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Abstract

Emerging high-performance applications require the ability to exploit diverse, ge-
ographically distributed resources. These applications use high-speed networks to in-
tegrate supercomputers, large databases, archival storage devices, advanced visualiza-
tion devices, and/or scientific instruments to form networked virtual supercomputers or
metacomputers. While the physical infrastructure to build such systems is becoming
widespread, the heterogeneous and dynamic nature of the metacomputing environment
poses new challenges for developers of system software, parallel tools, and applications.
In this article, we introduce Globus, a system that we are developing to address these
challenges. The Globus system is intended to achieve a vertically integrated treatment
of application, middleware, and network. A low-level toolkit provides basic mechanisms
such as communication, authentication, network information, and data access. These
mechanisms are used to construct various higher-level metacomputing services, such as
parallel programming tools and schedulers. Our long-term goal is to build an Adaptive
Wide Area Resource Environment (AWARE), an integrated set of higher-level services
that enable applications to adapt to heterogeneous and dynamically changing meta-
computing environments. Preliminary versions of Globus components were deployed
successfully as part of the I-WAY networking experiment.

1 Introduction

New classes of high-performance applications are being developed that require unique capa-
bilities not available in a single computer. Such applications are enabled by the construction
of networked virtual supercomputers, or metacomputers [2], execution environments in which
high-speed networks are used to connect supercomputers, databases, scientific instruments,
and advanced display devices, perhaps located at geographically distributed sites. In prin-
ciple, networked virtual supercomputers can both increase accessibility to supercomputing
capabilities and enable the assembly of unique capabilities that could not otherwise be
created in a cost-effective manner.

Experience with high-speed networking testbeds has demonstrated convincingly that
there are indeed applications of considerable scientific and economic importance that can
benefit from metacomputing capabilities. For example, the I-WAY networking experiment,
which connected supercomputers and other resources at 17 different sites across North
America, saw 60 groups develop applications in areas as diverse as large-scale scientific
simulation [24, 25|, collaborative engineering [5, 6], and supercomputer-enhanced scientific
instruments [18].
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Metacomputers have much in common with both distributed and parallel systems,
yvet also differ from these two architectures in important ways. Like a distributed
system, a networked supercomputer must integrate resources of widely varying capabilities,
connected by potentially unreliable networks and often located in different administrative
domains. However, the need for high performance can require programming models
and interfaces radically different from those used in distributed systems. As in parallel
computing, metacomputing applications often need to schedule communications carefully
to meet performance requirements. However, the heterogeneous and dynamic nature of
metacomputing systems limits the applicability of current parallel computing tools and
techniques.

These considerations suggest that while metacomputing can build on distributed
and parallel software technologies, it also requires significant advances in mechanisms,
techniques, and tools. The Globus project is intended to accelerate these advances. In
a first phase, we are developing and deploying a metacomputing infrastructure toolkit
providing basic capabilities and interfaces in areas such as communication, information,
resource location, resource scheduling, authentication, and data access. Together, these
toolkit components define a metacomputing abstract machine on which can be constructed
a range of alternative infrastructures, services, and applications (Figure 1). We ourselves
are building parallel programming tools and resource discovery and scheduling services, and
other groups are working in other areas.

Our long-term goal in the Globus project is to address the problems of configuration and
performance optimization in metacomputing environments. These are challenging issues,
because of the inherent complexity of metacomputing systems, the fact that resources are
often only identified at runtime, and the dynamic nature of resource characteristics. We
believe that successful applications must be able to configure themselves to fit the execution
environment delivered by the metacomputing system, and then adapt their behavior to
subsequent changes in resource characteristics. We are investigating the design of higher-
level services layered on the Globus toolkit that enable the construction of such adaptive
applications. We refer collectively to these services as forming an Adaptive Wide Area
Resource Environment, or AWARE.

The rest of the article is as follows. In Section 2, we introduce general characteristics of
metacomputing systems and requirements for metacomputing infrastructure. In Section 3,
we describe the Globus architecture and the techniques used to support resource-aware
applications. In Section 4, we describe major toolkit components. In Sections 5 and 6, we
describe higher-level services constructed with the toolkit and testbeds that have deployed
toolkit components. We conclude in Section 7 with a discussion of current system status
and future plans.

