efficient denial-of-service
attacks. Some form of security mechanisms that would
prevent an intruder from gathering topology information
appears essential for the long-term survival of the network



(although it would make global network monitoring more
difficult if not impossible).

We see two directions for improvement. First, we
observe that the application-level topology determines the
volume of generated traffic, the search success rate, and
application reliability. We could design an agent that
constantly monitors the network and intervenes by asking
servents to drop or add links as necessary to keep the
network topology optimal. Agents (or nodes) could
embed some information about the underlying physical
network and build accordingly the virtual application
topology. Note that implementing this idea requires only
minor protocol modifications.

The second direction is to replace flooding with a
smarter (less expensive in terms of communication costs)
routing and group communication mechanism. We have
collected a large amount of data on the environment in
which Gnutella operates and shall use it in simulations to
investigate the appropriateness of these and various other
alternatives.
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