
1

End-to-End Quality of Service for High-End Applications

Ian Fosterab, Markus Fidlerc, Alain Royd, Volker Sandere, Linda Winklera

aMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,
U.S.A.

bDepartment of Computer Science, The University of Chicago, Chicago, IL 60637, U.S.A.

cDepartment of Computer Science, Aachen University, 52064 Aachen, Germany

dDepartment of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, U.S.A.

eCentral Institute for Applied Mathematics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

High-end networked applications such as distance visualization, distributed data analysis, and advanced col-
laborative environments have demanding quality of service (QoS) requirements. Particular challenges include
concurrent flows with different QoS specifications, high bandwidth flows, application-level monitoring and con-
trol, and end-to-end QoS across networks and other devices. We describe a QoS architecture and implementation
that together help to address these challenges. The General-purpose Architecture for Reservation and Allocation
(GARA) supports flow-specific QoS specification, immediate and advance reservation, and online monitoring and
control of both individual resources and heterogeneous resource ensembles. Mechanisms provided by the Globus
Toolkit are used to address resource discovery and security issues when resources span multiple administrative
domains. Our prototype GARA implementation builds on differentiated services mechanisms to enable the co-
ordinated management of two distinct flow types—foreground media flows and background bulk transfers—as
well as the co-reservation of networks, CPUs, and storage systems. We present results obtained on a wide area
differentiated services testbed that demonstrate our ability to deliver QoS for realistic flows.

1. Introduction

Investigations of network quality of service
(QoS) have tended to focus on the aggregation
of relatively low-bandwidth flows associated with
Web and media streaming applications. Yet the
QoS requirements associated with these flows are
not representative of all interesting applications.
For example, distance visualization applications
encountered in science and engineering can in-
volve data transfers and media streaming at hun-
dreds (ultimately thousands) of megabits per sec-
ond (Mb/s), while the bulk data transfer op-
erations required for replication or analysis of
large datasets can require sustained high band-
widths expressed in terms of terabytes per hour.
Advanced collaborative environments can require
complex mixes of these and other flows, with
varying service level requirements and many in-
terdependencies.

The development of QoS for such high-end ap-
plications introduces major challenges for both
QoS protocols and higher-level architectures that
use these protocols to provide end-to-end solu-
tions for users.

At the higher-level architecture level, new
concepts and constructs are required for deal-
ing with end-to-end flows that involve multiple
scarce resources: for example, advance reserva-
tion mechanisms, to ensure availability [14,17,
52]; co-reservation of network, compute, storage,
and other resources [11]; control and monitor-
ing application programmer interfaces (APIs) for
application-level adaptation [26,15,45]; and pol-
icy mechanisms able to deal with large reserva-
tions and complex hierarchical allocation strate-
gies.

When considering appropriate QoS protocols
to support these high-end applications, two ma-
jor contenders are apparent: Integrated Services



2

and Differentiated Services. The Integrated Ser-
vices architecture [7] aims at addressing these
heterogenous demands for quality of service by
allowing end-to-end reservations of network ca-
pacity for individual flows, usually by using the
Resource Reservation Protocol (RSVP) [53]. Un-
fortunately, the fine granularity of the Integrated
Services approach as originally specified was un-
likely to scale effectively to be widely used in the
Internet. (Note however recent proposals that
avoid the need to police all flows [35].) In ad-
dition to attempted modifications of Integrated
Services, Differentiated Services (DS) [6], which
is the most recent approach of the Internet En-
gineering Task Force (IETF) towards quality of
service, addresses these scalability issues by an
aggregation of micro-flows to classes. Doing so
allows to support only a small number of service
classes within the core network and thereby of-
fers better scalability. While DS has advantages
in terms of scalability, it is not obvious whether
and how it can support specialized high-end flows.

The work that we present in this article ad-
dresses both the higher-level architecture and
protocol challenges just described. We describe
the General-purpose Architecture for Reserva-
tion and Allocation (GARA), a resource man-
agement architecture that builds on mechanisms
provided by the Globus Toolkit [19] to support
secure immediate and advance co-reservation, on-
line monitoring/control, and policy-driven man-
agement of a variety of resource types, includ-
ing networks [21]. Then, we describe the ap-
plication of GARA concepts and constructs to
DS networks. We present a DS resource man-
ager (i.e., bandwidth broker [6,31]) and ex-
plain how this resource manager integrates with
GARA facilities (e.g., advance reservation, au-
thentication/authorization). We describe how
this resource manager builds on DS mechanisms
to support two heterogeneous types of flows
within a single framework: latency- and jitter-
sensitive (e.g., media flows) and high-bandwidth
but latency-insensitive (e.g., bulk transfer). We
also propose a policy model that allows admission
control decisions to be made at multiple levels.
Finally, we present performance experiments con-
ducted on both local area and wide area DS net-

work testbeds; our results demonstrate our ability
to support multiple flow types and to co-reserve
network and CPU resources.

The rest of this article is structured as follows.
In Section 2 we introduce the QoS requirements
that high-end applications have. Then, in Sec-
tion 3, we describe GARA and its implementa-
tion. In Section 4, we discuss its application
in the context of DS networks and in Section 5
we present our experimental results. We discuss
multi-domain issues in Section 6 and related work
in Section 7, and conclude with a discussion of fu-
ture directions.

2. QoS Requirements of High-End Appli-
cations

We use three representative examples to illus-
trate QoS requirements of the high-end network
applications that are encountered, for example,
in advanced scientific and engineering comput-
ing [20].

2.1. Application Descriptions
Distance visualization of large datasets. Scien-

tific instruments and supercomputer simulations
generate large amounts of data: tens of terabytes
today, petabytes within a few years. Remote
interactive exploration of such datasets requires
that the conventional visualization pipeline be de-
composed across multiple resources [1,5,18]. A
realistic configuration might involve moving data
at hundreds or thousands of Mb/s to a data anal-
ysis and rendering engine which then generates
and streams real-time MPEG-2 (or later HDTV)
video to remote client(s), with control informa-
tion flowing in the other direction. QoS param-
eters of particular interest for this class of ap-
plication include bandwidth, latency, and jitter;
resources involved in delivering this QoS include
storage, network, CPU, and visualization engines.

Large data transfers. In other settings, large
datasets are not visualized remotely but instead
are transferred in part or in their entirety to re-
mote sites for storage and/or analysis [33,4,8,32].
The need to coordinate the use of other resources
with the completion of these multi-gigabyte or
terabyte transfers leads to a need for QoS guar-



3

antees of the form “data delivered by deadline”
rather than instantaneous bandwidth. Achiev-
ing this goal requires the scheduling of storage
systems and CPUs as well as networks so as to
achieve often extremely high transfer rates.

High-end collaborative environments. High-end
collaborative work environments involve immer-
sive virtual reality systems, high-resolution dis-
plays, connections among many sites, and multi-
ple interaction modalities including audio, video,
floor control, tracking, and data exchange. For
example, the Argonne “Access Grid” currently
connects some 15 sites via multiple audio, video,
and control streams, with the audio streams es-
pecially vulnerable to loss. Such applications
require QoS mechanisms that allow the distinct
characteristics of these different flows to be rep-
resented and managed [13,24].

2.2. QoS Requirements
Heterogeneous flows. The applications of in-

terest frequently incorporate multiple flows with
widely varying characteristics, in terms of band-
width, latency, jitter, reliability, and other re-
quirements. GARA addresses these requirements
through (a) support for per-flow QoS specifica-
tions while maintaining DS-like scalability and
(b) a QoS-mechanism-independent architecture
that adapts to multiple techniques. A common
API means that for example a distance visualiza-
tion application can specify the distinct require-
ments of high-volume data and latency-sensitive
control flows, in a mechanism-independent man-
ner; these flows might then be mapped to different
mechanisms: e.g., Multi-Protocol Label Switch-
ing (MPLS) [41] and DS.

