
Fine-Grain Authorization for Resource Management in
the Grid Environment

K. Keahey

keahy@mcs.anl.gov
Argonne National Laboratory, Argonne, IL,

USA

V. Welch

welch@mcs.anl.gov
U. of Chicago, Chicago, IL, USA

Abstract

In this document we describe our work-in-progress for
enabling fine-grain authorization of resource
management. In particular we address the needs of Virtual
Organizations (VOs) to enforce their own polices in
addition to those of the resource owners1.

1 Introduction
In some Virtual Organizations (VOs) [1] the primary motivation for using the Grid is
remote sharing of application services deployed on community resources, rather
directly sharing those hardware resources themselves [2]. Since hardware resources
are shared only through the agency of the VO, and the community is large and
dynamically changing, the traditional mode of operation requiring each user to obtain
an account from the owner of each resource participating in the VO is no longer
satisfactory. Instead, we see an increasing trend to allow the use of both hardware and
software resources based on VO credentials. In addition, sharing VO-owned
application services requires VO-wide (as opposed to resource-specific) mechanisms
for managing both these services and the VO’s resource usage rights related to their
execution. In this paper, we present an architecture relying on VO credential for
service and resource management and allowing us to specify and enforce VO-wide
service and resource usage policies.

We propose changes and extensions to the current Globus Toolkit’s (GT2) resource
management mechanism [3] to support this enforcement of rich VO policies. We
describe how we can combine policies that are resource-specific, that is, determined
by the resource owner, and community-wide, that is set by the VO. The goal of our
work is to provide an architecture that allows a Virtual Organization to express policy
on by whom and how its allocation is consumed, while at the same time ensuring that
the resource provider’s policies are still honored. Further, we consider two kinds of
policy targets: application services, and traditional computing resources.

In the remainder of this paper we will propose a set of mechanisms enabling VOs to
realize the scenarios described above for resource management. We discuss this
architecture in the context of the current capabilities of the Globus Toolkit’s (GT2)

1 This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, U.S. Department of Energy, and by the Scientific Discovery Through
Advanced Computing (SciDAC) Initiative

resource management mechanism [3] and propose extensions. We are currently
implementing this architecture using GRAM and the Grid Security Infrastructure [4]
mechanisms.

2 Use Scenarios and Requirements
VOs are often interested in setting policies on its member’s use of community
resources, not only in terms of who can use what resource, but how they are used. In
this section we describe scenarios driving our work and illustrating the kinds of
authorization required.

1. Combining policies from different sources. A supercomputing center decides
to give allocations on some of its resources to several VOs specifying how
much resource each of the VOs is allowed to use. The VOs can then decide:
(1) which services can be run on these resources by which of their members
and (2) how much of the community allocation can be used by individual
members. This scenario requires combining policies coming from 2 different
sources: the resource owner, and the VO. These policies can be expressed in
different languages, and can contain dependencies necessary to resolve for
full evaluation.

2. Fine-grain control of how resources are used. A VO has two groups of
users: one group has the role of developing, installing and debugging the
application services used by the VO to perform their scientific computation
and the second group runs analysis using the application services. The first
group may need a large degree of freedom in the types of applications they
can run (e.g. compilers, debuggers, the applications themselves) in order to
debug and deploy the VO application services, but should only be
consuming small amounts of traditional computing resources (e.g. CPU, disk
and bandwidth) in doing so. The second group may need the ability to
consume large amounts of resources in order to perform science, but should
only be doing so using application services approved by the VO.
Furthermore, VO may wish to specify policies that certain users may use
more or less resources than others and that certain applications may consume
more or less resources than others.

3. VO-wide management of jobs and resource allocations. Currently, the only
users who are allows to manage (e.g. suspend, kill) a job are: the user who
instantiated it and any administrators on the resource on which it is running.
However, for jobs using VO resource allocations it is often desirable for the
VO to be able specify policy on who can manage a job. For example, users
in a particular VO often have long-running computational jobs using VO
resources and this same VO often has short-notice high-priority jobs that
can’t wait until other jobs are finished. Since it is often difficult to quickly
find the users who submitted the original jobs, the VO wants to give a
groups of it’s members the ability to manage any jobs on VO resources so
they can instantiate high-priority jobs on short notice.

