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Abstract. The Cactus software is representative for a whole class of
scientific applications; typically those that are tightly coupled, have reg-
ular space decomposition, and huge memory and processor time require-
ments. Cactus proved to be a valuable tool for astrophysicists, who first
initiated its development. However, today’s fastest supercomputers are
not powerful enough to perform realistically large astrophysics simula-
tions with Cactus. The emergence of innovative resource environments
like Grids satisfies this need for computational power. Our paper ad-
dresses issues related to the execution of applications like Cactus in Grid
environments. We focus on two types of Grids: a set of geographically
distributed supercomputers and a collection of the scale of one million
Internet-connected workstations. We study the application performance
on traditional systems, validate the theoretical results against experi-
mental data, and predict performance in the two new environments.

1 Introduction

Historically, large scientific simulations have been performed exclusively on ded-
icated supercomputer systems. In many cases, a single supercomputer is not
capable of simulating a real size problem in reasonable time. A solution to this
huge need for resources is provided by Grid computing [10], a new field that is
distinguished from conventional distributed computing by its focus on large-scale
sharing of Internet-connected resources. Computational Grids are collections of
shared resources customized to the needs of their users: they may be collections
of resources for data intensive applications, or collections of powerful supercom-
puters, or simply opportunistic collections of idle workstations. In addition, to
facilitate access to a potentially very large number of resources, computational
Grids provide the necessary tools for resource discovery, resource allocation, se-
curity and system monitoring.

Experiments on large pools of Internet-connected resources have been suc-
cessful. For example, [4] demonstrated the potential efficiency of these environ-
ments by solving an optimization problem (stated in 1968 and unsolved since



then) on a pool of 1000 computers distributed across the US and Europe. How-
ever, because of the characteristics of this new environment, not all applications
seem, at first sight, to be capable of exploiting it fully. One such example is
the class of tightly coupled, synchronous applications, which are sensitive to
communication characteristics.

We evaluate the performance of a tightly coupled scientific application, a
classic 5-point stencil computation, on two Grids: a pool of geographically dis-
tributed supercomputers (like those presented in [5]) and a pool of one million
workstations [8]. Our goals are to determine what factors limit performance, to
analyze the benefits of different algorithm tunings, and to design a performance
prediction model.

Cactus [1] was originally developed as a framework for finding numerical solu-
tions to Einstein’s equations and has since evolved into a general-purpose, open
source, problem solving environment that provides a unified, modular, and par-
allel computational framework for scientists and engineers. Its name comes from
the application design: a central core (flesh) connects to application modules
(thorns) through an extensible interface. Thorns can implement custom devel-
oped scientific or engineering applications, or standard computational tools, such
as parallel I/0, data distribution, or checkpointing. We analyze an application
that simulates the collision of two black holes.

A basic module (thorn) implements unigrid domain decomposition. It de-
composes the global domain over processors and places an overlap region (re-
ferred to as ghost-zone) on each processor. This reduces the number of messages
(and hence the communication latency costs) while the total amount of data
exchanged remains constant. We shall see later the costs and benefits of this
approach on different architectures.

To better understand our test application, we study its sequential behavior
and build and validate the performance model for two different supercomputer
architectures (Section 2). This performance model is later adapted to a pool
of supercomputers (Section 3.1). We predict the application efficiency in this
environment and study the factors that limit performance. In Section 3.2 we
move our application performance discussion to Internet computing.

2 Application Execution on Traditional Architectures

We analyzed the sequential and parallel execution of our application on two
supercomputers: a shared memory machine (Silicon Graphics Origin 2000) and a
message passing based supercomputer (IBM SP). We built a performance model
for the parallel execution, validated it against real data, and used it in the next
section to predict performance in the two computational Grids considered: a
pool of Internet-connected supercomputers and one million of Internet-connected
workstations.