2 Metacomputing

We use the term metacomputer to denote a networked virtual supercomputer, constructed
dynamically from geographically distributed resources linked by high-speed networks.
Figure 2 illustrates an example of such a system; a somewhat simplified version of this
architecture was used in the I-WAY for real-time image processing of a data stream from a
meteorological satellite [18]. In that application, data passed from the satellite downlink to
a a cloud detection program running on a remote supercomputer, and then to a graphics
computer for rendering.

Metacomputing, like more mainstream applications of distributed computing, is moti-
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vated by a need to access resources not located within a single computer system. Frequently,
the driving force is economic: the resources in question—for example, supercomputers—
are too expensive to be replicated. Alternatively, an application may require resources
that would not normally be co-located, because a particular configuration is required only
rarely: for example, a collaborative engineering environment that connects the virtual
reality systems, design databases, and supercomputers required to work on a particular
engineering problem. Finally, certain unique resources—such as specialized databases and
people—cannot be replicated. In each case, the ability to construct networked virtual
supercomputers can provide qualitatively new capabilities that enable new approaches to
problem solving.

2.1 Metacomputing Applications

Scientists and engineers are just beginning to explore the new applications enabled
by networked supercomputing. The I-WAY experiment [4] identified four significant
application classes.

1. Desktop supercomputing. These applications couple high-end graphics capabilities
with remote supercomputers and/or databases. This coupling connects users more
tightly with computing capabilities, while at the same time achieving distance
independence between resources, developers, and users.

2. Smart instruments. These applications connect users to instruments such as
microscopes, telescopes, or satellite downlinks [18] that are themselves coupled with
remote supercomputers. This computational enhancement can enable both quasi-
realtime processing of instrument output and interactive steering.
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Fic. 2. This figure shows a networked supercomputing system used during the I-WAY
experiment for the real-time analysis of data from a meteorological satellite. The satellite downlink
is located in El Sequndo, California; the supercomputer at Argonne, Illinois; and the visualization

engine and graphics device in Los Angeles.

3. Collaborative environments. A third set of applications couple multiple virtual
environments so that users at different locations can interact with each other and
with supercomputer simulations [5, 6].

4. Distributed supercomputing. These applications couple multiple computers to tackle
problems that are too large for a single computer or that can benefit from executing
different problem components on different computer architectures [22, 24, 25]. We
can distinguish scheduled and unscheduled modes of operation. In scheduled mode,
resources, once acquired, are dedicated to an application. In wunscheduled mode,
applications use otherwise idle resources that may be reclaimed if needed; Condor [20]
is one system that supports this mode of operation. In general, scheduled mode
is required for tightly coupled simulations, particularly those with time constraints,
while unscheduled mode is appropriate for loosely coupled applications that can adapt
to time-varying resources.

2.2 Metasystem Characteristics

While the I-WAY and other networking testbeds have provided intriguing hints of what
future metacomputing systems may look like and how they may be used, the definition and
application of such systems remain research problems. Nevertheless, we can make general
observations about their characteristics (see also [15]).

e Scale and the need for selection. To date, most metacomputing experiments have been
performed on relatively small testbeds, with the 17-site -WAY being the largest. In
the future we can expect to deal with much larger collections, from which resources
will be selected for particular applications according to criteria such as connectivity,
cost, security, and reliability.
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o Heterogeneity at multiple levels. Both the computing resources used to construct
virtual supercomputers and the networks that connect these resources are often highly
heterogeneous. Heterogeneity can arise at multiple levels, ranging from physical
devices, through system software, to scheduling and usage policies.

o Unpredictable structure. Traditionally, high-performance applications have been
developed for a single class of system with well-known characteristics—or even for
one particular computer. In contrast, metacomputing applications can be required
to execute in a wide range of environments, constructed dynamically from available
resources. Geographical distribution and complexity are other factors that make it
difficult to determine system characteristics such as network bandwidth and latency
a priori.

e Dynamic and unpredictable behavior. Traditional high-performance systems use
scheduling disciplines such as space sharing or gang-scheduling to provide exclusive—
and hence predictable—access to processors and networks. In metacomputing
environments, resources—especially networks—are more likely to be shared. One
consequence of sharing is that behavior and performance can vary over time. For
example, in wide area networks built using the Internet Protocol suite, network
characteristics such as latency, bandwidth and jitter may vary as traffic is rerouted.
Large-scale metasystems may also suffer from network and resource failures. In
general, it is not possible to guarantee even minimum quality of service requirements.

o Multiple administrative domains. The resources used by metacomputing applications
often are not owned or administered by a single entity. The need to deal with multiple
administrative entities complicates the already challenging network security problem,
as different entities may use different authentication mechanisms, authorization
schemes, and access policies. The need to execute user-supplied code at different
sites introduces additional concerns.

