
Communication Services

for Advanced Network Applications

John Bresnahan, Ian Foster, Joseph Insley, Brian Toonen, Steven Tuecke

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL, U.S.A.

Abstract Advanced network applications such as

remote instrument control, collaborative environ-

ments, and remote I/O are distinguished from \tra-

ditional" applications such as videoconferencing by

their need to create multiple, heterogeneous 
ows

with di�erent characteristics. For example, a sin-

gle application may require remote I/O for raw

datasets, shared controls for a collaborative anal-

ysis system, streaming video for image rendering

data, and audio for collaboration. Furthermore,

each 
ow can have di�erent requirements in terms

of reliability, network quality of service, security,

etc. We argue that new approaches to communi-

cation services, protocols, and network architecture

are required both to provide high-level abstractions

for common 
ow types and to support user-level

management of 
ow creation and quality. We de-

scribe experiences with the development of such ap-

plications and communication services.

Keywords: Network applications, communica-

tion libraries, Nexus, Collaboratory Interoper-

ability Framework (CIF)

1 Introduction

Advanced network applications such as re-

mote instrument control, collaborative envi-

ronments, and remote I/O are distinguished

from \traditional" networked applications such

as videoconferencing by their need to main-

tain multiple, heterogeneous 
ows with dif-

ferent characteristics. For example, a single

application may require remote I/O for raw

datasets, shared controls for a collaborative

analysis system, streaming video for image ren-

dering data, and audio for collaboration. Fur-

thermore, each 
ow can have di�erent require-

ments in terms of reliability, network quality

of service, security, and so on. For example,

in a tele-immersive collaborative environment,

tracking information need not be propagated

reliably but can often bene�t from multicast,

while database updates require reliable com-

munication but cannot always use multicast

capabilities. Mechanisms are required that al-

low both convenient speci�cation of these ap-

plications and e�cient execution in a variety

of environments.

Historically, such applications either have

used a single low-level communication proto-

col for all 
ows (e.g., TCP/IP [1, 2, 3]) or have

used a mixture of di�erent, often specialized

APIs for di�erent 
ows [4, 5, 6]. Neither ap-

proach is ideal. The �rst approach leads to a

protocol that is good for some purposes but

less ideal for others; in the second, program

complexity is increased and portability is hard

to achieve. In both cases, a variety of issues

relating to the coordination of multiple 
ows

(e.g., synchronization of audio and video, pri-

oritization of di�erent 
ows) have typically not

been addressed at all.

We believe that such applications require

more sophisticated communication services

with, ideally, the following characteristics:

� A uniform API allows both high-level

speci�cation of communication structure

and independent speci�cation of commu-

nication mechanisms.



� A variety of 
ow types and interaction

models are supported, including various

types of streaming data, shared controls,

and database updates.

� Support is provided for automatic and

user-managed manipulation of 
ow char-

acteristics, such as privacy, integrity, com-

pression, and network quality-of-service.

� Support is provided for the coordina-

tion and management of ensembles of


ows, enabling, for example, programmer-

controlled prioritization, synchronization,

and aggregation of 
ows in various types

of network.

� Integrated instrumentation allows user-

level monitoring of 
ow quality and no-

ti�cation, for the purpose of adaptation,

of violations in performance contracts.

Our views on these topics have been shaped

by our experiences developing both advanced

networked applications and communication li-

braries designed to support such applications.

In this paper, we review these experiences, fo-

cusing on one particularly demanding appli-

cation and three di�erent communication li-

braries.

2 Motivating Example

We use a single example application to moti-

vate some of the discussion that follows. Our

chosen application is typical of an emerging

class of so-called \Grid" applications that cou-

ple geographically distributed resources of var-

ious types to create virtual devices with unique

capabilities [7]. In this case, the resources

in question are a specialized scienti�c instru-

ment, the Advanced Photon Source (APS) at

Argonne National Laboratory, used to probe

the interior structure of materials at very small

scales using, in this case, a technique called

computed microtomography (CMT); a super-

computer, used to reconstruct 3-D material

densities from the sequence of 2-D raw data

\slices" provided by the instrument; and a

number of both high-end and low-end display

devices, used to support collaborative analy-

sis of the reconstructed data. These resources

work in concert to enable quasi-real-time re-

construction and collaborative analysis of APS

data, so that users at remote sites can be

manipulating and discussing three-dimensional

image data just minutes after data collection

begins [8].

