
Decoupling Computation and Data Scheduling
in Distributed Data-Intensive Applications

Kavitha Ranganathan* Ian Foster*#
* Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

Math and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
{ krangana,foster} @cs.uchicago.edu

Abstract

In high energy physics, bioinformatics, and other
disciplines, we encounter applications involving
numerous, loosely coupled jobs that both access and
generate large data sets. So-called Data Grids seek to
harness geographically distributed resources for such
large-scale data-intensive problems. Yet effective
scheduling in such environments is challenging, due to
a need to address a variety of metrics and constraints
(e.g., resource utili zation, response time, global and
local allocation policies) while dealing with multiple,
potentially independent sources of jobs and a large
number of storage, compute, and network resources.

We describe a scheduling framework that addresses
these problems. Within this framework, data movement
operations may be either tightly bound to job
scheduling decisions or, alternatively, performed by a
decoupled, asynchronous process on the basis of
observed data access patterns and load. We develop a
family of job scheduling and data movement
(replication) algorithms and use simulation studies to
evaluate various combinations. Our results suggest that
while it is necessary to consider the impact of
replication on the scheduling strategy, it is not always
necessary to couple data movement and computation
scheduling. Instead, these two activities can be
addressed separately, thus significantly simpli fying the
design and implementation of the overall Data Grid
system.

1. Introduction

A Grid is a distributed collection of computer and
storage resources maintained to serve the needs of some
community or virtual organization (VO) [18, 19]. Any
of the potentially large number of authorized users
within that VO has access to al l or some of these
resources, and is able to submit jobs to the Grid and
expect responses. The choice of algorithms used to
schedule jobs in such environments wil l depend on the
target application. Our focus here is on scheduling
algorithms suitable for large-scale data-intensive
problems, such as those that arise in the high-energy
physics (HEP) experiments currently being developed at

CERN [1], which will generate petabytes of scientific
data by 2006. In those experiments, a community of
hundreds of physicists around the world wil l submit,
individually and collectively, ultimately mill ions of
jobs, each accessing some subset of that data.

Scheduling is a challenging task in this context. The
data-intensive nature of individual jobs means it can be
important to take data location into account when
determining job placement. Replication of data from
primary repositories to other locations can be an
important optimization step, so as to reduce the
frequency of remote data access. And the large number
of jobs and resources means that centralized algorithms
may be ineffective. Thus, for example, scheduling
algorithms that focus only on maximizing processor
util ization by mapping jobs to idle processors
(disregarding costs associated with fetching remote
data) are unlikely to be efficient.

To address this problem, we have defined a general
and extensible scheduling framework within which we
can instantiate a wide variety of scheduling algorithms,
and then used simulation studies to explore the
effectiveness of different algorithms within this
framework.

We assume a system model in which many users
submit requests for job execution from any one of a
large number of sites. At each site, we place three
components: an External Scheduler (ES), responsible
for determining where to send jobs submitted to that
site; a Local Scheduler (LS), responsible for
determining the order in which jobs are executed at that
particular site; and a Dataset Scheduler (DS),
responsible for determining if and when to replicate
data and/or delete local files. The choice of algorithms
for each component defines a particular scheduling
system.

Within this framework, we have defined a family of
four ES and three DS algorithms, LS algorithms being
widely researched in the past [4]. Our ES algorithms
dispatch jobs to a random site, the least loaded site, the
local site, or a site where required data already exists.
Our DS algorithms perform no asynchronous
replication, or alternatively, choose a random or the
least loaded neighbor for replication of popular datasets
(we shall use file and dataset interchangeably for the
rest of the paper). In the ‘no replication’ case, a job

execution is preceded by a fetch of the required data,
leading to a strong coupling between job scheduling and
data movement. By contrast, the other two replication
strategies are loosely coupled to job execution.

To study the effectiveness of these different
scheduling algorithms, we have developed a modular
and extensible discrete event Data Grid simulation
system, ChicSim (Chicago Simulator). Our simulation
results show a marked increase in Grid performance
when the right combination of loosely coupled
replication and scheduling policies are used. Our results
also show that evaluating scheduling algorithms on their
own, without considering the impact of replication
techniques can lead to sub-optimal choices.