High bandwidth flows. Some applications in-
volve high bandwidth flows that may require a
large percentage of the available bandwidth on
a high-speed link. For example, we and oth-
ers have demonstrated transfer rates of over a
Gb/s over wide area networks. This characteristic
has significant implications for both mechanisms
and policy. QoS mechanisms are required that
can support such flows while allowing coexistence
with other flows having different characteristics.
At the policy level, we believe that approaches
are required that allow for the coordinated man-

agement of resources in multiple domains, so that
virtual organizations (e.g., a scientific collabora-
tion) can express policies that coordinate the al-
location of the resources available to them in dif-
ferent domains.

Need for end-to-end QoS. Satisfying appli-
cation-level QoS requirements often requires the
coordinated management of resources other than
networks: for example, a high-speed data trans-
fer can require the scheduling of storage system,
network, and CPU resources. As we shall see,
GARA addresses this requirement by defining an
extensible architecture that can deal with a range
of different resource types and by providing sup-
port for the co-allocation of multiple resources.

Need for application-level control. High end-
to-end performance requires that applications be
able to discover resource availability (GARA),
monitor achieved service, and modify QoS re-
quests (to network and to other resources, such as
CPUs–for example, to reduce reservations when
load drops [16]) and application behavior dynam-
ically.

Need for advance reservation. Specialized re-
sources required by high-end applications such
as high-bandwidth virtual channels, scientific in-
struments, and supercomputers are scarce and in
high demand; in the absence of advance reserva-
tion mechanisms, coordination of the necessary
resources is difficult. Reservation mechanisms are
needed to ensure that resources and services may
be scheduled in advance. Snell et al. have shown
that a meta-scheduler, which schedules a set of
Grid resources, can improve the overall effective-
ness of the Grid by requesting a deterministic re-
source in advance [44].

3. The GARA QoS Architecture

We designed GARA to meet the QoS require-
ments listed above. We introduce GARA con-
cepts here, and then describe below how we ap-
ply these concepts in DS networks to manage the
allocation of a particular flavor of QoS capability,
namely Premium and Guaranteed Rate service.



4

End-to-End API


Remote API


LRAM API


Resource Manager


Resource


Diffserv

Resource

Manager


Cisco

7507


Gatekeeper


Slot Table


DSRT

Resource

Manager


DSRT

Server


Gatekeeper


Slot Table


Application

Remote


API


LRAM API
 LRAM API


Figure 1. On the left, the principal APIs used within GARA. On the right, the principal components of
the GARA prototype as instantiated for DS and DSRT (CPU scheduler) services, with our own resource
manager and slot manager being used in both cases. In the DS case, commands are issued to a router
while in the DSRT case commands are issued to a DSRT server (for tracking reservations).

3.1. GARA Overview
GARA defines APIs that allow users and ap-

plications to manipulate reservations of different
resources in uniform ways. For example, essen-
tially the same calls are used to make an immedi-
ate or advance reservation of a network or CPU
resource. Once a reservation is made, an opaque
object called a reservation handle is returned that
allows the calling program to monitor, modify,
and cancel the reservation. Other functions al-
low reservations to be monitored by polling or
through a callback mechanism in which a user’s
function is called every time the state of the reser-
vation changes in an interesting way.

As illustrated on the left side of Figure 1,
GARA defines APIs at multiple levels so as to
maximize both the functionality delivered to the
user and opportunities for code reuse in imple-
mentations. In particular, the Local Reservation
and Allocation Manager (LRAM) API provides
direct access to reservation functions within a
trust domain, while the remote API provides re-
mote access to LRAM functionality, addressing

issues of authentication and authorization. Both
APIs implement the functionality described in the
preceding paragraph.

The uniform treatment of reservations provided
by GARA makes it possible to define and reuse
co-reservation and co-allocation libraries that en-
code strategies for the coordinated use of mul-
tiple resources [11]. Because different resources
(e.g., computers and storage systems) can be ma-
nipulated via the same function calls, standard
libraries can be developed that encode strategies
for dealing with, for example, co-reservation and
fault recovery.

One co-reservation library that we have devel-
oped in support of our work with GARA imple-
ments an end-to-end network API that provides
end-to-end analogs of each of the remote API
calls. This API allows the user to create, moni-
tor, cancel, etc., network co-reservations: that is,
reservations involving more than one network re-
source. This API allows users and applications to
ignore details of the underlying network topology.

Figure 2 illustrates the use of this end-to-end



5

API. This program first determines the band-
width requirements of an application and then
queries to determine available Premium band-
width over the path of interest. A reservation
is created for the smaller of these two values and
the reservation handle H is used to bind the reser-
vation to the previously created flow. The ap-
plication then checks periodically to see whether
the reservation can be increased. Notice that
the changes to what is otherwise a conventional
socket-based code are small.

UDP-streamer(host A, host B) {
(PortA,PortB) = new_socket_conn(A,B)
F = compute_flow_requirement()
When = {NOW,60 mins}
Max = EnquireE2EResv(A,B,When)
if (Max.forward > F) then

R = F
else

R = Max.forward
H = CreateE2EResv(A,B,R,0,When)
BindE2EResv(H, PortA, PortB)
repeat until done {

<send for a while>
Max = EnquireE2EResv(A,B,When)
if (Max.forward > 0 && R < F) then {

R = Max.forward + R
if (R > F) then

R = F
ModifyE2EResv(H, R, When)

}
}

}

Figure 2. Pseudo-code for a simple application
that uses the GARA end-to-end API to first make
and subsequently monitor and modify a reserva-
tion. For brevity, this code does not include error
checking.

We note that while this example emphasizes
application-centered monitoring and control of

reservation state, GARA also supports third-
party reservation operations. For example, we
could remove the reservation logic from Figure 2
altogether and instead perform appropriate reser-
vation operations in a separate process.

3.2. GARA Implementation
We review GARA implementation issues and

status, working up from the bottom of our API
stack.

GARA must provide admission control and
reservation enforcement for multiple resources of
different types. Because few resources provide
reservation capabilities, we have implemented our
own resource manager so as to ensure availability
of reservation functions. As illustrated in Fig-
ure 1, this manager uses a slot table [14,31] to
keep track of reservations and invokes resource-
specific operations to enforce reservations. Re-
quests to this resource manager are made via the
LRAM API and result in calls to functions that
add, modify, or delete slot table entries; timer-
based callbacks generate call-outs to resource-
specific routines to enable and cancel reserva-
tions. Note that only certain elements of this re-
source manager need to be replaced to instantiate
a new resource interface. To date, we have de-
veloped resource managers for DS networks (de-
scribed below), for the Distributed Soft Real-
Time (DSRT) CPU scheduler [9], and for the Dis-
tributed Parallel Storage System (DPSS) [50], a
network storage system; others are under devel-
opment.

Our implementation of the end-to-end API in-
vokes a path service to identify the resource man-
agers that must be contacted to arrange for an
end-to-end reservation, and then makes a series
of GARA remote API calls to perform the co-
reservation operation. See below for a discussion
of issues that arise when traversing multiple do-
mains.

Our GARA prototype uses two “Grid” services
provided by the Globus Toolkit: the Monitor-
ing and Discovery Service (MDS) [10], currently
based on the Lightweight Directory Access Pro-
tocol (LDAP), which is used for publishing reser-
vation status information and for accessing path
information; and the public-key based Grid Secu-



6

rity Infrastructure for authentication and autho-
rization services. The interfaces to these services
are simple and well-defined (LDAP and GSS-API,
respectively), hence it is straightforward to sub-
stitute alternative implementations.

4. GARA and Differentiated Services Net-
works

The DS architecture is based on a simple model
in which packets entering a network are classified
and possibly conditioned at the boundaries of the
network by service provisioning policies, and as-
signed to different behavior aggregates. Within
the core of the network, packets are forwarded
according to the per-hop behavior (PHB) asso-
ciated with the DS classification. These mecha-
nisms have the advantage of not requiring that
per-flow state be maintained within the network.
However, few guarantees can be made about end-
to-end behaviors, which instead emerge as the
composition of the PHBs associated with individ-
ual links.