Fundamental to all of these issues is the need for mechanisms that allow applications to
obtain real-time information about system structure and state, use that information to make
configuration decisions, and be notified when information changes. Required information
can include network activity, available network interfaces, processor characteristics, and
authentication mechanisms. Decision processes can require complex combinations of these
data in order to achieve efficient end-to-end configuration of complex networked systems.

3 The Globus Metacomputing Infrastructure Toolkit

A number of pioneering efforts have produced useful services for the metacomputing
application developer. For example, Parallel Virtual Machine (PVM) [13] and the
Message Passing Interface (MPI) [17] provide a machine-independent communication layer,
Condor [20] provides a uniform view of processor resources, Legion [14] builds system
components on a distributed object-oriented model, and the Andrew File System (AFS) [23]
provides a uniform view of file resources. Each of these systems has been proven effective
in large-scale application experiments.

Our goal in the Globus project is not to compete with these and other related efforts,
but rather to provide basic infrastructure that can be used to construct portable, high-
performance implementations of a range of such services. To this end, we focus on (a) the
development of low-level mechanisms that can be used to implement higher-level services,
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and (b) techniques that allow those services to observe and guide the operation of these
mechanisms. If successful, this approach can reduce the complexity and improve the quality
of metacomputing software by allowing a single low-level infrastructure to be used for
many purposes, and by providing solutions to the configuration problem in metacomputing
systems.

To demonstrate that the Globus approach is workable, we must show that it is possible
to use a single set of low-level mechanisms to construct efficient implementations of diverse
services on multiple platforms. As we report below, we have had some initial successes in
the communication area: our Nexus communication library has been used to construct high-
performance implementations of diverse parallel programming interfaces. However, this is
certainly not a conclusive demonstration, and the final verdict on the Globus approach
must await the results of further research.

In the following, we first introduce the Globus toolkit and then describe the mechanisms
that allow higher-level services to observe and guide the operation of toolkit components.

3.1 The Globus Toolkit

The Globus toolkit comprises a set of modules. Each module defines an interface, which
higher-level services use to invoke that module’s mechanisms, and provides an implemen-
tation, which uses appropriate low-level operations to implement these mechanisms in dif-
ferent environments.

Currently identified toolkit modules are as follows. These descriptions focus on
requirements; Sections 4 and 6 address implementation status.

e Resource location and allocation. This component provides mechanisms for expressing
application resource requirements, for identifying resources that meet these require-
ments, and for scheduling resources once they have been located. Resource location
mechanisms are required because applications cannot, in general, be expected to know
the exact location of required resources, particularly when load and resource avail-
ability can vary. Resource allocation involves scheduling the resource and performing
any initialization required for subsequent process creation, data access, etc. In some
situations—for example, on some supercomputers—location and allocation must be
performed in a single step.

o Communications. This component provides basic communication mechanisms. These
mechanisms must permit the efficient implementation of a wide range of communica-
tion methods, including message passing, remote procedure call, distributed shared
memory, stream-based, and multicast. Mechanisms must be cognizant of network
quality of service parameters such as jitter, reliability, latency, and bandwidth.

o Unified resource information service. This component provides a uniform mechanism
for obtaining real-time information about metasystem structure and status. The
mechanism must allow components to post as well as receive information. Support
for scoping and access control is also required.

o Authentication interface. This component provides basic authentication mechanisms
that can be used to validate the identity of both users and resources. These
mechanisms provide building blocks for other security services such as authorization
and data security that need to know the identity of parties engaged in an operation.

e Process creation. This component is used to initiate computation on a resource once
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it has been located and allocated. This task includes setting up executables, creating
an execution environment, starting an executable, passing arguments, integrating the
new process into the rest of the computation, and managing termination and process
shutdown.

e Data access. This component is responsible for providing high-speed remote access
to persistent storage such as files. Some data resources such as databases may be
accessed via distributed database technology or the Common Object Request Broker
Architecture (CORBA). The Globus data access module addresses the problem of
achieving high performance when accessing parallel file systems and network-enabled
I/0 devices such as the High Performance Storage System (HPSS).