Although we express our requirements in terms of authorization properties, and
important aspect of our work deriving from these requirements involves creating
enforcement mechanisms suitable for fine-grain authorization enforcement.

3 Problem Statement, Requirements, and General Approach
In order to support the use cases described in the previous section, we need to provide
resource management mechanisms that allow the specification and consistent
enforcement of authorization and usage policies set by a VO in addition to policies
specified by the resource providers. In addition to allowing the VO to specify policies
on standard computational resources, like processor time and storage, we want to
allow the VO to specify policies on application services that it deploys as well as
long-running computational jobs instantiated by community members.

In our work we will assume the following interaction model: An interaction is
initiated by a user submitting a request, composed of the action of starting a job and
the job’s description, accompanied by the user’s Grid credentials. This request is then
evaluated against both resource and VO policies at different policy evaluation points
(PEPs) located in the resource management facilities. If the request is authorized, it is
carried out by local enforcement mechanisms operating based on local credentials.
During the job execution, a VO user may submit management requests composed of a
management action (e.g. request information, suspend or resume a job, cancel a job,
etc.) In other words, following a pattern generally present in the Grid architecture, the
enforcement module is an intermediary that translates grid-specific capabilities into
local capabilities.

4 Overview of Current GRAM System
The current Globus Toolkit GRAM (Grid Resource Acquisition and Management) [3]
system has two major software components: the Gatekeeper and the Job Manager.
The Gatekeeper is responsible for creating a Grid service requested by the user. The
Job Manager Instance (JMI) is a Grid service providing resource management and job
control. This section will analyze the current system and explain its limitations.

4.1 Gatekeeper
The Gatekeeper is responsible for authenticating and authorizing a Grid user. The
authorization is based on the user’s grid credential and an access control list contained
in a configuration file called grid-mapfile. This file is also used to map the user’s Grid
identity to a local account effectively translating the user’s Grid credential into a local
credential. Finally, the Gatekeeper starts up a Job Manage Instance (JMI), executing
with the user’s local credential. This mode of operation requires the user to have an
account on the resource and implements enforcement only to the extent defined by
privileges on this account.

4.2 Job Manager Instance (JMI)
The JMI parses the user’s job startup request, and interfaces with the resource’s job
control system (e.g. LSF) to initiate the user’s job. During the job’s execution the JMI
monitors its progress, and handles job management requests from the user. As the
JMI is run under the user’s local credential as defined by the user’s account, the OS

and local job control system are able to enforce local policy tied to that account on the
JMI and user job.

 The JMI does no authorization on job startup. However, once the job has been
started, the JMI accepts, authenticates and authorizes management requests (e.g.
suspend, stop, query, etc.) on the job. The authorization policy on these management
requests is that the user making the request must be the same user who initiated the
job. There is no provision for modifying this policy.

4.3 GRAM Shortcomings
The current GRAM architecture has a number of shortcomings when matched up with
the requirements we laid out in Section 2:

1. Authorization of Grid service and user job startup is coarse-grained and not
up to the expressiveness required.

2. Authorization on job management is coarse-grained and fixed to allow only
the user who initiated a job to manage it.

3. Enforcement is implemented chiefly through the medium of privileges tied
to a statically configured local account (JMI runs under local user credential)
and therefore useless for enforcing fine-grained policy or policy coming
from sources external to the resource (such as a VO).

4. Local enforcement depends on the rights attached to the user’s account, not
on the rights associated with a specific request and Grid credential
accompanying that request.

5. A local account must exist for a user; this creates an undue burden on system
administrators and users alike and prevents wide adoption of the network
services model in large and dynamically changing communities.

These problems can, and have been, in some measure alleviated by clever setup. For
example, the impact of (4) can be alleviated by mapping a grid identity to several
different local accounts with different capabilities. (5) is often coped with by working
with “shared accounts” (which however introduces many security, audit, accounting
and other problems) or by providing a limited implementation of dynamic accounts
[5].

5 Proposed Authorization and Enforcement Extensions to
GRAM

In this section we describe our work in progress on implementing extensions to
GRAM intended to overcome the shortcomings described above. Our works targets
extensions to GRAM for policy evaluation including the design of a policy language
for resource management, and strategies suitable for fine-grain policy enforcement.