4.1. Integrating Differentiated Services
and GARA

We have interfaced GARA concepts and con-
structs to DS mechanisms in order to manage the
allocation of Premium or Guaranteed Rate ser-
vice bandwidth. As shown in Figure 4, we asso-
ciate GARA resource managers with the locations
at network edges where admission control occurs.
These resource managers are, in essence, what DS
papers call “bandwidth brokers” [6]: they gener-
ate their region’s marked (Premium) traffic allo-
cations and control the devices (e.g., routers) used
to enforce these allocations. Requests to resource
managers are authenticated, ensuring secure op-
eration.

We have constructed our DS resource manager
to support two classes of Premium service: a fore-
ground service, for latency- and jitter-sensitive
flows (e.g., multimedia streaming and control),
and a background service, for long-lived, high
bandwidth but latency-insensitive flows (e.g.,
bulk data transfer operations). The resource
manager changes background reservations dy-
namically as foreground reservations come and

go, generating callbacks to the application when
a reservation changes. This strategy allows bulk
data transfers to co-exist with multimedia flows.
The amount of bandwidth available for back-
ground reservations over a particular time period
can then be controlled via policy mechanisms. We
report results with this approach below. Our pro-
totype supports multiple foreground reservations
but initially only a single background reservation;
the extensions required to support multiple back-
ground flows are not complex.

A resource management framework for DS net-
works must also address end-to-end issues. A typ-
ical wide area flow requires allocations of Pre-
mium bandwidth at multiple edge routers and
also within interior domains. For example, in Fig-
ure 4, a Premium flow from ANL to LBNL should,
in principle, require an allocation not only from
the ANL domain for the ANL/ESnet interface
(where marking occurs) but also from ESnet for
the ANL-LBNL transit traffic and from the LBNL
domain for the ESnet/LBNL interface. Hence, we
need to associate resource managers with multi-
ple DS domains and to implement co-reservation
strategies. Co-reservation operations must be de-
signed with end-to-end verification in mind. In
our example, an application that omitted to ob-
tain a reservation for ESnet transit traffic could
cause problems for other ANL-LBNL traffic, for
example if the aggregate ANL-ESnet traffic ex-
ceeded what was allowed by the current ANL-
ESnet service level agreement (SLA).

Most DS work assumes that co-reservation op-
erations are encapsulated in the local domain’s
resource manager: hence, a request to reserve
bandwidth from ANL to LBNL results in the
ANL manager contacting the ESnet manager,
which in turn contacts the LBNL manager. Upon
receipt of a positive response from both other
managers, a reservation is established. This ap-
proach has the advantages of providing trusted
co-reservation and of encapsulating all bandwidth
broker communication within a single local entity.
The approach has disadvantages in settings where
end-to-end reservations involve resources other
than networks, as a hierarchical co-reservation
structure results, or where allocation policies at
interior domains depend on factors other than the



7

identity of the requesting manager.
An alternative approach to this problem is

to define a two-phase commit protocol. In
this approach, an application program—or agent
working on behalf of an application program—
contacts each manager in turn. In the first phase,
a manager can indicate that acceptance of a reser-
vation is conditional on the requestor securing ac-
ceptance (indicated by a signed certificate) from
the next manager.

In both approaches, inter-domain SLAs can ei-
ther be established statically (in which case reser-
vations can only be made if they fit within the
pre-established SLAs), or they can be established
dynamically, as reservations are made. The lat-
ter approach provides greater flexibility but re-
quires more sophisticated policy and enforcement
engines in interior domains, as discussed below.

Our initial GARA prototype implements nei-
ther of the approaches just described but instead
relies on the end-to-end library to implement co-
reservations correctly. We assume two domains
and static SLAs between domains; hence, we
need to allocate bandwidth at just two locations.
Reservation policies are expressed via access con-
trol lists associated with individual resource man-
agers. These limitations are not inherent in our
model and are being removed in current work.

4.2. Differentiated Service Configuration
The final issue to be addressed in a DS im-

plementation relates to how PHBs are configured
to provide the premium services desired for par-
ticular applications. In our DS implementation,
this set-up involves the use of Committed Access
Rate (CAR) and Weighted Fair Queuing (WFQ)
mechanisms configured by means of the Modu-
lar Quality of Service Command-Line interface
(MQC) [51]. Figure 3 shows a schematic of the
functionality that is applied at ingress routers.

We police the guaranteed rate traffic on the
ingress ports of edge routers and mark all con-
forming packets by setting the DS Code-Points
defined in [39]. An over-provisioned Weighted
Fair Queuing configuration is used on the egress
port of all routers.

The operation of CAR is controlled via com-
mands issued to the router by the associated

GARA resource manager as reservations become
active, terminate, are modified, or are cancelled.
These commands enter, remove, or modify flow
specifications that define a Premium service flow
in terms of its source and destination IP address
and port, and its rate limit specification (desired
average transmission rate bandwidth and a nor-
mal and excess burst size). Communication from
the resource manager to the Cisco Systems router
is performed via Command Line Interface.

We also use CAR on the ingress ports of inter-
domain routers, where it is used to enforce SLAs
negotiated with other domains, by rate limiting
the marked premium traffic that will be accepted
from another domain.

WFQ is used on the egress port of edge routers
and in interior routers. WFQ ensures that in
periods of congestion—i.e., when packets get
queued in the router because the output link
does not provide the capacity for delivering them
immediately—each DS class receives at least the
fraction of the output bandwidth given by the
weight defined for that class. Hence, as long as
the total marked traffic destined for an output
port does not exceed the allocated output band-
width, WFQ can be used to ensure that marked
traffic is forwarded without delay despite conges-
tion in other classes.

This use of CAR and WFQ approximates a
Guaranteed Rate service which can be build ei-
ther on top of the Expedited Forwarding (EF)
PHB described by the IETF’s DS Working Group
in [12], or by using one of the Olympic services
build on top of the Assured Forwarding (AF)
PHB described in [29].

Applying CAR and WFQ raises the question
of how these mechanisms should be configured to
meet application-level QoS requirements. This
question is complicated by the wide variety of
flows that we wish to support (UDP, TCP, low
and high bandwidth) and the geographic scale
over which QoS is required: from a few meters
to thousands of kilometers. Considerable exper-
imentation on the testbed described in the next
section has been performed to understand these
issues.



8

Figure 3. The ingress router configuration consists of a classification, policing and marking unit and of
an optional traffic shaper. Traffic shaping is not applied for services that require a low latency, whereas
guaranteed rate streams are shaped by applying a number of per-flow holding queues prior to WFQ
scheduling.

5. Experimental Studies

We report on experiments designed to evalu-
ate the effectiveness of both the GARA architec-
ture and our DS implementation. In particular
we show how a long lived bulk data transfer with
deadline can share a Premium class with short-
lived prioritized foreground flows that require ex-
plicit reservation. Two efficient implementations
that support such applications are shown. One
uses backward signaling, in which case the reser-
vation manager provides information of currently
unused Premium capacity to background bulk
data transfer applications. These in return are
instrumented to adapt their sending rate dynam-
ically to the available Premium capacity. The
other option allows the background bulk data
transfer to make use of the resource manager’s
ability to pace the bulk data transfer traffic by
the use of traffic shaping at the output interface
of the ingress router. Hence, the transmission
rate will be automatically updated by TCP’s self
clocking mechanisms.

5.1. Experimental Configuration
Our experimental configuration, illustrated in

Figure 4, comprises a laboratory testbed at Ar-
gonne National Laboratory (the Globus Advance
Reservation Network Testbed: GARNET) con-
nected to a number of remote sites, including
Lawrence Berkeley National Laboratory (LBNL).
Connectivity to LBNL is provided by the Energy

Sciences Network (ESnet) DS testbed. GARNET
allows controlled experimentation with basic DS
mechanisms; the wide area extensions allow for
more realistic operation, albeit with a small num-
ber of sites. As end-system resources are lo-
cated in different domains, we must deal with dis-
tributed authentication and authorization.