2.1 Visualization Capabilities

The visualization system uses a specialized

graphics utility, the SGI Volumizer library, to

produce high-quality, 3-D volume-rendered im-

ages of the dataset. As illustrated in Figures 1

and 2, this data can be displayed in multi-

ple ways, depending on the capabilities of the

user's visualization environment:

� Virtual reality display: CAVE or Im-

mersaDesk (Idesk) immersive display de-

vices support high-quality, 3-D stereo dis-

play. The user can control the dis-

play through the use of a control panel

provided within the virtual environment.

This control panel allows operations such

as rotation, volume cropping, and assign-

ment of color and opacity to dataset vox-

els.

� Desktop display: Rather than rewriting

the volume renderer to run on less capable

desktop hardware, we use remotely ren-

dered video for the desktop display. The

high-quality images produced by the SGI-

based volume rendering hardware and

software are captured, compressed, and

sent over the network for display using

standard network video display tools. A

Java control panel supports desktop con-

trol of the rendering process.

� Web display: The same software can

also capture individual images from the

scene and put them on a Web page, for a

very low-end solution that provides high-

quality images.



Figure 1: A screen shot of the ImmersaDesk

taken during a collaborative session with two

users.

Shared-state mechanisms are used to link

the virtual reality and desktop displays, so that

users at di�erent locations and on di�erent

systems can cooperate in the steering of the

volume-rendering process.

2.2 Communication Requirements

The application is typical of advanced Grid ap-

plications in its simultaneous use of many un-

derlying communication structures:

� The transfer of 2-D images from the APS

to the supercomputer, and of 3-D datasets

from the supercomputer to the visualiza-

tion system, requires high-bandwidth (10s

of Mb/s today, Gb/s or more in the fu-

ture), unicast communication.

� Communication within the parallel 3-D re-

construction program requires high band-

width and low-latency communication, as

is typically available on parallel supercom-

puters through the Message Passing Inter-

face (MPI) or shared-memory libraries.

� The video stream uses standard, unre-

liable IP multicast protocols (e.g., RTP

and RTCP). We commonly used 800x600

pixel H.261 video, which requires approxi-

mately 300 kbps of bandwidth when the

Figure 2: A screen shot of a low-resolution

graphics workstation taken during a collabora-

tive session with two users.

image is rapidly changing; signi�cantly

higher resolution is desirable.

� Audio streams between the collaborators

can also use standard, unreliable IP mul-

ticast protocols. Audio requires less band-

width than video but is more susceptible

to quality degradation due to lost packets.

� The communication between the control

panels of the collaborators uses both re-

liable and unreliable multicast protocols.

Unreliable protocols can be used for in-

cremental updates of the panels, for ex-

ample while a user is dragging a slider on

the panel. Reliable protocols are used to

ensure that all participants are synchro-

nized, for example when the user releases

the slider on the panel to set a �nal value.

Hence, even in this relatively simple appli-

cation we see a need for tens of 
ows (if multi-

ple collaborators are participating) with widely

varying characteristics. Other applications can

place yet more complex demands on a commu-

nications infrastructure. For example, DeFanti

and Stevens identify nine 
ow types in collab-

orative design applications [9].



3 Nexus

The preceding section outlines the wide va-

riety of communication modalities that must

be simultaneously supported in an advanced

network application such as the CMT collab-

orative analysis and visualization system. In

general, we observe that the low-level method

used to achieve a communication can vary ac-

cording to where communication is being per-

formed, what is being communicated, or when

communication is performed [10].