The outline of the paper is as follows. Section 2
reviews related work in the arena of grid scheduling and
data placement. In Section 3, we provide details of our
proposed model and in Section 4 describe the
scheduling and replication algorithms that we evaluate.
Simulation details and results are discussed in Section 5
and we conclude and point to future directions in
Section 6.

2. Related Work

Most previous scheduling work has considered data
locali ty/storage issues as secondary. We discuss work
that has recognized the importance of data location in
grid scheduling.

Thain et al. [26] describe a system that links jobs and
data by binding execution and storage sites into I/O
communities that reflect physical reali ty. As they
present building blocks for such communities but do not
address policy issues, this work is complementary to our
work on scheduler policies. The same comment applies
to work on Execution Domains [9], a framework that
defines bindings between computing power and data
resources in a grid such that applications are scheduled
to run at CPUs that have access to required data and
storage.

Casanova et al. [14] describe an adaptive scheduling
algorithm for parameter sweep applications in Grid
environments that takes data storage issues into account.
Their approach is to place files strategically for
maximum reuse. The basic difference between their
work and ours is that our heuristic also actively
replicates/pre-stages fi les. In addition, while [14] makes
scheduling decisions central ly, assuming ful l knowledge
of current loads, network conditions and topology, we
concentrate on a distributed and presumably more
scalable model, in which each site takes informed
decisions based on its view of the Grid.

Heuristics li ke Max-min and Min-Min are used for
Level-by-Level scheduling of DAGS by Alhusaini et al
in [5]. They consider data location as a parameter but
assume that resource performance characteristics are
perfectly predictable. What sets our work apart from
other grid scheduling research is that we consider
dynamic data replication as a fundamental part of the
scheduling problem.

3. System Model and Scheduling Problem

We model a Data Grid as a set of sites, each
comprising a number of processors and a l imited
amount of storage; a set of users, each associated with a
site; and a set of fi les, each of a specified size, initially
mapped to sites according to some distribution. We
assume that all processors have the same performance
and that all processors at a site can access any storage at
that site. Each user generates jobs according to some
distribution. Each job requires that a specified set of
fi les be available before it can execute. It then executes
for a specified amount of time on a single processor,
and finally generates a specified set of files.

A particular Data Grid execution (DGE) is defined
by a sequence of job submissions, allocations, and
executions along with data movements. A DGE can be
characterized according to various metrics, such as
elapsed time, average response time, processor
util ization, network util ization, and storage uti li zation.
The scheduling problem in a Data Grid is thus to define
algorithms that wil l produce DGEs that are both correct
and good with respect to one or more metrics.

In order to allow for a systematic description and
analysis of a range of algorithms, we define a
scheduling framework in which scheduling logic is
encapsulated in three modules (see Figure 1):

• External Scheduler (ES): Users submit jobs to

the External Scheduler they are associated with.
The ES then decides which remote site to send
the job to depending on some scheduling
algorithm. It may need external information li ke
load at a remote site or the location of a dataset,
to make its decisions.

• Local Scheduler (LS): Once a job is assigned to
run at a particular site (and sent to an incoming
job queue) it is then managed by the Local
Scheduler. The LS of a site decides how to
schedule all j obs allocated to i t, on its local
resources.

• Dataset Scheduler (DS): The DS at each site
keeps track of the popularity of each dataset
locally available. It then replicates popular
datasets to remote sites depending on some
algorithm. The DS may need external
information l ike whether the data already exists
at a site, load at a remote site etc. before taking a
decision.

Different mappings between users and External
Schedulers lead to different scenarios. For example, a
one-to-one mapping between External Schedulers and
users would mean each user takes scheduling decisions
on their own, while a single ES in the system would
mean a central scheduler to which all users submit their
jobs. For our experiments we assume one ES per site.
We wil l study other mappings in the future.

Figure 1: Interactions among Data Grid components

The external information a module needs can be
obtained either from an information service (e.g., the
Globus Toolkit’s Monitoring and Discovery Service
[15], Network Weather Service [28]) or directly from
sites.

4. Scheduling and Replication Algorithms

There are two distinct functionalities we are
interested in, external scheduling and data replication.
For each, we define and evaluate a range of different
algorithms.

Each site may have its own local scheduling policy
that is implemented by the LS. Management of internal
resources is a problem widely researched in the past [4]
and we use FIFO (first in first out) as a simplification.