Cisco Systems 7507 routers are used for all ex-
periments. Within GARNET, these routers are
connected by OC3 ATM connections; across wide
area links, they are connected by VCs of vary-
ing capacity. We are restricted to these relatively
slow speeds because the 7507 cards do not im-
plement CAR and WFQ at speeds faster than
OC3. End system computers are connected to
routers by either switched Fast Ethernet or OC3
connections. CAR and WFQ are used for QoS
enforcement, as described above. Flow specifica-
tions supplied to CAR use a bandwidth computed
from the user-specified required bandwidth, tak-
ing into account packet headers (note that this
requires packet size information), with noncon-
forming traffic dropped. Burst size and excess
burst size parameters are both set as follows: if
using TCP, to the bandwidth (in bytes/second)
times the assumed maximum round trip time,
subject to a minimum of 8 Kbytes and a max-
imum of 2 Mbytes; if using UDP, to 1/4 of this
value, subject to a minimum of 8 Kbytes. WFQ
was configured statically in all experiments.

During the initial experiment, no traffic shap-



9

Linux
 Linux


Cisco 7507
 Cisco 7507
 Cisco 7507


ESnet

Testbed


ANL


Solaris


MREN EMERGE

Testbed


Solaris


UW

Madison


iCAIR


Univ of

Chicago


Univ of

Illinois


Solaris


ATM


Fast Ethernet


LBNL


Solaris


Solaris


Solaris


Solaris


Figure 4. The experimental configuration used in this work, showing our local GARNET testbed and its
extensions to remote sites connected via ESnet and MREN.

ing is performed on Premium flows beyond the
limited shaping provided by WFQ in the pres-
ence of congestion. While the lack of shaping has
not proven to be a significant problem to date,
it will likely be required in future, more dynamic
environments.

The network speeds supported in this testbed
are clearly not adequate for the high-end applica-
tions discussed above: the largest Premium flow
that we can support is around 80 Mb/s. Nev-
ertheless, this testbed configuration has allowed
us to validate multiple aspects of our general
approach. We plan to extend our approach to
higher-speed networks in future work.

5.2. Multiple Flows: Local Area Case
Our first experiments evaluate GARA’s ability

to support multiple flows simultaneously and to
support application monitoring of, and adapta-
tion to, changes in reservation status.

We first report on experiments conducted on
our local GARNET testbed: see Figure 4. We
configured GARNET to create a 45 Mb/s Pre-
mium channel in a 100 Mb/s network. We then

created five distinct flows: a bulk data trans-
fer, operating as a “background” flow; a com-
peting 80 Mb/s Best-Effort UDP flow (a traf-
fic generator submitting 1,000 byte packets ev-
ery 100 µsecs); and three independent, short-lived
foreground flows with immediate reservations. In
this and subsequent experiments we used a sim-
ple data transfer program, a modified version of
ttcp that was able to limit the frequency that it
wrote to the socket buffer, in order to achieve
a user-specified bandwidth, as our “application.”
The source and destination computers used for
the Premium flows were distinct from the com-
puters used for the competing flows.

Figure 5 shows the bandwidth delivered to the
foreground, background, and Best-Effort flows
during the experiment. We succeed in delivering
“excess” Premium bandwidth to the bulk transfer
application without compromising the foreground
flows. The good bulk transfer performance that
was achieved was made possible by the resource
manager’s callbacks to the bulk transfer applica-
tion, which allowed the application to change its
sending rate in response to changes in its allo-



10

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

K
b/

s)

Time (s)

Foreground
Bulk Transfer
Competetive

Figure 5. Performance achieved for a mixture of Premium and Best-Effort services on GARNET. We
demonstrate that a bulk-transfer (background) application is able to exploit unused Premium traffic
without affecting foreground reservations. See text for details.

cated bandwidth, thereby avoiding packet drops
and the invocation of TCP slow-start. The follow-
ing is a more detailed explanation of the graph:

1. The graph begins with the background TCP
traffic, which has a bulk-transfer reser-
vation. This flow is initially allocated
40.5 Mb/s Premium bandwidth: that is, 90
percent of the 45 Mb/s Premium traffic.

2. The competitive UDP traffic is started
shortly after the bulk transfer but does not
affect it due to the Premium status of the
bulk transfer flow.

3. At 25 secs, another application makes an
immediate 36 Mb/s reservation and initi-
ates a 32 Mb/s foreground flow. A callback
notifies the bulk transfer application, which
reduces its sending rate to adapt to the re-
duced reservation. (The and other similar

transitions take a little time due to the time
required to control the router.)

4. At 48 secs, the foreground application fin-
ishes its transmission and then cancels its
reservation. Another callback allows the
bulk transfer process to increase its sending
rate to adapt to the newly available Pre-
mium traffic.

5. Subsequently, two other foreground flows
are created, with similar effects: a 9 Mb/s
reservation (8 Mb/s flow) from 75 to 105
secs and an 18 Mb/s reservation (16 Mb/s
flow) from 130 to 160 secs.

6. At time 185, the background flow completes
and cancels its reservation. The compet-
ing traffic rate increases to its target of
80 Mb/s, actually exceeding this briefly be-
cause of the filled router queues.



11

Notice that each time the bulk transfer reserva-
tion is reduced, the bulk-transfer rate drops mo-
mentarily then recovers. We attribute this behav-
ior to the fact that TCP shrinks its window size
when packets are dropped, due to slow start or
congestion avoidance.

The model of bulk transfers used to date is in-
tended to increase the economic use of the Guar-
anteed Rate service. An important improvement
to this mechanism would be to add a minimum
reservation for the background traffic. By thus
guaranteeing a particular amount of foreground
traffic to the background class, deadline staging
operations can easily be implemented. Again, the
economic use indicates that the required reserva-
tion to meet the deadline might change over time.
Whenever a status update of the available band-
width is received by the resource manager, it can
easily calculate the new required amount of band-
width.

While figure 5 lists only a single bulk transfer
flow, the basic mechanism can easily be extended
to support multiple flows. Assume that there are
n bulk transfer flows, with minimum bandwidths
b0, . . . , bn−1. At any given time, there is unused
bandwidth U , and we know that

U ≥
n−1∑

i=0

bi

This is because we do admission control to en-
sure that each bulk transfer flow will always have
its minimum bandwidth. We will assign each ac-
tual bandwidth, Bi as:

Bi = U · bi∑n−1
j=0 bj

This gives a proportional share of the band-
width, and ensures that each flow gets its min-
imum bandwidth. An optimization could be to
decay the minimum bandwidth when the appli-
cation is able to send at rates greater than the
minimum bandwidth, thus allowing more band-
width to be given to other flows. This allows the
links to be shared, while still assisting the bulk
transfer flows in finishing as soon as possible.

We now extend this model of bulk data trans-
fer by also applying for unused Best-Effort band-

width. The required reservation of Premium ca-
pacity to meet a deadline can in particular be de-
creased during the run time of a bulk data trans-
fer, if parallel sockets are used for the transmis-
sion. Thereby one of the sockets has to be config-
ured to generate Premium traffic at the confirmed
rate to ensure that the deadline is met, whereas
no reservation of network capacity is made for the
remaining sockets, but these are mapped to a less
than Best-Effort service in order to allow for fair-
ness among competing and responsive Best-Effort
flows. Within the QBone Internet2 project the
DS Scavenger service [47] was proposed recently
to provide such a less than Best-Effort service for
high-bandwidth flows. By applying the Scavenger
service the bulk transfer application not only col-
lects unused Premium bandwidth but also unused
Best-Effort capacity at the prize, that the Scav-
enger service can be starved by Best-Effort traffic.
Whenever the bulk transfer application succeeds
in transmitting an appreciable amount of addi-
tional data by applying the Scavenger service,
forward signaling of a reduced required Premium
rate to the reservation manager can be applied to
decrease the reserved Premium capacity and thus
reduce costs and allow for a smaller blocking rate
of the reservation manager, due to a higher avail-
able Premium capacity.