Currently, developers of such applications

must program to a variety of APIs for these

various 
ows (e.g., TCP sockets, IP multicast,

reliable multicast libraries, MPI) and must

know myriad details about each API in order

to achieve good performance (e.g., TCP socket

bu�er sizes). This burden will only increase as

these applications add such features as security

and network quality of service.

We believe that the solution to this prob-

lem is to allow for the separate speci�cation

of the communication structure of an appli-

cation and the methods used to achieve that

communication. The Nexus communication li-

brary [11, 10] represents both an ambitious ex-

periment in this regard and a substantial soft-

ware system that has been used in many tool

development and application projects, rang-

ing from parallel language compilers to high-

level communication libraries and distributed

performance pro�ling systems. Nexus also

serves as the communication component of the

Globus toolkit.

Nexus provides simple, general ways for ex-

pressing communication, based on the abstrac-

tions of startpoints, endpoints, communication

links, and remote service requests. These ab-

stractions are able to express the wide va-

riety of communication modalities described

above. The Nexus implementation maps these

abstractions onto a wide variety of underlying

communication methods.

Nexus programs bind communication start-

points and endpoints to form communication

links. If multiple startpoints are bound to an

endpoint, incoming communications are inter-

leaved, in the same manner as messages sent

to the same node in a message passing sys-

tem. If a startpoint is bound to multiple end-

points, communication results in a multicast

operation. A startpoint can be copied between

processors, causing new communication links

to be created that mirror the links associated

with the original startpoint. Hence, startpoints

can be used as global names for objects that

can be communicated and used anywhere in a

distributed system.

A communication link supports a single

communication operation: an asynchronous re-

mote service request (RSR). An RSR is applied

to a startpoint by providing a procedure name

and a data bu�er. For each endpoint linked

to the startpoint, the RSR transfers the data

bu�er to the address space in which the end-

point is located and remotely invokes the spec-

i�ed procedure, passing the endpoint and the

data bu�er as arguments. A local address can

be associated with an endpoint, in which case

startpoints associated with the endpoint can be

thought of as \global pointers" to that address.

An advantage of the startpoint construct in

a distributed computing environment is that

the startpoint can be used to encapsulate not

only information about where communication

should be performed, but also how to commu-

nicate. Di�erent communication methods can

be associated with di�erent communication

links, with selection being either automatic or

user guided. The communication methods cur-

rently supported by Nexus are listed in Table 1.

In addition, a message transform, or �lter,

can be applied to each communication link.

This feature allows operations such as compres-

sion, encryption, and pro�ling to be speci�ed

and performed on a per-link basis.

Our experience is that the Nexus abstrac-

tions capture nicely numerous communication

structures and map cleanly onto a variety of

underlying protocols and capabilities (e.g., se-

curity and quality of service). The one limita-

tion of which we are aware relates to support

for multicast communication. The Nexus API

for creating startpoints and endpoints is cur-

rently better suited for the creation of unicast



Table 1: Communication methods supported by Nexus

Name Description

Local Reliable ordered unicast within a single process

SysV Reliable ordered unicast between processes

on the same computer, via System V shared memory

MPI/MPL/INX Reliable ordered unicast between processes on

di�erent nodes of a single distributed-memory computer,

via low-level communication libraries

TCP Reliable ordered unicast

UDP Unreliable, unordered or ordered unicast

IP multicast Unreliable, unordered or ordered multicast

XTP Reliable, source-ordered multicast

Totem Reliable, totally ordered multicast

communication than for multicast communica-

tion. In particular, there is currently no way to

directly bind a startpoint to multicast group.

Instead, one must �rst create an endpoint that

is bound to the multicast group, and then bind

a startpoint to that endpoint. This can be an-

noying for processes that only want to send

to a particular multicast group. This problem

can be corrected by adding the communication

link management to the API and then allowing

startpoints and endpoints to directly bind to

the communication link. Therefore, multicast

communication would be set up by creating a

communication link with multicast properties

and by binding one or more startpoints and

endpoints to that communication link.