Details on the analysis of the sequential execution are presented in [12].
Relevant for our problem are memory usage and execution time per grid point.
We learned that, for avoiding memory penalties, the problem space allocated on



a processor with a RAM MB of associated memory should be 10% x %

grid points. We determined the time to process one grid-point is t. = 17us on
a RISC 10000 processor and t. = 24us on a Power3 processor. In addition, we
learned how to avoid cache conflicts (also presented in [12]) that strongly degrade
performance.

Communication among processors is what differentiates the parallel algo-
rithm. The use of ghost-zones decreases the number of messages exchanged but
only at the cost of replicated work: the grid points within a ghost-zone are
computed twice, on different processors. In the rest of this section we analyze
communication costs and execution time. We present the efficiency of the paral-
lel algorithm as per experiments and explain the differences from our theoretical
model. We also observe that on the architectures considered increasing the size
of the ghost-zones does not improve performance.

Communication Costs The values corresponding to each grid point in the
problem space are updated with each iteration based on values of the neighbor-
ing grid points. To reduce the number of messages exchanged, larger chunks of
data can be sent at once. A ghost-zone of depth g > 1 decreases the frequency
of messages from 1 message per iteration to 1 message every g iterations. We
consider g, =g, = g. = ¢.

For brevity, we analyze only the 3D problem decomposition on a 3D processor
topology: each processor is allocated a volume of grid points and has neighbors
on all the 3 axis. Moreover, we observe that the speed of the whole computation
is the speed of the slowest processor, and model only interior processors, e.g.,
those processors that have 6 neighbors.

We consider a simple latency/bandwidth communication cost model: the cost
of sending a message of length L between any two processors is:

tmsg =ts + L X by (1)

where t, is the message start-up time and ¢, is the cost for sending one byte of
data. This model does not account for the complex interconnection network that
modern supercomputers use, but we chose it for its simplicity. We shall discuss
later the implications of this choice.

During the execution of I iterations, each processor sends and receives %I
messages. For a ghost-zone size of g, § bytes sent per grid point, and assuming
the link connecting any two neighboring processors is not shared, the total time
spent communicating is: Teomm = %Its +4It,(yz + zz + zy)d

Execution Time Each processor spends its time on useful work, communi-
cating, and on redundant work. We ignore idle time due to synchronization,
assuming perfect load balance (identical processors and identical work load per
processor).

Redundant work is the work done on the grid points of the ghost-zones. In
every iteration ¢ < I replicated work is done on (i modulo g) lines of the ghost-
zone. Therefore, in each of the é phases replicated work is done for E?;ll jlay+
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Fig. 1. Average time per iteration as a Fig. 2. Efficiency measured when prob-
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yz+wz) = @(wy +yz+xz) grid points. For 3D decomposition, because each

processor has 2 ghost-zones on each direction, the time spent on replicated work
over I iterations is: T, = It.(g — 1)(zvy + yz + x2).
For z = y = z and a regular 3D decomposition, the total overhead time is:

I
Toverhead = Teomm + Tr = ths + 12Tt2*8 + 31t (g — 1)2? (2)

Optimal Ghost-Zone Size We determine the optimal ghost-zone size for
which the overhead introduced by parallelism is minimum. T,yerneqq (2) is min-

imum when gpi, = 2,/2. However, if g > 1 then 2 < 2. For a realistic

problem size (z in the range 50 to 100 grid points, limited by the available mem-
ory) and for t4,t. of the two supercomputers considered, this condition is not
met. Therefore the execution time increases with the ghost-zone size.

We have validated this theoretical conclusion by measuring the execution
time on 8 processors on Origin2000 and IBM SP with different ghost-zone sizes.
The experimental data (Figure 1) confirms our result: execution time grows with
ghost-zone size on both supercomputers.

The intuition behind this result is that latency related costs are smaller
than redundant computation costs. The use of larger ghost-zones to increase
performance is justifiable on architectures where i— > 5000. Since t. is always in
the order of tens of us, ghost-zones with g > 1 make sense only in environments
with very large (more than 100ms) latency.