Our prototype implementation of such a par-
allel bulk data transfer application is based on a
simple data fragmentation and the use of two par-
allel sockets with the proposed mapping of one
socket to the Premium service and one to the
Scavenger service. In order to overcome the ef-
fects of TCP congestion control in the Scavenger
class, the implementation option of using multi-
ple striped sockets for this class exists as this is
offered by gridftp [3].

Figure 6 and 7 show results obtained from our
testbed implementation of this combined use of a
Premium and a Scavenger service. A target dead-
line for a 280 MByte file transfer of 200 seconds
is applied. The required Premium rate to ensure
this deadline with a safety margin of 10 seconds is
derived to 12 Mb/s, for which an initial reserva-
tion is made. The sender in addition to this Guar-
anteed Rate service applies the Scavenger service
in parallel, to utilize unused Premium and Best-



12

Effort capacity, if any is available. Each time the
sender successfully transmits a configurable ad-
ditional amount of data (25 MByte) by applying
the Scavenger service, it recomputes the reserva-
tion of Premium capacity that is required to meet
the deadline, and performs a reservation update.

In figure 6 a scenario without additional traf-
fic across an ATM bottleneck link of roughly 42
Mb/s net capacity is addressed. Besides the guar-
anteed rate of 12 Mb/s used by the premium
stream, the Scavenger stream can use the remain-
ing capacity with a rate of about 30 Mb/s. Af-
ter 7 seconds, the sender performs the first Pre-
mium service rate adaptation, due to the addi-
tional 25 MByte of data transferred by means of
the Scavenger service, and lowers the Premium
capacity reservation to about 10.5 Mb/s. Since
the ATM bottleneck link in this experiment is
not used by any other flow, the rate at which the
Scavenger service can be used increases propor-
tionately. This process occurs repeatedly during
the file transfer and allows the reservation man-
ager to redistribute the freed Premium capacity.
In addition the use of parallel sockets reduces the
file transfer time to 58 seconds.

Figure 7 shows the same scenario under con-
gestion. After 10, 40 and 70 seconds, congestion
occurs, each time for 10 seconds. During these
periods the congestion leads to the intended star-
vation of the less than Best-Effort Scavenger ser-
vice and thus achieves the desired fairness among
Scavenger and Best-Effort flows. Nevertheless
the deadline of the file transfer is never endan-
gered, since the Premium flow still receives the
currently required guaranteed rate. Due to the
reduced amount of data transmitted by applying
the Scavenger service, Premium rate adaptations
can in this scenario be made less frequently, and
an overall file transfer time of 88 seconds is mea-
sured, which still is well below the Premium flow
target deadline of 190 seconds.

Therefore the use of parallel streams in a
file transfer scenario and the mapping of these
streams on a Guaranteed Rate and a Scavenger
service achieves three main goals:

• The file transfer deadline is guaranteed.

• Excess Premium and Best-Effort capacity

can be used if available, to reduce the over-
all transmission time, and to be able to free
Premium resources earlier.

• Fairness towards the Best-Effort class is
achieved by applying the less than Best-
Effort Scavenger service, thus allowing the
coexistence of responsive Best-Effort traffic
with high-bandwidth Scavenger flows

A slightly different implementation of the par-
allel data transfer can alternatively be based on
the DS Assured Forwarding, which also can be
used to implement a Guaranteed Rate service.
Within one AF class a differentiation in terms
of drop precedence can be applied to differently
marked packets based on an implementation of
Multiple Random Early Detection. At the ingress
node of a DS domain a meter typically applies a
token bucket mechanism such as the Two Rate
Three Color Marker [28] proposed for the use with
AF. This marker performs a marking of packets
to be treated in the core with a low drop proba-
bility, if the traffic conforms to a committed in-
formation rate and with a high drop probability,
if it exceeds this rate.

5.3. Multiple Flows: Wide Area Case
Our next experiments repeat those just de-

scribed over the wide area network from ANL to
LBNL: see Figure 4. Here, we used WFQ to con-
figure our testbed with 55 Mb/s Premium traf-
fic over the 60 Mb/s UBR VC between ANL and
LBNL and 27 Mb/s Premium traffic within GAR-
NET. Note that when congested this wide area
Premium traffic configuration is a good approxi-
mation to priority queuing. (Only 27 Mb/s Pre-
mium traffic was allowed on GARNET in these
particular experiments because of either extra
traffic or a bad device on a fast Ethernet segment
of the network that we were unable to control; in
other experiments, we have successfully config-
ured up to 45 Mb/s Premium.) Here, the back-
ground flow is initially allocated 24.3 Mb/s Pre-
mium bandwidth (that is, 90 percent of 27 Mb/s),
the competing Best-Effort UDP flow operates at
50 Mb/s (1,250 byte packets every 200 µsecs), and
two foreground flows are created: a 16 Mb/s flow
(18 Mb/s reservation) at 37 secs and an 8 Mb/s



13

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10 20 30 40 50 60

A
ch

ie
ve

d 
B

an
dw

id
th

 (
K

b/
s)

Time (s)

GR Stream
Scavenger Stream

Figure 6. Performance achieved with a combination of a Guaranteed Rate service and a Scavenger service.
We demonstrate that a bulk-transfer application with deadline is able to use a Guaranteed Rate service
and in addition exploits unused Premium and Best-Effort capacity by a Scavenger service. See text for
details.

flow (9 Mb/s reservation) at 94 secs.
As shown in Figure 8, the results obtained in

the wide area are almost as good as in the lo-
cal area. We attribute the somewhat more dy-
namic behavior during reservation changes to the
fact that the kernel buffers associated with the
bulk transfer socket take some time to empty.
Hence, data is initially sent too rapidly for the
updated router configuration, forcing packets to
be dropped and TCP to go into slow-start mode.
This effect is magnified by the larger bandwidth-
delay product and hence larger socket buffers
(1 MB in this case) in the wide area network.

5.4. Evaluation of TCP Pacing
So far, we required the application to be instru-

mented to adapt to a given rate. In this section
we introduce the use of traffic shaping as a vehicle
to pace TCP throughput efficiently.

The actual throughput achieved by TCP appli-
cations depends on two main factors:

• The size of the advertised window deter-
mines the transmission rate of the trans-
mitter (disregarding the congestion win-
dow). Using the socket API, the related
window size can be influenced by explicitly
setting the socket buffer size. The opti-
mal socket buffer size should be equal to
the bandwidth-delay product [46]. How-
ever, making the socket buffer too large
might result in a reduced throughput be-
cause the sender might transmit more than
the network is actually capable of handling,
particularly during the slow-start process
when TCP’s self-clocking capability is not
the dominant influence on bandwidth.

• The application has to provide data to the



14

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10 20 30 40 50 60 70 80 90

A
ch

ie
ve

d 
B

an
dw

id
th

 (
K

b/
s)

Time (s)

GR Stream
Scavenger Stream

Figure 7. Performance achieved with a combination of a Guaranteed Rate service and a Scavenger service.
While the Scavenger service reacts to periods of congestion, the Guaranteed Rate service remains stable.
We see three periods of congestion: from 12-22, from 42-52, and from 72-82 seconds.

socket buffer that the TCP stack can ac-
tually fall into the so called steady-state.
This ability often depends on the state of
the local operating system, as data might
be read from disk or the CPU is heavily
used by other applications. The following
section will address this issue.