An External Scheduler selects a remote site to which
to send a job, based on one of four algorithms:

• JobRandom: A randomly selected site.

• JobLeastLoaded: The site that currently has the
least load. (A variety of definitions for load are
possible; here we define it simply as the least
number of jobs waiting to run.)

• JobDataPresent: A site that already has the
required data. If more than one site qualifies
choose the least loaded one.

• JobLocal : Always run jobs locally.

In each case, any data required to run a job is fetched
locally before the task is run if i t is not already present
at the site.

For the Dataset Scheduler, we define three alternative
algorithms:

• DataDoNothing: No active replication takes
place. Datasets are pre-assigned to different
sites and no dynamic replication policy is in
place. Data may be fetched from a remote site
for a particular job, in which case it is cached
and managed using LRU. A cached dataset is
then available to the grid as a replica.

• DataRandom: The DSM keeps track of the
popularity of the datasets it contains, and when
the popularity exceeds a threshold those
datasets are replicated to a random site on the
grid.

• DataLeastLoaded: The DSM chooses the least
loaded site from its li st of known sites (we
define this as neighbors) as a new host for a
popular dataset.

We thus have a total of 4x3=12 algorithms to evaluate.

5. Simulation Studies and Results

We have constructed a discrete event simulator
ChicSim to evaluate the performance of different
combinations of job and task scheduling algorithms.
ChicSim is built on top of Parsec [3], a C-based
simulation language. We describe in turn the simulation
framework, experiments performed, and results.

User User

 DS LS

Computers Storage

DS LS

Computers Storage

Storage

D
J

Computers

J J
D D

J J Q
:

Local
Scheduler

DataSet
Scheduler

Schedule on
idle node Monitor

popularity

D

D
Data
Mover

Migrate
data

Request remote
data

N users

E External Schedulers

S Sites

User

J

J

J

 ES

User User

 ES

5.1. Simulation Framework

In the absence of real traces from real data grids, we
model the amount of processing power needed per unit
of data, and the size of input and output datasets, on the
expected values of CMS experiments [21], but
otherwise generate synthetic data distributions and
workloads, as we now describe.

As described in Section 3, we assume a certain
number of users, sites, and datasets. (Table 1 specifies
the simulation parameters used for our study.) We
assume a hierarchical network topology much like that
envisioned by the GriPhyN project [6]. Datasets sizes
are selected randomly with a uniform distribution
between 500 MB to 2 GB and with initiall y only one
replica per dataset in the system. Users are mapped
evenly across sites and submit a number of jobs in strict
sequence, with each job being submitted only after the
previous job submitted by that user has completed.

Each job requires a single input file and runs for
300D seconds, where D is the size of the input file in
GB. The transfer of input files from one site to another
incurs a cost corresponding to the size of the file
divided by the nominal speed of the link. As job output
is of negligible size as compared to input, we ignore
output costs. We model network contention by keeping
track of the number of simultaneous data transfers
across a l ink and decreasing the bandwidth available for
each transfer accordingly.

Table 1: Simulation parameters used in study

Total number of Users 120

Number of Sites 30

Compute Elements/Site 2-5

Total number of Datasets 200

Connectivity Bandwidth 10 MB/sec (scenario 1)
100 MB/sec (scenario 2)

Size of Workload 6000 jobs

The jobs (i .e., input file names) needed by a
particular user are generated randomly according to a
geometric distribution (Figure 2), with the goal of
modeling situations in which a community focuses on
some datasets more than others. Note that we do not
attempt to model changes in dataset popularity over
time.

5.2. Experiments

We ran a total of 72 simulation experiments. For each
of our 4x3=12 pairs of scheduling algorithms, we ran
six experiments: three with data grid parameters as
above and three with network bandwidth increased by a
factor of ten. Within each set of three, we ran with
different random seeds in order to evaluate variance; in
practice, we found no significance variation. For each
experiment, we measured:

• Average amount of data transferred (bandwidth
consumed) per job

• Average job completion time (max (queue
time, data transfer time) + compute time)

• Average idle time for a processor

The amount of data transferred is important from the
perspective of overall resource util ization, while system
response time is of more concern to users. Since the
data transfer needed for a job starts while the job is still
in the processor queue of a site, the average job
completion time includes the maximum of the queue
time and transfer time.