Together, the various Globus toolkit modules can be thought of as defining a
metacomputing virtual machine. The definition of this virtual machine simplifies application
development and enhances portability by allowing programmers to think of geographically
distributed, heterogeneous collections of resources as unified entities.

3.2 Support for Resource-Aware Services and Applications

Metacomputing applications often need to operate networking and computing resources
at close to maximum performance. Hence, metacomputing environments must allow
programmers to observe differences in system resource characteristics and to guide how
these resources are used to implement higher-level services. Achieving these goals without
compromising portability is a significant challenge for the designer of metacomputing
software.

We use the Globus communication module to illustrate some of these issues. This
module must select, for each call to its communication functions, one of several low-level
mechanisms. On a local area network, communication might be performed with TCP/IP,
while in a parallel computer, specialized high-performance protocols typically offer higher
bandwidth and lower latencies. In a wide area environment, specialized ATM protocols can
be more efficient. The ability to manage protocol parameters (TCP packet size, network
quality of service) further complicates the picture. The choice of low-level mechanism used
for a particular communication is a nontrivial problem that can have significant implications
for application performance.

Globus toolkit modules address this problem by providing interfaces that allow the
selection process to be exposed to, and guided by, higher-level tools and applications.
These interfaces provide rule-based selection, resource property inquiry, and notification
mechanisms.

o Rule-based selection. Globus modules can identify selection points at which choices
from among alternatives (resources, parameter values, etc.) are made. Associated
with each selection point is a default selection rule provided by the module developer
(e.g., “use TCP packet size X,” “use TCP over ATM”). A rule replacement
mechanism allows higher-level services to specify alternative strategies (“use TCP
packet size Y,” “use specialized ATM protocols”).

o Resource property inquiry. Information provided by the unified information service
(Section 4) can be used to guide selection processes within both Globus modules and
applications that use these modules. For example, a user might provide a rule that
states “use ATM interface if load is low, otherwise Internet,” hence using information
about network load to guide resource selection.
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e Notification. A notification mechanism allows a higher-level service or application
to specify constraints on the quality of service delivered by a Globus service and to
name a call-back function that should be invoked if these constraints are violated.
This mechanism can be used, for example, to switch between networks when one
becomes loaded.

Higher-level services and applications can use Globus selection, inquiry, and notification
mechanisms to configure computations efficiently for available resources, and/or to adapt
behavior when the quantity and/or quality of available resources changes dynamically
during execution. For example, consider an application that performs computation on
one computer and transfers data over a wide area network for visualization at remote sites.
At startup time, the application can determine available computational power and network
capacity and configure its computational and communication structures appropriately (e.g.,
it might decide to use compression for some data but not others). During execution,
notification mechanisms allow it to adapt to changes in network quality of service.

We use the term Adaptive Wide Area Resource Environment (AWARE) to denote
a set of application interfaces, higher-level services, and adaptation policies that enable
specific classes of applications to exploit a metacomputing environment efficiently. We
are investigating AWARE components for several applications, and anticipate developing
AWARE toolkits for different classes of metacomputing application.

4 Globus Toolkit Components

We now describe in more detail the Globus communications, information service, authen-
tication, and data access services. In each case, we outline how the component maps to
different implementations, is used to implement different higher-level services, and supports
the development of AWARE services and applications.

4.1 Communications

The Globus communications module is based on the Nexus communication library [12].
Nexus defines five basic abstractions: nodes, contexts, threads, communication links, and
remote service requests (Figure 3). The Nexus functions that manipulate these abstractions
constitute the Globus communication interface. This interface is used extensively by other
Globus modules and has also been used to construct various higher-level services, including
parallel programming tools (Section 5.1). The Active Messages [21] and Fast Messages [26]
systems have similarities in goals and approach, but there are also significant differences [8].
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Nexus programs bind communication startpoints and endpoints to form communication
links. If multiple startpoints are bound to an endpoint, incoming communications are
interleaved, in the same manner as messages sent to the same node in a message passing
system. If a startpoint is bound to multiple endpoints, communication results in a multicast
operation. A startpoint can be copied between processors, causing new communication links
to be created that mirror the links associated with the original startpoint. This support
for copying means that startpoints can be used as global names for objects. These names
can be communicated and used anywhere in a distributed system.