Efficiency We used efficiency values to validate our performance models. For
g = 1, P processors, and a problem space of 23 grid points per processor, maxi-
mum efficiency is:

Toey 1

- 6t 12t,6
P x Tp‘w L+ z3t. Tte

Eror = (3)



Equation 3, in which predicted efficiency is independent of the number of
processors and therefore of the number of data flows, shows the limitations of
the simplified communication model used: the model ignores the fact that links
within a supercomputer’s interconnection network are shared and assumes that
interconnections switches scale linearly. For a more accurate prediction, we use
a competition for bandwidth model [7] adapted to the interconnection charac-
teristics of the two supercomputers: we identify shared hardware components,
compute the number of competing flows, and use manufacturer’s performance
specifications. For these experiments we use a memory constrained model: the
problem size per processor remains constant while the number of processors in-
creases up to 256. Figure 2 compares experimental results with our predictions.
Although our communication models are simplistic, the test results match the
predictions within a 10% range. Other models, like hyperbolic [16], could lead
to more accurate predictions.

3 Predicted Performance in Grid Environments

We consider two different computational Grids. The first is a collection of super-
computers connected by a Grid middleware infrastructure like the Globus toolkit
[9]. This computational Grid already exists and we used it to validate our ap-
proach on performance predictions. The second Grid environment we analyze is
a very large collection of workstations likely to be used in the near future.

3.1 Performance on a Pool of Supercomputers

We predict the application efficiency on a collection of Internet-connected super-
computers and study the application and environment characteristics that limit
performance. We also investigate ways to increase performance by tuning appli-
cation parameters and improving the code. For example, we evaluate the benefits
of using larger ghost-zone size for inter-supercomputer communication to offset
latency costs, while maintaining minimal ghost-zone size for intra-supercomputer
communication.
We make the following assumptions and notations:

— Greek letters describe functions/values at supercomputer level while the cor-
responding English alphabet letters describe values at processor level. For
example, Ocqomm is the communication time between supercomputers, while
T.omm is the communication time between processors.

— Supercomputers are identical. This assumption is realistic since a set of het-
erogeneous machines can behave in a 1D decomposition as a set of identical
processors if loaded proportionally to their computational powers.

— The problem space is decomposed using a 1D decomposition among super-
computers and a 3D decomposition among the processors of each supercom-
puter. 1D decomposition among supercomputers is realistic since a relatively
small number of supercomputers (maybe hundreds) is likely to be simultane-
ously available to a group in the near future. However, it is straightforward
to extend the model to a 2D or 3D decomposition.



— Supercomputers are connected through identical network links to the Inter-
net. We use the same linear model (1) for communication costs. In addition,
we assume the communication cost of transferring data over a link is inde-
pendent of the number of concurrent TCP connections.

— Each supercomputer is assigned a grid space of size X x Y x Z. Since we
assume a 3D regular partition at supercomputer level, each processor will
be assigned a grid space of size 3%/}3 X BL\/F X SL\/TD (which is z x y X 2). We
assume S supercomputers, each having P processors. We assume ghost-zone
depth G for inter-supercomputer communication and ghost-zone depth g for
intra-supercomputer communication.

To build the performance model for the architecture described above, we
consider each supercomputer a computational entity that obeys the performance
model described in Section 2. Hence, we model a supercomputer as a ’faster’ pro-
cessor with a ’big’ associated memory. This superprocessor will be characterized
by the time 6. needed to update one grid point (the equivalent of t. presented
in Section 2).

Execution Time. Using the model described in Section 2, the time spent for
useful work on a problem of size X XY x Z on a supercomputer with P processors
is: Oseq = 0. XY Z. The same amount of time is spent by each processor solving
its part of Ehe pr)(;bl(;m % X % X % but working in parallel with efficiency
E: Ogeq = B X Vs VBV We can now compute . the time it takes to process

a grid-point: 6, = 1;39'

Consider that each processor has ghost-zones of depth ¢ and each supercom-
puter has ghost-zones of depth G. This is meant to accommodate the variation
in communication costs (inter-supercomputer vs. intra-supercomputer). Since
replicated time on the processor ghost-zones (of size g) is already included in
the model through the efficiency value E, the time spent by each supercomputer
on doing replicated work is a function of (G —g). In each iteration replicated work
is done on (G — g) XY grid points. Each supercomputer has at most two ghost-
zones. The total time spent doing replicated work over I iterations is therefore
O, =2I6.(G — g)XY.