5.1 Authorization System Extensions
Our requirements bring forth the need to replace the authorization methods currently
used in GRAM by systems that are capable of evaluating complex fine-grain policies
coming from multiple sources; in our case specifically the resource provider and the
VO. We are currently working with two systems that meet these requirements: Akenti

[6] and the Community Authorization Service (CAS) [7]. Both of these systems
allow for multiple policies sources, but have significant differences, both in terms of
architecture (Akenti uses a pull model to query outside sources while CAS uses a
push model where the user gets credentials from outside sources and pushes them to
the resource) and programming APIs. We are in the process of experimenting with
using either, or both of these systems (to combine different policy sources).

In order to retain flexibility in the choice of an authorization system, we defined a
generic policy evaluation API that could be called by the PEP. This API will include
passing, at a minimum, the following elements to the authorization system: the user’s
grid credentials, the name(s) of the policy target, and a description of the action the
user is requesting.

5.2 Policy Language
GRAM allows user to start and manage jobs by submitting requests composed of an
action, describing what is to be done with a job (start, cancel, provide status, change
priority, etc.) and a job description. The job description is formulated in terms of
attributes specified by the Resource Specification Language (RSL)[3]. RSL consists
of attribute value pairs specifying job parameters such as executable description
(name, location, etc.), and resource requirements (number of CPUs to be used,
maximum allowable memory, etc.).

We are currently designing a policy language that allows for specification of the
contents of the job description in terms of RSL and concepts related to job
management such as actions, job ownership, and jobtags (see below). This allows a
policy to limit not only the usage of traditional computational resources, but to dictate
the executables they are allowed to invoke, allowing a VO to limit the way in which
they can consume resources.

In order to specify VO-wide job management policies we introduce the notion of job
tags. By requiring that a job have a certain jobtag we define a group of jobs that we
can write policy about. This allows us to make policy about those jobs, for example to
grant a set of users, who have an administrative role within a VO the right to manage
those jobs. In order to implement it we extended RSL to accept a jobtag as a
parameter; a VO user can then be required to submit a job with a specific jobtag (or
any jobtag depending on the policy) and a user with administrative privileges can be
given the right to use the jobtag to manage the jobs tagged by it. At present, jobtags
are defined statically by a policy administrator, but we envision an approach in which
the users will define them dynamically.

In the current implementation we experiment with the following assertions in our
policy language:

• The job request can contain a particular attribute with the following values
(e.g. enumerated list, range, regular expression or combination)

• The job request must/must not contain a particular attribute with one of the
following values (e.g. it must specify the following queue, or a single
processor, etc.)

• The job request must/must not contain a particular attribute (e.g. a jobtag
must be specified)

• The job request must not contain any attributes not specified in this policy
(in other words unless something is specified it is assumed to be forbidden)

So far we have found that these assertions cover the range of semantics we need to
express.

5.3 Policy Enforcement
The current enforcement methods relied on by GRAM are unsuitable for enforcement
of dynamically changing, fine-grained policies coming from sources external to the
resource such as present in our requirements. In order to improve them we are
working on thrusts in two areas: (1) implementing an enforcement gateway in GRAM
itself and associated resource management tools, (2) implementing dynamic accounts,
and sandboxing technologies. Combined together these approaches allow us to
control external job initiation and management, securely support users who do not
have an account on they system, and control locally operations of a job which we
believe to be necessary and sufficient to securely implement our policies.

5.3.1 Implementing enforcement in GRAM
Implementing enforcement in GRAM means creating a gateway controlling all
external access to a resource; an action is authorized or not depending on decision
yielded by a gateway. Policy can be enforced in GRAM at multiple PEPs
corresponding to different decision domains; for example a PEP placed in the
Gatekeeper can allow or disallow the creation of a Grid service. Since our work
focuses on job and resource management we established a PEP in the JM where user
requests are parsed and can therefore be evaluated. The PEP evaluates a request in the
context of user credentials and policies from multiple sources and, if authorized,
carries out the action. Since the PEP can deal with the full range of actions
implemented by GRAM, it also allows users other than the initiator of a job to
manage a job. We are working on a set of resource management tools to deal with
situations where the user’s local credential (carried by JMI) is not sufficient to carry
out the request.