The idle time of processors helps measure the total
util ization of the system under the different algorithms.
When a processor is idle, either the job queue of that
site is empty or the datasets needed for the jobs in the
queue are not yet available at that site.

0

5

10

15

20

25

0 10 20 30 40 50 60
Dataset ID

N
u

m
. o

f
re

q
u

es
ts

Figure 2: Dataset popularity follows a
geometric distribution. Here we show the

popularity of 60 datasets.

5.3. Results and Discussion

Figures 3 and 4 show the average response time, data
transported and average idle time for the system
parameters of Table 1 for the different combinations of
the data migration and job scheduling algorithms. The
results are the average over the three experiments
performed for each algorithm pair.

When no replication (DataDoNothing) is used,
algorithm JobLocal (“ compute where the job
originates”) performs the best in terms of response time
and algorithm JobDataPresent (“ compute where the data
is”) performs the worst. Although data is uniformly
distributed across the gird, the geometric distribution of
dataset popularity causes certain sites to be overloaded
when algorithm JobDataPresent is used, thus degrading
its performance.

When we introduce a replication policy, algorithm
JobDataPresent performs remarkably better than the
other three alternatives with respect to al l three metrics.
It also performs much better than the best algorithm in

0

200

400

600

800

1000

1200

JobRandom JobLeastLoaded JobDataPresent JobLocal

A
ve

ra
ge

 R
es

po
ns

e
T

im
e/

Jo
b

(s
ec

)
DataDoNothing

DataRandom

DataLeastLoaded

0

100

200

300

400

500

600

JobRandom JobLeastLoaded JobDataPresent JobLocal

A
ve

ra
ge

 D
at

a
T

ra
ns

fe
rr

ed
/J

ob
 (

M
B

)

DataDoNothing

DataRandom

DataLeastLoaded

 (a) (b)

Figure 3: Average response time (a) and average data transferred (b) for the various algorithms

the absence of replication. Clearly, dynamic replication
helps to reduce hotspots created by popular data and
enables load sharing. Notice that strategy
JobDataPresent performs li ttle data transfer (Figure 3b),
as datasets are moved only as a result of explicit
replication. Moreover, job completion times are
significantly shorter for JobDataPresent + Replication
(Figure 3a), as jobs are not held up waiting for required
input data. Similarly, the idle time of processors is
significantly smaller (Figure 4) for JobDataPresent with
replication. However, replication does not have a
positi ve effect on the other three algorithms; the
response times remain the same or worsen.

0%

20%

40%

60%

80%

100%

JobRandom JobLeastLoaded JobDataPresent JobLocal

A
ve

ra
ge

 Id
le

 T
im

e
of

 P
ro

ce
ss

or
s

DataDoNothing

DataRandom

DataLeastLoaded

Figure 4: Percentage of time when processors
are idle (not in use or waiting for data)

As Figure 3b il lustrates, the difference in the average

amount of data transferred between algorithm
JobDataPresent and the others is very large (> 400
MB/job). Clearly, if data locali ty issues are not
considered, even the best scheduling algorithms fall
prey to data transfer bottlenecks. The point we want to
bring forth via these results is the fol lowing: if the
scheduling algorithms were studied by themselves

(using DataDoNothing), we would conclude that
algorithm JobLocal of running jobs locally was the best
choice. However algorithm JobDataPresent teamed with
replication works much better than any other scenario.
Similarly, a replication policy that might work well by
itself may not guarantee the best overall performance of
the grid. Only by studying the effects of the
combination of different replication and scheduling
policies were we able to come up with a solution that
works better than each isolated study.

Perhaps surprisingly, we found no significant
performance differences between the two replication
algorithms that we evaluated, DataLeastLoaded and
DataRandom.

Strategy JobDataPresent along with DataRandom or
DataLeastLoaded, “ scheduling jobs at data sources and
actively replicated popular data” turns out to be the
winner as it ensures load sharing in the Grid with
minimal data transfer.

