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Abstract

In high energy physics, bioinformatics, and ather
disciplines, we encounter applications involving
numerous, loosely coupled jobs that both access and
generate large data sets. So-called Data Grids ekto
harness geographically distributed resources for such
large-scale data-intensive problems. Yet effedive
scheduling in such environments is challenging, due to
a need to address a variety of metrics and constraints
(e.g., resource utilization, response time, global and
local allocation policies) while dealing with multiple,
potentially independent sources of jobs and a large
number of storage, compute, and network resources.

We describe a scheduling framework that addresses
these problems. Within this framework, data movement
operations may be eather tightly bound to job
scheduling dedsions or, alternativey, performed by a
dewupled, asynchronous process on the basis of
observed daa access patterns and load We dewdop a
family of job scheduling ad data movement
(replication) algorithms and use ssimulation studies to
ewaluate \arious combinations. Our results suggest that
while it is necessary to consider the impact of
replication onthe scheduling strategy, it is nat always
necessry to couple data movement and computation
scheduling. Instead, these two activities can be
addressed separatdy, thus sgnificantly simplifying the
design and implementation o the overall Data Grid
system.

1. Introduction

A Grid is a distributed colledion of computer and
storage resources maintained to serve the needs of some
community or virtual organization (VO) [18, 19]. Any
of the potentially large number of authorized users
within that VO has access to al or some of these
resources, and is able to submit jobs to the Grid and
expect responses. The choice of agorithms used to
schedule jobs in such environments will depend on the
target applicaion. Our focus here is on scheduling
algorithms  siitable for largescde data-intensive
problems, such as those that arise in the high-energy
physics (HEP) experiments currently being devel oped at

CERN [1], which will generate petabytes of scientific
data by 2006. In those eperiments, a wmmunity of
hundreds of physicists around the world will submit,
individualy and colledively, ultimately millions of
jobs, each accessng some subset of that data.

Scheduling is a dhalenging task in this context. The
datarintensive nature of individua jobs means it can be
important to take data locaion into acount when
determining job placament. Replicaion d data from
primary repositories to aher locdions can be a
important optimizetion step, so as to reduce the
frequency of remote data acess And the large number
of jobs and resources means that centralized agorithms
may be ineffedive. Thus, for example, scheduling
algorithms that focus only on maximizing processor
utilization by mapping jobs to idle processors
(disregarding costs aswociated with fetching remote
data) are unlikely to be efficient.

To address this problem, we have defined a general
and extensible scheduling framework within which we
can instantiate awide variety of scheduling algorithms,
and then used simulation studies to explore the
effediveness of different algorithms within this
framework.

We asame a system model in which many users
submit requests for job exeaution from any one of a
large number of sites. At ead site, we place three
components: an Externa Scheduler (ES), responsible
for determining where to send jobs submitted to that
site; a Locd Scheduler (LS), resporsible for
determining the order in which jobs are exeauted at that
particular site; and a Dataset Scheduler (DS),
resporsible for determining if and when to replicae
data and/or delete locd files. The dhoice of agorithms
for each component defines a particular scheduling
system.

Within this framework, we have defined a family of
four ES and three DS agorithms, LS algorithms being
widely reseached in the past [4]. Our ES agorithms
dispatch jobs to a random site, the least loaded site, the
locd site, or a site where required data dready exists.
Our DS dgoithms peform no asynchronous
replicaion, or dternatively, choose arandom or the
least loaded neighbor for replication of popular datasets
(we shal use file and dataset interchangealy for the
rest of the paper). In the ‘no replicaion’ case, a job



exeadtion is preceded by a fetch of the required data,
leading to a strong coupling between job scheduling and
data movement. By contrast, the other two replicdion
strategies are loosely coupled to job execution.

To study the dfediveness of these different
scheduling agorithms, we have developed a modular
and extensible discrete event Data Grid simulation
system, ChicSim (Chicago Simulator). Our simulation
results $ow a marked increase in Grid performance
when the right combination o loosedly coupled
replication and scheduling policies are used. Our results
also show that evaluating scheduling al gorithms on their
own, without considering the impad of replicaion
techniques can lea to sub-optimal choices.

The outline of the paper is as follows. Section 2
reviews related work in the aena of grid scheduling and
data placament. In Sedion 3, we provide details of our
proposed mode and in Section 4 describe the
scheduling and replication algorithms that we evaluate.
Simulation detdls and results are discussed in Sedion 5
and we onclude ad point to future diredions in
Section 6.