A communication link supports a single communication operation: an asynchronous
remote service request (RSR). An RSR is applied to a startpoint by providing a procedure
name and a data buffer. For each endpoint linked to the startpoint, the RSR transfers
the data buffer to the address space in which the endpoint is located and remotely invokes
the specified procedure, passing the endpoint and the data buffer as arguments. A local
address can be associated with an endpoint, in which case startpoints associated with the
endpoint can be thought of as “global pointers” to that address.

The Nexus interface and implementation support rule-based selection (Section 3.2)
of the methods—such as protocol, compression method, and quality of service—used to
perform communication [8]. Different communication methods can be associated with
different communication links, with selection rules determining which method should be
used when a new link is established. These mechanisms have been used to support multiple
communication protocols [8] and selective use of secure communication [11] in heterogeneous
environments.

4.2 Metacomputing Directory Service

As noted above, metacomputing environments depend critically on access to information
about the underlying networked supercomputing system. Required information can include
the following.

e Configuration details about resources such as the amount of memory, CPU speed,
number of nodes in a parallel computer, or the number and type of network interfaces
available.

e Instantaneous performance information, such as point-to-point network latency,
available network bandwidth, and CPU load.

e Application-specific information, such as memory requirements or program structures
found effective on previous runs.

Different data items will have different scopes of interest and security requirements,
but some information at least may potentially be required globally, by any system
component. Information may be obtained from multiple sources: for example, from
standard information services such as the Network Information Service (NIS) or Simple
Network Management Protocol (SNMP); from specialized services such as the Network
Weather Service [29]; or from external sources such as the system manager or an application.

Globus defines a single, unified access mechanism for this wide range of information,
called the Metacomputing Directory Service (MDS) [7]. Building on the data representation
and application programming interface defined by the Lightweight Directory Access
Protocol (LDAP), MDS defines a framework in which can be represented information of
interest in distributed computing applications. Information is structured as a set of entries,
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where each entry comprises zero or more attribute-value pairs. The type of an entry, called
its object class, specifies mandatory and optional attributes (see Figure 4).

GlobusHost OBJECT CLASS GlobusResource OBJECT CLASS
SUBCLASS OF GlobusResource SUBCLASS OF top
MUST CONTAIN { MUST CONTAIN {
hostName :: cis, administrator :: dn
type :: cis, }
vendor :: cis, MAY CONTAIN {
model :: cis, manager :: dn,
OStype 11 cis, provider :: dn,
OSversion :: cis technician :: dn,
} description  :: cis,
MAY CONTAIN { documentation :: cis
networkNode :: dn, }
totalMemory :: cis,
totalSwap :: cis,
dataCache :: cis,
instructionCache :: cis
}

Fic. 4. Simplified versions of the MDS object classes GlobusHost and GlobusResource

MDS information can be maintained within conventional LDAP servers. However,
the performance and functionality requirements of metacomputing applications motivate
a number of extensions. A proxy mechanism supports the integration of other data
services, such as SNMP and NIS, and allows remote access. We are currently investigating
approaches to caching and replication, and the definition of a notification interface that will
allow higher-level services or applications to request notifications when specified conditions
become true.

4.3 Authentication Methods

The initial version of the Globus authentication module supported password, Unix RSH,
and Secure Socket Layer authentication. To increase the degree of abstraction at the toolkit
interface, we are moving towards the use of the Generic Security System (GSS) [19]. GSS
defines a standard procedure and API for obtaining credentials (passwords or certificates),
for mutual authentication (client and server), and for message-oriented encryption and
decryption. GSS is independent of any particular security mechanism and can be layered
on top of different security methods, such as Kerberos and SSL.