5.4. Impact of Network Performance

The experiments performed with faster networks
allow us to evaluate the sensitivity of our algorithms to
this factor. We find, not surprisingly, that if network
bandwidth is increased by a factor of ten, the
performance of all algorithms that involve extensive
data transfer (JobRandom, JobLeastLoaded, and
JobLocal) improve dramatically (Figure 5), while
strategy JobDataPresent performs more or less
consistently as it does not involve a large amount of
data movement. The point to be noted here is that under
these new conditions, algorithm JobLocal of fetching
data and executing jobs locally performs almost as well
as algorithm JobDataPresent and there is no clear
winner in terms of response time. Thus, while we
believe that the system parameters of Table 1 are
realistic for a global scientific Grid, we must be careful
to evaluate the impact of future technological changes
on our results.

500

600

700

800

900

1000

1100

JobRandom JobLeastLoaded JobDataPresent JobLocal

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

) 10MB/sec

100MB/sec

Figure 5: Response times for different
bandwidth scenarios (replication algorithm

DataLeastLoaded)

6. Conclusions and Future Work

We have addressed the problem of scheduling job
executions and data movement operations in a
distributed “Data Grid” environment, with the goal of
identifying both general principles and specific
algorithms that can be used to achieve good system
util ization and/or response times. In support of this
investigation, we have developed a modular and
extensible Data Grid scheduling framework within
which can be instantiated a variety of different job
scheduling and data movement scheduling algorithms.
We have also instantiated this framework with four
different job scheduling algorithms and three different
replication algorithms, and then used a Data Grid
simulation system, ChicSim, to evaluate the
performance of different algorithm combinations.

Our results show, first of all , that the choice of
scheduling algorithm has a significant impact on system
performance. Second, we find that it is important to
address both job and data scheduling explicitl y: for
example, simply scheduling jobs to idle processors, and
then moving data if required, performs significantly less
well than algorithms that also consider data location
when scheduling. Most interestingly, we find that we
can achieve particularly good performance with an
approach in which jobs are always scheduled where
data is located, and a separate replication process at
each site periodically generates new replicas of popular
datasets. We note that this approach has significant
implementation advantages when compared to (say)
approaches that attempt to generate a globally optimal
schedule: first, it effectively decouples job scheduling
and data replication, so that these two functions can be
implemented and optimized separately, and second it
permits highly decentral ized implementations.

These results are promising, but in interpreting their
significance we have to bear in mind that they are based
on synthetic workloads and simplified Grid scenarios.
In future work, we will i nvestigate more realistic
scenarios (e.g., multiple input fi les) and real user access
patterns (we are currently working on using workloads
from Fermi Laboratory [2]).

We also plan to validate our simulation results on
real grids, such as those being developed within the
GriPhyN project [6] and by participants in the
International Virtual Data Grid Laboratory [7].

Finally, we plan to explore adaptive algorithms that
select algorithms dynamically depending on current
Grid conditions. For example, slow links and large
datasets might imply scheduling the jobs at the data
source and using a replication policy similar to the ones
we used for our studies. On the other hand, i f the data is
small and networks l inks are not congested, moving the
data to the job source, or to a third, mutually unrelated
site might be viable alternatives.

Acknowledgements

We thank Jenny Schopf for her valuable discussions
and feedback, and Koen Holtman for his input on
physics workloads. This research was supported by the
National Science Foundation’s GriPhyN project under
contract ITR-0086044.

References

1. CMS: Compact Muon Solenoid:
http://cmsinfo.cern.ch/Welcome.html/

2. Fermi National Accelerator Laboratory:
http://www.fnal.gov

3. Parsec : Parallel Simulation Environment for Complex
Systems: http://pcl.cs.ucla.edu/projects/parsec

4. Proceedings of Job Scheduling Strategies for Parallel
Processing Workshop:
http://www.link.springer.de/link/service/series/0558/tocs/t
2221.htm

5. Alhusaini, A.H., Prasanna, V.K. and Raghavendra, C.S., A
Unified Resource Scheduling Framework for
Heterogeneous Computing Environments. in 8th
Heterogeneous Computing Workshop, (1999).

6. Avery, P. and Foster, I. The GriPhyN Project: Towards
Petascale Virtual Data Grids, 2001.

7. Avery, P., Foster, I., Gardner, R., Newman, H. and Szalay,
A. An International Virtual-Data Grid Laboratory for Data
Intensive Science, 2001.

8. Basney, J., Livny, M. and Mazzanti, P., Harnessing the
Capacity of Computational Grids for High Energy
Physics. in Computing in High Energy and Nuclear
Physics, (2000).