There has been some discussion as to whether
shaping of TCP traffic, i.e., TCP pacing, might
increase fairness and throughput [34,2]. How-
ever, none of these studies was concerned with
TCP flows using a virtual leased line, i.e. a Pre-
mium aggregate. Pacing TCP traffic in an envi-
ronment offering a Guaranteed Rate service fa-
cilitates the simple use of network reservations
even without the knowledge of the actual rate the
application is writing data to the socket buffer.
In the above experiments, we instrumented the
application to adapt its socket buffer write fre-

quency to the available background rate. In a sce-
nario where TCP pacing is controlled by GARA’s
resource manager, the use of an oversized socket
buffer leverages TCP’s self clocking feature to
control the speed of transmission. In coordinating
a reservation with the shaping rate, packet drops
can be avoided and a well-defined throughput can
be established.

The following experiment is designed to demon-
strate that shaping a TCP flow enables it to
work smoothly with a Premium service without
too much effort. We demonstrate two Premium
TCP flows between Chicago (ANL) and Califor-
nia (LBNL) which try to exceed the rate they
have reserved. This is a fairly likely scenario,
since it is often hard for programmers to estimate
the bandwidth their applications use. Also, we
have already shown elsewhere [43,23] that appli-
cations that do not exceed their rate do not have
a problem.



15

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 20 40 60 80 100 120 140 160 180

B
an

dw
id

th
 (

K
b/

s)

Time (s)

Foreground
Bulk Transfer
Competetive

Figure 8. Performance achieved for a mixture of Premium and Best-Effort services on a wide area testbed.
We demonstrate good performance even in the wide area. See text for details.

Specifically, we used a socket buffer size of 1MB
and the round trip time is 75ms. Each flow ran at
different times but are shown on the same graph.
The application tried to write to the socket buffer
at 64 Mb/s while it only made a reservation for
16 Mb/s. One of the flows is shaped to match the
reservation bandwidth and therefore is paced to
avoid packet drops. Figure 9 shows the achieved
throughput for each of the flows. There are two
things to notice in this figure. First, the shaped
flow has a steady bandwidth at the reservation it
made. Second, the unshaped flow has an unstable
instantaneous bandwidth. Although it is not ob-
vious from the graph, the average bandwidth of
the flow is 9440 Kb/s, which is significantly less
than the reservation.

One might hope that using selective acknowl-
edgements would eliminate the need for shaping.
This is because SACK can recover from multi-
ple packet losses roughly in one round trip time.
However, as can be seen from Figure 10, this is

not the case. In this Figure, we repeated the
same experiment as in Figure 9, but with selec-
tive acknowledgements enabled. In this case, the
instantaneous bandwidth varies much less, but
the average bandwidth is still significantly less
than the reservation, i.e. 11992 Kb/s compared
to 14448 Kb/s. Even though SACK can recover
from packet losses more easily, TCP still reacts
to the dropped packets as if they imply network
congestion.

The results demonstrate that bulk transfer
operation can be controlled by TCP pacing in
a Guaranteed Rate service. Without detailed
knowledge about the rate the application is send-
ing at, GARA can react to the current reserva-
tion state and provide a constant, smooth trans-
fer rate. Of course, a convenient shaping buffer
has to be available in the edge router. This, how-
ever, is a realistic assumption as commodity net-
working devices offer buffer space in the order of
MBytes [43].



16

0

5000

10000

15000

20000

0 20 40 60 80 100

B
an

dw
id

th
 (

K
b/

s)

Time (s)

With Shaping
Without Shaping

Figure 9. Achieved throughput for a Premium TCP flow exceeding the reservation. The SACK-option
was disabled. The average achieved throughput was 9440 Kb/s without shaping and 14320 Kb/s when
shaping was activated. See text for details.

The results also present the benefit of using
SACK. While the experiment without using the
SACK-option was oscillated due to packet loss,
SACK could reduce its amplitude. However, the
achieved throughput with SACK was significantly
below the paced experiment.

5.5. Co-Reservation of CPU and Network
An important challenge addressed by GARA

is the co-reservation of multiple resources: for ex-
ample, network and CPU to ensure that a receiver
can process incoming data. The experiment re-
ported here demonstrates the ability of GARA
to support such co-reservation. Specifically, we
established a TCP flow and showed that we can
maintain data transfer performance despite com-
peting traffic on the network and competing com-
putational load on the receiving host.

We conducted this experiment on GARNET
and use the 100 Mb/s network as before, except

that this time Premium traffic is configured to use
up to 95 Mb/s. A TCP flow is started and net-
work and CPU reservations and load are applied
in various combinations.

1. A ttcp application is started without net-
work congestion and without any reserva-
tion.

2. At 10 secs, an 80 Mb/s traffic generator
is started. Because of network congestion,
ttcp switches to the slow start feature and
congestion control, with the result that ttcp
performance drops precipitously and most
available bandwidth is consumed by the
competitive traffic.

3. At 40 secs, the TCP application creates
an immediate network reservation through
GARA. Performance increases dramati-
cally.



17

0

5000

10000

15000

20000

0 20 40 60 80 100

B
an

dw
id

th
 (

K
b/

s)

Time (s)

With Shaping
Without Shaping

Figure 10. Achieved throughput for a Premium TCP flow exceeding the reservation. This time, the
SACK-option was enabled. The average achieved throughput was 11992 Kb/s without shaping and
14448 Kb/s when shaping was activated. See text for details.

4. At 60 secs, a significant competing CPU
load is imposed on the TCP receiver host.
TCP throughput is significantly effected,
due to contention for the CPU.

5. At 80 secs, we use GARA to reserve a sig-
nificant amount of CPU for the receiving
TCP process through the DSRT manager.
The achieved rate increases immediately, al-
though some variation remains due to the
interval-based scheduling used by DSRT.

6. At 120 secs, we cancel the network reserva-
tion; TCP performance drops precipitously
once again.

7. At 160 secs, we cancel the CPU reserva-
tion; this has little further impact on per-
formance.

6. Policy in Multidomain Settings

We sketch an approach to expanding GARA to
support more sophisticated policy enforcement,
particularly in multi-domain settings.

6.1. General Approach
We assume the following system model. An

end-to-end reservation may involve multiple re-
sources located in different domains. Resource
allocation decisions within a domain remain the
responsibility of that domain; hence, end-to-end
reservations must be authorized by all appropri-
ate domains or by entities to which domains have
delegated this authority.

Our policy approach is designed to support a
flexible mix of policy options, for example:

• A domain may allocate resources on the ba-
sis of user identity. Such a policy may be
appropriate in the case of unique resources



18

0

20000

40000

60000

80000

100000

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

K
b/

s)

Time (s)

Reserved TCP Traffic
Competitive UDP Traffic

Figure 11. Performance achieved for a TCP flow in the presence of competing UDP traffic and host load,
for various combinations of network and CPU reservation. We demonstrate GARA’s ability to co-reserve
multiple resource types.

for which users make distinct requests, e.g.,
supercomputers or specialized network re-
sources such as a low-bandwidth outgoing
connection.

• A domain may allocate resources in re-
sponse to a request forwarded from an-
other domain with which some agreement
has been negotiated previously. For exam-
ple, a transit service domain (e.g., ESnet
in Figure 4) might negotiate an agreement
to accept any allocation request forwarded
from another DS domain, up to some SLA
limit.

• A domain may allocate resources in re-
sponse to a request authorized by some
third party, such as a virtual organization
with which the domain has negotiated an
agreement previously [6]. This delegation
of authorization allows a community to ne-

gotiate agreements with multiple domains
in order to obtain control of some amount
of Premium end-to-end bandwidth.

We anticipate multiple such authorization poli-
cies being active at one time. For example, in an
environment such as that of Figure 4, a transit
domain such as ESnet might support the follow-
ing policies:

• Accept immediate reservations of Premium
bandwidth from any domain with a previ-
ously negotiated SLA, subject to the con-
straint that no single request can be more
than 100 Mb/s and the total requests from
a domain cannot exceed its SLA.

• Accept immediate and advance reservation
requests labeled as “HEP” if approved by a
server operated by the high energy physics



19

community, up to limits and at times pre-
viously negotiated with that community.