For S identical supercomputers with P processors each and a problem space
of SX xY x Z grid points, each supercomputer has to solve a X x Y x Z grid
point problem. Total execution time for I iterations is:

Qpar = @seq+9comm+@r = IHCXYZ-l-

29651 +416, XY 6+20.1(G—g)XY (4)

Communication Costs. For each message sent from a supercomputer to an-
other, communication time is: @,,sg = 05 + 0, L. Over I iterations there are
é communication phases, in which each supercomputer sends two messages of
L = GXY bytes each. Incoming and outgoing messages share the communica-
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tion link. Therefore, the time spent communicating is:

Ocomm = é x 2(0, + 20,GXY8) = % + 410, XYS (5)

Optimal Ghost-Zone Size. From (4) maximum efficiency E' is obtained for

Gopt = 2P \/7 (6)

This validates our intuition that larger inter-supercomputer communication la-
tency requires larger ghost-zones while slower processors or larger problems
would require smaller ghost-zones. For §; = 35ms (usual value for coast-to-
coast links), supercomputer efficiency £ = 90%, t. ~ 20us, P = 1024 and
60% grid-points per processor, the maximum overall efficiency is obtained for
Gopt = 2.

These results suggest that using different ghost-zones sizes for supercom-
puter communication does increase overall efficiency. However, Figure 3 shows
that more than 95% overhead is due to limited network bandwidth even in the
optimistic scenario when each supercomputer has a Gigabit connection to the
outside world. We need one order of magnitude faster links to obtain significant
savings due to deeper ghost-zones.

Predicted Efficiency. In our model the overall efficiency is the product of
the efficiency of a single supercomputer and the efficiency of the collection of
supercomputers. For G = g = 1, we have:
Ose 1
E I = Ee=F g = (7)
overa S X Opar Ly + 40,8 VP?

zte

acyztc

We validated (7) with two experiments executed on supercomputers across
the US. The experimental setup, including details on the middleware infrastruc-
ture used (Globus and MPICH-G2), is presented in [3]. The first experiment



used 2 supercomputers with up to 64 processors each. The second, large-scale
experiment involved 4 supercomputers of a total of 1500 processors (described
in [2]). In both cases the results measured were at most 15% less than our pre-
dictions. We believe this difference is mostly due to the highly variable behavior
of the wide area network.

In Figure 4 we consider the existing network infrastructure in our test-bed
(s = 35ms and 6, = lus) and show the variation of the predicted efficiency
E,yerqu with the number of processors. We also plot efficiency for an application
configuration that is 5 times more computationally intensive (¢, = 100us) and
for an application-observed bandwidth of 10MB/s (6,, = 0.1us). Although in
our test we have not benefitted from 10MB/s application-observed bandwidth,
this is easily achievable with currently deployed networks. It is interesting to
note that efficiency as high as 83% could be obtained if all supercomputers were
connected to Internet using Gigabit links.

From equation (7) and from Figure 4, we observe that overall efficiency
FEoverqn increases with the sequential execution time per grid point and with
the decrease in communication costs. Even with new, more computationally de-
manding numerical algorithms, since the processors are increasingly powerful,
we believe that a real improvement in efficiency is possible only through efficient
use of ’fatter’ network pipes.

3.2 Internet Computing

There are over 400 million PCs around the world, many as powerful as early
1990s supercomputers. Every large institution has hundreds or thousands of
such systems. Internet Computing [8] is motivated by the observation that at
any moment millions of these computers are idle. With this assumption, using
computer cycles and data storage on these computers becomes virtually free
provided satisfactory (1) middleware infrastructure and (2) network connectivity.