9. Basney, J., Livny, M. and Mazzanti, P. Util izing Widely
Distributed Computational Resources Eff iciently with
Execution Domains. Computer Physics Communications.

10. Berman, F., Wolski, R., Figueira, S., Schopf, J. and Shao,
G., Application-Level Scheduling on Distributed
Heterogeneous Networks. in Supercomputing'96,
(Pittsburg, 1996).

11. Bestavros, A., Demand-based document dissemination to
reduce traff ic and balance load in distributed information
systems. in IEEE symposium on Parallel and Distributed
Processing, (San Antonio, TX, 1995), 338--345.

12. Bester, J., Foster, I., Kesselman, C., Tedesco, J. and
Tuecke, S., GASS: A data movement and access service
for wide area computing systems. in Sixth Workshop on
Input/Output in Parallel and Distributed Systems, (1999).

13. Braun, T., A Taxonomy of scheduling in general-purpose
distributed computing systems. in Workshop on Advances
in Parallel and Distributed Systems (APADS), (West
Lafayette, IN, 1998).

14. Casanova, H., Obertelli, G., Berman, F. and Wolski, R.,
The AppLeS Parameter Sweep Template: User-Level
Middleware for the Grid. in Super Computing, (Denver,
2000).

15. Czajkowski, K., Fitzzgerald, S., Foster, I. and Kesselman,
C., Grid Information Services for Distributed Resource
Sharing. in Tenth IEEE International Symposium on High
Performance Distributed Computing(HPDC-10), (2001).

16. Fan, L., Cao, P., Almeida, J. and Broder, A., Summary
Cache: A Scalable Wide-Area Web Cache Sharing
Protocol. in Proceedings of ACM SIGCOMM'98,
(Vancouver, Canada, 1998).

17. Foster, I. and Kesselman, C. Globus: A Metacomputing
Infrastructure Toolkit. International Journal of
Supercomputing Applications, 11 (2). 115-128.

18. Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
1999.

19. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.
International Journal of High Performance Computing
Applications, 15 (3). 200-222.

20. Hamscher, V., Schwiegelshohn, U., Streit, A. and
Yahyapour, R., Evaluation of Job-Scheduling Strategies
for Grid Computing. in 7th International Conference of
High Performance Computing, (Bangalore, India, 2000).

21. Holtman, K., CMS Requirements for the Grid. in CHEP,
(Beij ing, 2001).

22. M.Maheswaran, S.Ali, H.J.Siegel and D.Hensgen,
Dynamic Matching and Scheduling of a Class of
Independent Tasks onto Heterogeneous Computing
Systems. in 8th Heterogeneous Computing Workshop,
(1999).

23. Ranganathan, K. and Foster, I., Identifying Dynamic
Replication Strategies for a High Performance Data Grid.
in International Workshop on Grid Computing, (Denver,
CO, 2001), Springer-Verlag.

24. Sih, G.C. and Lee, E.A., Dynamic-level scheduling for
heterogeneous processor networks. in Second IEEE
Symposium on Parallel and Distributed Systems, (1990).

25. Thain, D., Basney, J., Son, S.-C. and Livny, M., The
Kangaroo approach to data movement on the grid. in
Tenth IEEE Symposium on High Performance Distributed
Computing, (San Francisco, 2001).

26. Thain, D., Bent, J., Arpaci-Dusseau, A., Arpaci-Dusseau,
R. and Livny, M., Gathering at the Well: Creating
Communities for Grid I/O. in Supercomputing, (Denver,
CO, 2001).

27. Wolman, A., Voelker, G.M., Sharma, N., Cardwell, N.,
Karlin, A. and Levy, H.M., On the scale and performance
of cooperative Web proxy caching. in Proceedings of 17th
ACM Symposium on Operating Systems Principles

(SOPS'99), (Kiawah Island Resort, SC, USA, 1999), 16-
31.

28. Wolski, R. Forecasting Network Performance to Support
Dynamic Scheduling Using the Network Weather Service.
in Proc. 6th IEEE Symp. on High Performance
Distributed Computing, Portland, Oregon, 1997.

29. Yu, P.S. and MacNair, E.A., Performance study of a
collaborative method for hierarchical caching in proxy
servers. in Proceedings of 7th International World Wide
Web Conference (WWW7), (1998).

[3, 8, 10-13, 15-17, 20, 22-25, 27, 29]