We believe that authorization and authentica-
tion mechanisms provided in the Globus Toolkit
provide a basis on which to explore these issues.
The Akenti system [49] also provides important
relevant technology. We provide a more detailed
discussion of the handling of policies in such a
distributed environment elsewhere [42].

6.2. Bulk Transfers in Multidomain Set-
tings

So far our model for bulk transfers has assumed
a single administrative domain. In a Grid envi-
ronment, however, this assumption is of limited
use, as virtual organizations typically consist of
multiple administrative domains. In fact, when-
ever resources of different institutions are co-
allocated, any request for network services passes
at least three domains: the end-domains and one
transient domain. Figure 12 illustrates this prob-
lem.

In a single-domain environment, one resource
manager is able to provide a bulk-transfer class
as described above. In a multi-domain environ-
ment, things are more complicated, because there
can be many resource managers handling their
own set of foreground and bulk transfer flows,
and each such manager is a potential source of
feedback to the application.

This problem can be addressed by introducing
the abstraction of an aggregated end-to-end reser-
vation or core tunnel. Users authorized to use this
tunnel can then request portions of this aggregate
bandwidth by contacting just the two end do-
mains. The intermediate domains do not need to
be contacted as long the total bandwidth remains
less than the size of the tunnel. The importance
of this aggregation is increased by the fact that in
many Grids, multiple intermediate domains can
be involved where aggregates are split into differ-
ent egress points. By locating the bulk transfer
within a single core tunnel we can perform the
described adaption steps efficiently.

7. Related Work

The general problem of QoS implementation
and management is receiving increased atten-
tion (see, e.g., [25]). However, there has been
little work on the specific problems addressed
in this paper, namely advance reservation and
co-reservation of heterogeneous collections of re-
sources for end-to-end QoS and the use of DS
mechanisms to support flow types encountered in
high-end applications.

Proposals for advance reservations typically
employ cooperating servers that coordinate ad-
vance reservations along an end-to-end path [52,
17,14,27]. Techniques have been proposed for
representing advance reservations, for balancing
immediate and advance reservations [17], and
for advance reservation of predictive flows [14].
However, this work has not addressed the co-
reservation of resources of different types.

The concept of a bandwidth broker (simi-
lar to GARA’s network resource manager) is
due to Nichols and Jacobson [40]. The Inter-
net 2 Qbone initiative and the related Bandwidth
Broker Working Group are developing testbeds
and requirements specifications and design ap-
proaches for bandwidth brokering approaches in-
tended to scale to the Internet [48]. However,
advance reservations do not form part of their
design. Other groups have investigated the use of
DS mechanisms (e.g., [54]) but not for multiple
flow types. Hoo et al. [30] propose mechanisms
for the secure negotiation of end-to-end reserva-
tions.

The co-reservation of multiple resource types
has been investigated in the multimedia com-
munity: see, for example, [36,38,37]. However,
these techniques are specialized to specific re-
source types.

8. Conclusions and Future Work

We have described a QoS architecture that
supports immediate and advance reservation
(and co-reservation) of multiple resource types;
application-level monitoring and control of QoS
behavior; and support for multiple concurrent
flows with different characteristics. We have also



20

BB-B
 BB-C
BB-A


Charlie
Alice


Domain A
 Domain B
 Domain C


Figure 12. The multi-domain reservation problem. Alice needs to contact three BBs to make a network
reservation from her computer in domain A to Charlie’s computer in domain C.

described how this architecture can be realized
in the context of differentiated service networks.
We presented experimental results that demon-
strate our ability to deliver QoS to multiple flows
in local and wide area networks.

In future work we plan to improve and ex-
tend GARA in a variety of areas, including im-
proved representation and implementation of pol-
icy, more sophisticated adaptation mechanisms
(including real-time monitoring of network sta-
tus), and more sophisticated co-reservation algo-
rithms [11]. We also plan to extend our evalu-
ation of GARA mechanisms to a wider range of
applications and more complex networks. GARA
mechanisms are being incorporated into the Open
Grid Services Architecture-compliant [22] version
3.0 of the Globus Toolkit.

Acknowledgments

We gratefully acknowledge assistance provided
by Rebecca Nitzan and Robert Olson with exper-
imental studies. Numerous discussions with our
colleagues Gary Hoo, Bill Johnston, Carl Kessel-
man, and Steven Tuecke have helped shape our
approach to quality of service. We also thank
Cisco Systems for an equipment donation that
allowed creation of the GARNET testbed. This
work was supported in part by the Mathematical,
Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Sci-

entific Computing Research, U.S. Department of
Energy, under Contract W-31-109-Eng-38; by the
Defense Advanced Research Projects Agency un-
der contract N66001-96-C-8523; by the National
Science Foundation; and by the NASA Informa-
tion Power Grid program.

REFERENCES

1. M. Aeschlimann, P. Dinda, L. Kallivokas,
J. Lopez, B. Lowekamp, and D. O’Hallaron,
Preliminary report on the design of a frame-
work for distributed visualization, Proceed-
ings of the Parallel and Distributed Process-
ing Techniques and Applications Conference
(1999).

2. A. Aggarwal, S. Savage, and T. Anderson,
Understanding the Performance of TCP Pac-
ing, Proceedings of IEEE Infocom (2000)
1157–1165.

3. W. Allcock, J. Bester, J. Bresnahan, A. Cher-
venak, I. Foster, C. Kesselman, S. Meder,
V. Nefedova, D. Quesnel, and S. Tuecke,
Data Management and Transfer in High-
Performance Computational Grid Environ-
ments, Parallel Computing (2001).

4. H. Andrade, T. Kurc, A. Sussman, and J.
Saltz, Active Proxy-G: Optimizing the Query
Execution Process in the Grid, Proceedings of
SC (2002).

5. W.Bethel, B.Tierney, J.Lee, D.Gunter, and



21

S.Lau, Using high-speed WANs and network
data caches to enable remote and distributed
visualization, Proceedings of ACM/IEEE Su-
percomputing Conference , (2000).

6. S. Blake, D. Black, M. Carlson, M. Davies,
Z. Wang, and W. Weiss, An Architecture for
Differentiated Services, RFC 2475 (1998).

7. R. Braden, D. Clark, and S. Shenker, Inte-
grated Services in the Internet Architecture:
an Overview, RFC 1633 (1994).

8. A. Chervenak, I. Foster, C. Kesselman, C.
Salisbury, and S. Tuecke, The Data Grid:
Towards an Architecture for the Distributed
Management and Analysis of Large Scientific
Data Sets, Journal on Network and Computer
Applications 23 (2001) 187– 200.

9. H. Chu, and K. Nahrstedt, CPU Service
Classes for Multimedia Applications, Proceed-
ings of IEEE Multimedia Computing and Sys-
tems (1999).

10. K. Czajkowski, S. Fitzgerald, I. Foster, and
C. Kesselman, Grid Information Services for
Distributed Resource Sharing, Proceedings
of the Tenth IEEE International Symposium
on High-Performance Distributed Computing
(HPDC-10), (2001).

11. K. Czajkowski, I. Foster, and C. Kessel-
man, Co-allocation Services for Computa-
tional Grids, Proceedings of the 8th IEEE
Symposium on High Performance Distributed
Computing (1999).

12. B. Davie, A. Charny, J.C.R Bennett, K. Ben-
son, J.Y. LeBoudec, W. Courtney, S. Davari,
V. Firoiu, and D. Stiliadis, An Expedited For-
warding PHB (Per-Hop-Behavior), RFC 3246
(2002).

13. T. DeFanti, and R. Stevens, Teleimmersion,
[20] 131–156.

14. M. Degermark, T. Kohler, S. Pink, and O.
Schelen, Advance Reservations for Predictive
Service in the Internet, ACM/Springer Jour-
nal of Multimedia Systems , 5 (3) (1997).