4 CIF Comm Library

While Nexus demonstrates that a uniform in-

terface can be constructed for a variety of pro-

tocols and messaging libraries, this interface

(which was originally designed for use by com-

pilers) is too low level for all but the most

expert programmer. Hence, in a more recent

project we have developed a higher-level inter-

face that makes the same protocols available

in a more convenient form. This interface, de-

veloped as part of the DOE2000 Collaboratory

Interoperability Framework (CIF) project, is

termed CIF Comm.

The CIF Comm design employs object-

oriented concepts as a means of encapsulating

protocol details. The interface consists of three

core classes: abstract connection and listener

classes, and a factory class to instantiate them.

The abstract connection class provides a

simple interface for sending and receiving mes-

sages. It is from this class that all protocol-

speci�c connection classes are derived. As

the class name and capabilities imply, each of

the protocol-speci�c implementations provide

a connection-oriented, message-passing style

view of the communication irrespective of the

underlying protocol. Hence, applications can

switch between di�erent protocols simply by

instantiating a di�erent class.

The abstract listener class allows traditional

client-server applications to implement server-

side functionality using CIF Comm. Once a

class has been instantiated, the listener waits

for connection requests from remote connec-

tion objects. These connection requests are

transformed into local connection objects when

the application requests the next incoming con-

nection from the listener.

In reality, an application never instantiates

a protocol-speci�c connection or listener class.

Instead, it makes a request to the factory class,

which performs the instantiation on its be-

half. To facilitate protocol independence in the

factory, all requests are made using URLs in

which the �rst component speci�es the proto-



col to be used. This protocol information is

used to instantiate the correct connection or

listener class, which is then passed the remain-

der of the URL.

At present, both C++ and Java bindings

have been implemented for the CIF Comm in-

terface, supporting TCP, UDP, IP multicast,

and Totem. In addition, XTP is supported in

the C++ implementation and will soon be sup-

ported in Java as well. With these protocols,

the application has the full cross product of

reliable/unreliable and unicast/multicast com-

munication available to it.

To date, CIF Comm has been used in two

applications: a multi-user camera controller

system developed by Deb Agarwal at Lawrence

Berkeley National Laboratory and the CIF

Shared State library (described below), a fun-

damental piece of the CMT application.

5 CIF Shared State Library

Collaborative applications require mechanisms

for maintaining and synchronizing updates to

the shared data elements that represents the

state of the world in which collaboration oc-

curs. For example, in the CMT data analysis

system this shared state includes the various

controls for the remote visualization system:

point of view, color map, and so forth. We have

used CIF Comm to implement a shared-state

abstraction library, CIF Shared State, which

was then used to implement the CMT collab-

orative data analysis system.

The Shared State component of CIF allows

for shared control of abstract states in collabo-

rative space across multiple platforms. An ini-

tial impetus for the creation of the shared-state

library was to allow for shared control of \wid-

gets" across di�erent computer architectures

and languages. (Other systems, in particular

NCSA's Habanero, support a shared-state ab-

straction, but only within a Java framework.)

If shared control of sliders, buttons, and other

arbitrary components could be established, a

graphical program running on a high-end re-

source could be controlled remotely from a

simpler, more accessible computer. The CMT

collaborative visualization application uses the

CIF Shared State Library to do just that.

The CIF Shared State library is an object-

oriented API with both C++ and Java im-

plementations that allows for shared control

of abstract states. (A Java implementation

is provided for portability and a C++ imple-

mentation for use on high-end platforms and in

C-based applications; a common Nexus-based

wire protocol allows for interoperability.) The

abstract states can be implemented as GUI

components (sliders, buttons, toggles) or more

simply as arrays of data primitives (integers,


oating point numbers, bytes). To create a

shared state, the user needs only to provide a

mechanism for packing and unpacking its cur-

rent values into a CIF Shared State \Serial"

object via convenient methods provided by the

API.

The use of shared-state information rather

than collective control functions as our ba-

sic primitive proved extremely e�ective in the

CMT application. We were able to create un-

orthodox visual components that provided no

control to the user but were used to display

useful information, such as histogram graphs,

color bandwidth �lter curves, and images of

all of the users currently participating in the

collaborative session. This layer of abstraction

between shared data and visual control also al-

lowed us to couple di�erent visual component

packages with the messaging structure: a Java-

based control GUI for desktop clients and a set

of 3-D widgets for use in the CAVE.