GSS must be altered and extended to meet the requirements of metacomputing
environments. As a metacomputing system may use different authentication mechanisms
in different situations and for different purposes, we require a GSS implementation that
supports the concurrent use of different security mechanisms. In addition, inquiry and
selection functions are needed so that higher-level services implementing specific security
policies can select from available low-level security mechanisms.
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4.4 Data Access Services

Services that provide metacomputing applications with access to persistent data can face
stringent performance requirements and must support access to data located in multiple
administrative domains. Distributed file systems such as the Network File System and
Distributed File System address remote access to some extent but have not been designed
for high-performance applications. Parallel file systems and I/O libraries have been designed
for performance but not for distributed execution.

To address these problems, the Globus data access module defines primitives that
provide remote access to parallel file systems. This remote I/O (RIO) interface (Figure 5)
is based on the abstract I/O device (ADIO) interface [28]. ADIO defines an interface for
opening, closing, reading and writing parallel files. It does not define semantics for caching,
file replication, or parallel file descriptor semantics. Several popular I/O systems have been
implemented efficiently on ADIO [28]. RIO extends ADIO by adding transparent remote
access and global naming using a URL-based naming scheme. RIO remote access features
use Nexus mechanisms.

5 Higher-Level Services

In the preceding section, we described the core interfaces and services provided by the
Globus toolkit. These interfaces are not intended for application use. Rather, they are
intended to be used to construct higher-level policy components. These policy components
can serve the function of middleware, on which yet higher-level components are constructed
to create application-level interfaces. In the following, we describe two such middleware
components.

5.1 Parallel Programming Interfaces

Numerous parallel programming interfaces have been adapted to use Globus authentication,
process creation, and communication services, hence allowing programmers to develop
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metacomputing applications using familiar tools. These interfaces include a complete
implementation of MPI (and hence tools layered on top of MPI, such as many High
Performance Fortran systems); Compositional C++ [3], a parallel extension to C++;
Fortran M, a task-parallel Fortran; nPerl, a version of the Perl scripting language extended
with remote reference and remote procedure call mechanisms; and NexusJava, a Java class
library that supports remote procedure calls.

We say a few words here about the Globus implementation of MPI. A “Nexus device”
supports the abstract device interface used within the MPICH implementation of MPI [16].
This device uses Nexus RSRs to implement the basic data transfer operations required
by MPI [10]; higher-level MPI functionality then transfers unchanged from MPICH. In
the initial MPI/Nexus implementation, an overhead for a zero-length message of 60 usec
was noted on an IBM SP2 with Power 1 processors (raw MPICH zero-length message cost
is 83.8 psec, and raw Nexus RSR cost is 82.8 usec); the overhead for larger messages is
insignificant. A recent redesign of both Nexus and the MPICH abstract device interface
has succeeded in eliminating most of this overhead. In addition to this use of Nexus, the
Globus implementation of MPI uses Globus mechanisms for authentication and process
startup [11]. These components are sufficiently integrated that in the I-WAY a user could
allocate a heterogeneous collection of resources and then start a program simply by typing
“impirun.” Under the covers, of course, Globus mechanisms are used to select appropriate
authentication, process creation, and communication mechanisms.

5.2 Unified Certificate-based Authentication

The Globus authentication interface can be used to implement a range of different security
policies. We are currently investigating a policy that defines a global, public key-based
authentication space for all users and resources. That is, we provide a centralized authority
that defines system-wide names (“accounts”) for users and resources. These names allow
an application to use a single “user id” and “password” for all resources. They also permit
the application to verify the identity of requested resources. Note that this policy does not
address authorization: resources can use their usual mechanisms to determine the users to
which they will grant access.

While not practical for large-scale, open environments, the use of a centralized authority
to identify users and resources is appropriate for limited-scale testbed environments such as
the I-WAY and GUSTO (see below). The approach has the significant advantage that it can
be implemented easily with current certificate-based authentication protocols, such as that
provided in the Secure Socket Library (SSL). Note that while names (that is, certificates)
are issued by a centralized certificate authority, the authentication of users and services
involves only the agents being authenticated; it does not require any interaction with the
issuing authority.