15. T. DeWitt, T. Gross, B. Lowekamp, N.
Miller, P. Steenkiste, and J. Subhlok, Re-
MoS: A Resource Monitoring System for
Network Aware Applications, Technical Re-
port, Carnegie Mellon University, CMU-CS-
97-194 (1997).

16. N. G. Duffield, P. Goyal, A. Greenberg, P.
Mishra, K. K. Ramakrishnan, and J. E. van
der Merwe, A flexible model for resource man-
agement in virtual private networks, ACM
SIGCOMM (1999).

17. D. Ferrari, A. Gupta, and G. Ventre, Dis-
tributed Advance Reservation of Real-Time
Connections, ACM/Springer Journal on Mul-
timedia Systems 5 (3) (1997).

18. I. Foster, J. Insley, G. von Laszewski, C.
Kesselman, and M. Thiebaux, Distance Vi-
sualization: Data Exploration on the Grid,
IEEE Computer 32 (12) (1999) 36–43.

19. I. Foster, and C. Kesselman, Globus: A
Toolkit-Based Grid Architecture, [20] 259–
278.

20. I. Foster and C. Kesselman (Eds.), The Grid:
Blueprint for a Future Computing Infrastruc-
ture, Morgan Kaufmann Publishers (1999).

21. I. Foster, C. Kesselman, C. Lee, R. Lin-
dell, K. Nahrstedt, and A. Roy, A Dis-
tributed Resource Management Architecture
that Supports Advance Reservations and Co-
Allocation, Proceedings of the International
Workshop on Quality of Service (1999) 27–
36.

22. I. Foster, C. Kesselman, J. Nick, and
S. Tuecke, The Physiology of the Grid:
An Open Grid Services Architecture
for Distributed Systems Integration,
www.globus.org/research/papers/physio-
logy.pdf (2002).

23. I. Foster, A. Roy, V. Sander, and L. Win-
kler, End-to-End Quality of Service for
High-End Applications, Technical Report,
Mathematics and Computer Science Divi-
sion, Argonne National Laboratory, Argonne,
www.mcs.anl.gov/qos/end to end.pdf
(1999).

24. E. Frécon, C. Greenhalgh, and M. Stenius,
The DiveBone - An Application-Level Net-
work Architecture for Internet-Based CVEs,
Symposium on Virtual Reality Software and
Technology (1999).

25. R. Guérin, and H. Schulzrinne, Network
Quality of Service, [20] 479–503.

26. D. Gunter, B. Tierney, K. Jackson, J. Lee,
and M. Stoufer, Dynamic Monitoring of



22

High-Performance Distributed Applications,
Proceedings of the 11th IEEE Symposium
on High Performance Distributed Computing
(2002).

27. A. Hafid, G. Bochmann, and R. Dssouli, A
Quality of Service negotiation Approach with
Future Reservations (NAFUR): A Detailed
Study, Computer Networks and ISDN Sys-
tems 30 (8) (1998).

28. J. Heinanen, and R. Guérin, A Two Rate
Three Color Marker, RFC 2698 (1999).

29. J. Heinanen, T. Finland, F. Baker, W. Weiss,
and J. Wroclawski, Assured Forwarding PHB
Group, RFC 2597 (1999).

30. G. Hoo, K. Jackson, and W. Johnston, De-
sign of the STARS Network QoS Reservation
System, Technical Report, Lawrence Berkeley
National Laboratory (2000).

31. G. Hoo, W. Johnston, I. Foster, and A. Roy,
QoS as middleware: Bandwidth broker sys-
tem design, Technical Report LBNL (1999).

32. W. Hoschek, J. Jaen-Martinez, A. Samar, H.
Stockinger, and K. Stockinger, Data Manage-
ment in an International Data Grid Project,
IEEE/ACM International Workshop on Grid
Computing (2000).

33. W. Johnston, J. Guojun, G. Hoo, C. Larsen,
J. Lee, B. Tierney, and M. Thompson, Dis-
tributed environments for large data-objects:
Broadband networks and a new view of
high performance large scale storage-based
applications, Proceedings of Internetworking
(1996).

34. J. Kulik, R. Coulter, D. Rockwell, and C. Par-
tridge, Paced TCP for High Delay-Bandwidth
Networks, Proceedings of the Workshop on
Satellite-Based Information Systems (WOS-
BIS) (1999).

35. S. Machiraju, M. Seshadri, and I. Stoica, A
Scalable and Robust Solution for Bandwidth
Allocation, International Workshop on Qual-
ity of Service (2002).

36. A. Mehra, A. Indiresan, and K. Shin, Struc-
turing Communication Software for Quality-
of-Service Guarantees, Proceedings of the 17th
Real-Time Systems Symposium (1996).

37. K. Nahrstedt, H. Chu, and S. Narayan, QoS-
aware Resource Management for Distributed

Multimedia Applications, Journal on High-
Speed Networking (1998).

38. K. Nahrstedt, and J. M. Smith, De-
sign, Implementation and Experiences of
the OMEGA End-Point Architecture, IEEE
JSAC, Special Issue on Distributed Multime-
dia Systems and Technology 14 (7) (1996)
1263–1279.

39. K. Nichols, S. Blake, F. Baker, and D. Black,
Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers,
RFC 2474 (1998).

40. K. Nichols, V. Jacobson, and L. Zhang, A
Two-bit Differentiated Services Architecture
for the Internet, RFC 2638 (1999).

41. E. Rosen, R. Callon, and A. Viswanathan,
Multiprotocol label switching architecture,
RFC 3031 (2001).

42. V. Sander, W. A. Adamson, I. Foster, and A.
Roy, End-to-End Provision of Policy Informa-
tion for Network QoS, Proceedings of the 10th
IEEE Symposium on High Performance Dis-
tributed Computing (2001).

43. V. Sander, I. Foster, A. Roy, and L. Winkler,
A Differentiated Services Implementation for
High-Performance TCP Flows, Terena Net-
working Conference (2000).

44. Q. Snell, M. Clement, D. Jackson, and C.
Gregory, The Performance Impact of Advance
Reservation Meta-scheduling, IPDPS Work-
shop, Job Scheduling Strategies for Parallel
Processing (JSSPP), Springer-Verlag LNCS
1911 (2000).

45. P. Steenkiste, Adaptation Models for
Network-Aware Distributed Computations,
Proceedings of CANPC (1999).

46. W. Stevens, TCP/IP Illustrated, Vol. 1 The
Protocols, Addison-Wesley (1997).

47. B. Teitelbaum, Future Priorities for In-
ternet2 QoS, www.internet2.edu/qos/wg/
papers/qosFuture01.pdf (2001).

48. B. Teitelbaum, S. Hares, L. Dunn, V.
Narayan, R. Neilson, and F. Reichmeyer, In-
ternet2 QBone - Building a Testbed for Dif-
ferentiated Services, IEEE Network 13 (5)
(1999).

49. M. Thompson, W. Johnston, S. Mudum-
bai, G. Hoo, K. Jackson, and A. Essiari,



23

Certificate-based Access Control for Widely
Distributed Resources, Proceedings of the 8th
Usenix Security Symposium (1999).

50. B. Tierney, W. Johnston, L. Chen, H. Her-
zog, G. Hoo, G. Jin, and J. Lee, Distributed
Parallel Data Storage Systems: A Scalable
Approach to High Speed Image Servers, Pro-
ceedings of ACM Multimedia (1994).

51. S. Vegesna (Eds.), IP Quality of Service,
Cisco Press (2001).

52. L.C. Wolf, and R. Steinmetz, Concepts for
Reservation in Advance, Kluwer Journal on
Multimedia Tools and Applications 4 (3)
(1997).

53. J. Wroclawski, The Use of RSVP with IETF
Integrated Services, RFC 2210 (1997).

54. I. Yeom, and A. L. Narasimha Reddy, Mod-
eling TCP Behavior in a Differentiated-
Services Network, Technical Report, TAMU
ECE (1999).