6 Conclusions

Emerging networked applications involve mul-

tiple 
ows with di�erent and time-varying re-

quirements for low-level protocols, security,

performance, and so on. We have argued that

the communication services that we provide

to support these applications need to recog-

nize this fact and provide explicit support both

for the separate speci�cation of communica-

tion 
ow and communication method and for



the management of ensembles of 
ows in an

integrated fashion. We have described three

software systems that we have developed to

address the �rst of these concerns, namely,

the Nexus communication library and the CIF

Comm and CIF Shared State libraries. Appli-

cation experiences with these systems indicate

that the separate speci�cation of communica-

tions structure and method is indeed desirable.

In future work, we will address the association

of quality-of-service attributes with 
ows and

the management of 
ow ensembles.

Acknowledgments

We gratefully acknowledge the many colleagues

who have contributed to the development of

Nexus, the CIF libraries, and the CMT appli-

cation, in particular Gregor von Laszewski and

Steve Wang at Argonne; Carl Kesselman and

Mei Su at USC/ISI; Deb Agarwal at LBNL;

and Bruce Mah at SNL/CA. This work was

supported in part by the Mathematical, Infor-

mation, and Computational Sciences Division

subprogram of the O�ce of Computational and

Technology Research, U.S. DOE, under Con-

tract W-31-109-Eng-38; by DARPA under con-

tract N66001-96-C-8523; and by NSF.

References

[1] C. Shaw and M. Green. The MR

toolkit peers package and environment. In

Proceedings of the IEEE Virtual Reality

Annual International Symposium. IEEE

Computer Society Press, 1993.

[2] K. Birman. The process group approach

to reliable distributed computing. Com-

munications of the ACM, 36(12):37{53,

1993.

[3] C. Carlsson and O. Hagsand. DIVE -

a multi-user virtual reality system. In

Proceedings of the IEEE Virtual Reality

Annual International Symposium. IEEE

Computer Society Press, 1993.

[4] J. Mandeville, J. Furness, and T. Kawa-

hata. Greenspace: Creating a distributed

virtual environment for global applica-

tions. In Proceedings of the IEEE Net-

worked Virtual Reality Workshop. IEEE

Computer Society Press, 1995.

[5] M. Roussos, A. Johnson, J. Leigh,

C. Valsilakis, C. Barnes, and T. Moher.

NICE: Combining constructionism, narra-

tive, and collaboration in a virtual learn-

ing environment. Computer Graphics,

31(3):62{63, August 1997.

[6] M. Macedonia and M. Zyda. A taxon-

omy for networked virtual environments.

In Proceedings of the 1995 Workshop on

Networked Realities. 1995.

[7] I. Foster and C. Kesselman, editors. The

Grid: Blueprint for a Future Computing

Infrastructure. Morgan Kaufmann Pub-

lishers, 1999.

[8] G. von Laszewski, I. Foster, J. Ins-

ley, J. Bresnahan, C. Kesselman M. Su,

M. Thiebaux, M. Rivers, I. McNulty,

B. Tieman, and S. Wang. Real-time analy-

sis, visualization, and steering of microto-

mography experiments at photon sources.

In Proceedings of the Ninth SIAM Confer-

ence on Parallel Processing for Scienti�c

Computing. SIAM, 1999.

[9] T. DeFanti and R. Stevens. Teleimmer-

sion. In [7], pages 131{156.

[10] I. Foster, J. Geisler, C. Kesselman, and

S. Tuecke. Managing multiple com-

munication methods in high-performance

networked computing systems. Journal

of Parallel and Distributed Computing,

40:35{48, 1997.

[11] I. Foster, C. Kesselman, and S. Tuecke.

The Nexus approach to integrating mul-

tithreading and communication. Jour-

nal of Parallel and Distributed Comput-

ing, 37:70{82, 1996.