In the longer term, authentication and authorization schemes must address the
requirements of larger, dynamic, heterogeneous communities, in which trust relationships
span multiple administrative domains and can be irregular and selective. Some member
organizations will be more trusting of specific members than others; still others may
be competitors. Some members may feel the need to control all trust relationships
explicitly, even if it means that fewer community assets are available for their use; this may
stimulate the evolution of sub-communities with their own set of trust and authorization
relationships. Community members willing to delegate to other members the ability to
extend relationships on their behalf may more fully enjoy the benefits of membership in
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the greater community.

Our certificate-based policy can be extended to support limited forms of trust
delegation. Globus resource certificates can be given to sites with multiple resources (or
users). These sites can in turn set up a local certificate authority, which signs certificates
that it issues with the certificate issued by the Globus authority. This situation is acceptable
if the user (or resource) trusts the administration of the site issuing the Globus-signed
certificate.

6 Globus Testbeds and Experiences

We have referred above to the -WAY experiment, in which a number of Globus components
were first deployed as part of the I-Soft software environment [9]. These components
included the Nexus communication library, Kerberos-based authentication, a process
creation mechanism, and a centralized scheduler for compute resources. While inadequate in
a number of respects (e.g., nonscalable, no scheduling of network resources), this experiment
did demonstrate the advantages of the Globus approach of providing basic mechanisms. I-
WAY applications developed with a variety of parallel tools (MPI, CAVEcomm, CC++,
etc.) were ported to the I-WAY environment by adapting those tools to use Globus
mechanisms for authentication, process creation, and communication. If Globus had
enforced a particular parallel programming interface, considerable effort would have been
required to adapt existing applications to use this interface.

We are currently working with the high-performance computing community to define
additional testbeds. We describe here just one of these, the Globus Ubiquitous Super-
computing Testbed (GUSTO). GUSTO is intended initially at least as a computer science
rather than an application testbed, meaning that the initial development focus is on de-
ploying and evaluating basic mechanisms for authentication, scheduling, communication,
and information infrastructure. In this respect it complements efforts such as the I-WAY
that focus more on applications.

GUSTO is intended to span approximately fifteen sites, encompassing a number of
supercomputers (IBM SP2, Silicon Graphics Power Challenge, etc.), and workstations.
Basic connectivity is via the Internet, although some machines are also connected via OC3
(155 Mb/sec) ATM networks. Eventually, we expect most GUSTO sites to be accessible
over the National Science Foundation’s OC3 vBNS network. Authentication is based on the
uniform certificate mechanism described above. The initial information service is provided
by an information server that maintains information about resource configuration and
current network characteristics [7]. This information is updated dynamically, providing
a more accurate view of system configuration than was available in I-Soft [9].

7 Conclusions and Future Work

The Globus project is attacking the metacomputing software problem from the bottom up,
by developing basic mechanisms that can be used to implement a variety of higher-level ser-
vices. Communication, resource location, resource allocation, information, authentication,
data access, and other services have been identified, and considerable progress has been
made toward constructing quality implementations. The definition, development, applica-
tion, evaluation, and refinement of these components are ongoing processes that we expect
to proceed for the next two years at least. We hope to involve more of the metacomputing
community in this process, by adapting relevant higher-level services (e.g., application-level
scheduling [1], performance steering [27], object-based libraries [14]) to use Globus mecha-
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nisms, and by participating in the construction of additional testbeds (e.g., GUSTO).

The Globus project is also addressing the configuration problem in metacomputing sys-
tems, with the goal of producing an Adaptive Wide Area Resource Environment that sup-
ports the construction of adaptive services and applications. We have introduced selection,
information, and notification mechanisms and have defined Globus component interfaces so
that these mechanisms can be used to guide the configuration process. Preliminary experi-
ments with dynamic communication selection suggest that these configuration mechanisms
can have considerable value [8].

In summary, we list three areas in which we believe the Globus project has already
made contributions and in which we hope to see considerable further progress:

e The definition of a core metacomputing system architecture on which a range of
alternative metacomputing environments can be built.

e The development of a framework that allows applications to respond to dynamic
behaviors in the underlying metacomputing environment, and the definition and
evaluation of various adaptation policies.

e The demonstration in testbeds such as the I-WAY and GUSTO that useful higher-
level services can be layered effectively on top of the interfaces defined by the
Globus toolkit, and that automatic configuration mechanisms can be used to enhance
portability and performance.
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