Computational grids provide the middleware infrastructure: dependable, con-
sistent, and pervasive access to underlying resources. The continuous growth of
the Internet is going to provide the necessary connectivity. Internet demand has
been doubling each year for more than a decade now. This has caused backbone
network capacity to grow of an even faster rate [15]. Moreover, it is estimated
that in the near future we will witness an explosion in network capacity [6]. Op-
tical technologies that are driving this transition will also transform the physical
structure of the Internet from one based on backbone networks carrying thou-
sands of (virtual) network flows through dozens of large pipes to one based on
backbone ”clouds” consisting of thousands of possible optical paths, each with
the capacity to carry multi-Gb/s traffic.

The available middleware infrastructure and the soon-to-be-available net-
work connectivity bring the vision of a general-purpose 1 million-processor sys-
tem (megacomputer) closer to reality. Megacomputers might be the world’s first
Peta-op (10*> FLOPS) computing systems. However, for applications like Cac-
tus, increased computational power may be less significant than the aggregated



memory of millions of computers which will allow solving problems of unprece-
dented scale and resolution.

We consider the processor space divided in ’clusters’: groups of computers on
the same Gigabit local area or campus network. They might also be PCs using
DSL (ADSL, HDSL) or cable modem technologies within the same geographical
area (and thus probably using the same provider’s POP). We assume that com-
munication within a cluster is low delay, high bandwidth. A shared hub allows
communication with other clusters. We imagine a cluster to have 100s to 1000s
machines. To minimize communication, we use a 3D decomposition among clus-
ters. Even with this problem decomposition aimed at minimizing inter-cluster
communication (and thus the number of flows that traverse cluster boundaries),
the networking infrastructure will have to deal with an enormous number of
flows. For a cluster of size P there will be 6/P? communication flows going out.
Given TCP’s limited ability to fairly and efficiently deal with large number of
simultaneous flows ([14]) some mending is needed at the network transport level.
Possible solutions are: use TCP concentrator nodes for inter-cluster communi-
cation, use an improved TCP protocol (along the lines of RFC2140), or simply
replace TCP with a future transport protocol.

We analyzed the performance of a megacomputer using the same model as
in previous sections. Instead of describing the whole process in detail, we just
summarize our conclusions. Efficiency of 15-20% can be obtained even without
modifying Cactus’ tightly coupled computational pattern. This might seem low,
but considering the huge aggregated computational power of this environment,
the result is more than one order of magnitude larger than the fastest super-
computer available today. We assumed 1000 clusters with 1000 machines each.
We considered a 2-level hierarchy of Gigabit LANs within a cluster and non-
shared OC48 links among clusters. We picked rather conservative values for ap-
plication’s uniprocessor execution rates (100MFLOPS) and grid-point processing
time (20us). We note that the application is extremely sensitive to communica-
tion costs. This means that simple improvements like overlapping computation
and communication will bring up to 100% improvements in efficiency.

To conclude, we estimate that Cactus could run at an execution rate of 20
TFLOPS on a megacomputer. This about 30 times faster than the best execution
rate achievable now [13] on a supercomputer. Based on Moore’s Law (which,
judging by the power of the fastest supercomputer worldwide as per the annual
Gordon Bell awards, still holds), it will take 6 years to have a supercomputer
as powerful as the megacomputer we imagined. Certainly, the assumptions we
made about network connectivity and the omnipresence of Grid environments
will become reality well before then.

4 Summary

We provided a detailed performance model of a scientific application—a typical
stencil computation code—and validated it on two architectures. We adapted
our performance model for two computational Grids: an Internet-connected col-



lection of supercomputers and a megacomputer. We investigated the benefits
of increasing ghost-zone depth for increasing performance and we determined
that these are insignificant because of the high bandwidth-related communica-
tion costs. We also determined that the limiting factor for efficiency is network
bandwidth, which is going to improve dramatically over the next few years.

Our prediction model shows that with better network connectivity than in
place today and using computational Grids, scientists will shortly have a pow-
erful computational platform at a low cost.
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