The weakness of this approach is that once the resource gateway decides to allow an
action (for example a job execution), it has no control over subsequent actions of the
job including actions specifically forbidden by the gateway. This places much
responsibility in the hands of policy administrator, code developers and screeners, etc.
who have to ensure that no undesirable actions will be taken by the code itself. In
short, the gateway solution is similar to firewalls in that it places severe limitations on
how initial connections to resources can be made, but unlike firewalls it depends on a
wide range of variables that will be hard to control (such deep understanding of the
implications of the actions of a complex code).

5.3.2 Dynamic Accounts and Sandboxing
A sandbox is an environment that imposes restrictions on resource usage [8].
Sandboxing represents a strong enforcement solution, having the resource operating
system act as the policy evaluation and enforcement modules and is largely
complementary to the gateway approach. It is usually implemented by using platform-

specific tools such as the Java Virtual Machine, or operating system specific
capabilities. While they provide a solution with relatively high degree of security,
they are hard to implement portably and introduce a degree of inconsistency across
different platforms. At present our focus in this area is to tie our sandboxing needs to
the dynamic accounts.

Dynamic Accounts are accounts that are created and configured on the fly by a
resource management facility. This enables the resource management system to run
jobs on a system for users that do not have an account at that system, and it also
enables account configuration relevant to policies for a particular resource
management request as opposed to a static user’s configuration. Because of that, a
dynamic account configuration can be also used as a sandbox on the user’s rights. For
example, by modifying user’s group membership to control file system access, the
account’s quotas and other limits on resource usage, we can ensure that the user does
not use more resources than authorized. On the other hand, accounts allow the user to
modify only very few configuration parameters, and hence the enforcement
implemented in an account is coarse-grained and may need to be supplemented by
sandboxing technologies in order to implement fine-grained enforcement.

6 Summary
We described a work in progress aiming to provide mechanisms for VO-wide
authorization and enforcement. The purpose of this work is to make VO-based trust
model acceptable to resource owners and also to provide mechanisms enabling
making and enforcing policies related to VO-wide operations such as resource
management. Our system is designed to support fine-grain authorization on job
startup and management, VO-wide job as well as resource allocation management.
We are also working on strategies suitable for fine-grain policy enforcement

References
[1] The Anatomy of the Grid: Enabling Scalable Virtual Organizations. I. Foster, C. Kesselman, S. Tuecke.
International J. Supercomputer Applications, 15(3), 2001.

[2] Computational Grids in Action: The National Fusion Collaboratory, K. Keahey, T. Fredian, Q. Peng, D.
P. Schissel, M. Thompson, I. Foster, M. Greenwald, D. McCune, to be published in Journal of Future
Generation Computer Systems

[3] A Resource Management Architecture for Metacomputing Systems. K. Czajkowski, I. Foster, N.
Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke. Proc. IPPS/SPDP '98 Workshop on Job
Scheduling Strategies for Parallel Processing, po. 62-82, 1998.

[4] A National-Scale Authentication Infrastructure. R. Butler, D. Engert, I. Foster, C. Kesselman, S.
Tuecke, J. Volmer, V. Welch. IEEE Computer, 33(12):60-66, 2000.

[5] http://www.gridpp.ac.uk/gridmapdir/

[6] Certificate-based Access Control for Widely Distributed Systems, M. Thompson, et. al., Proceedings of
the 8th Usenix Security Symposium, 1999.

[7] A Community Authorization Service for Group Collaboration. L. Pearlman, V. Welch, I. Foster, C.
Kesselman, S. Tuecke. IEEE 3rd International Workshop on Policies for Distributed Systems and
Networks, 2001.

 [8] User-level Resource-constrained Sandboxing, F. Chang, A. Itzkovitz, and V. Karamcheti, Proceedings
of the USENIX Windows Systems Symposium (previously USENIX-NT), August 2000.

http://www.gridpp.ac.uk/gridmapdir/
http://www.cs.nyu.edu/vijayk/papers/user-sandbox.pdf

	Introduction
	Use Scenarios and Requirements
	Problem Statement, Requirements, and General Approach
	Overview of Current GRAM System
	Gatekeeper
	Job Manager Instance (JMI)
	GRAM Shortcomings

	Proposed Authorization and Enforcement Extensions to GRAM
	Authorization System Extensions
	Policy Language
	Policy Enforcement
	Implementing enforcement in GRAM
	Dynamic Accounts and Sandboxing

	Summary
	References