2. Reated Work

Most previous sheduling work has considered data
locdity/storage issues as eomndary. We discuss work
that has reagnized the importance of data locaion in
grid scheduling.

Thain et a. [26] describe asystem that links jobs and
data by binding execution and storage sites into 1/O
communities that refled physicd redity. As they
present buil ding bocks for such communities but do nd
address pdlicy isaues, this work is complementary to aur
work on scheduler pdicies. The same wmment applies
to work on Exeaution Domains [9], a framework that
defines bindings between computing power and data
resources in a grid such that applicaions are scheduled
to run at CPUs that have accesto required data and
storage.

Casanova @ al. [14] describe an adaptive scheduling
algorithm for parameter sweeg applicaions in Grid
environments that takes data storage isues into account.
Their approach is to pace files grategicdly for
maximum reuse. The basic difference between their
work and ours is that our heuristic dso adively
repli cates/pre-stages files. In addition, while [14] makes
scheduling dedsions centrally, assuming full knowledge
of current loads, network conditions and topology, we
concentrate on a distributed and presumably more
scdable modd, in which eah ste takes informed
dedsions based onits view of the Grid.

Heuristics like Max-min and Min-Min are used for
Level-by-Level scheduling of DAGS by Alhusaini et al
in [5]. They consider data location as a parameter but
assume that resource performance daraderistics are
perfedly predictable. What sets our work apart from
other grid scheduling reseach is that we consider
dynamic data replication as a fundamental part of the
scheduling problem.

3. System Model and Scheduling Problem

We moded a Data Grid as a set of sites, eah
comprising a number of processors and a limited
amount of storage; a set of users, each asociated with a
site; and a set of files, ead of a spedfied size initialy
mapped to sites according to some distribution. We
assume that al processors have the same performance
and that all processors at a site can accessany storage &
that site. Each user generates jobs acording to some
distribution. Each job requires that a spedfied set of
files be available before it can exeaute. It then executes
for a specified amount of time on a single processor,
and finally generates a spedfied set of files.

A particular Data Grid exeation (DGE) is defined
by a sequence of job submissons, allocaions, and
exeautions along with data movements. A DGE can be
charaderized acwrding to various metrics, such as
elapsed time, average resporse time, procesor
utilization, network utilization, and storage utilizetion.
The scheduling problem in a Data Grid isthusto define
algorithms that will produce DGEs that are both correct
and good with resped to one or more netrics.

In order to alow for a systematic description and
anaysis of a range of algorithms, we define a
scheduling framework in which scheduling logic is
encapsulated in threemodules (see Figure 1):

. External Scheduler (ES): Users submit jobs to
the External Scheduler they are assciated with.
The ES then deddes which remote site to send
the job to depending on some scheduling
algorithm. It may need externa information like
load at a remote site or the locaion of a dataset,
to make itsdedsions.

. Local Scheduler (LS): Once ajobis assgned to
run at a particular site (and sent to an incoming
job queue) it is then managed by the Locd
Scheduler. The LS of a site decides how to
schedule dl jobs alocaed to it, on its locd
resources.

. Dataset Scheduler (DS): The DS at ead site
kegps track of the popdarity of eah dataset
locdly available. It then replicaes popular
datasets to remote sites depending an some
agoithm. The DS may nea externd
information like whether the data drealy exists
a a site, load at aremote site dc. before taking a
dedsion.

Different mappings between users and Externa
Schedulers lead to dfferent scenarios. For example, a
one-to-one mapping between Externa Schedulers and
users would mean each user takes <heduling dedsions
on their own, while asingle ES in the system would
mean a cantral scheduler to which al users sibmit their
jobs. For our experiments we assume one ES per ste.
We will study other mappings in the future
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Figure 1: Interactions among Data Grid components

The edterna information a module neals can be
obtained either from an information service (e.g., the
Globus Toolkit's Monitoring and Discovery Service
[15], Network Weaher Service [28]) or diredly from
Sites.

4. Scheduling and Replication Algorithms

There ae two ddtnct functiondities we ae
interested in, external scheduling and data replication.
For eat, we define and evaluate arange of different
algorithms.

Each site may have its own locd scheduling pdicy
that is implemented by the LS. Management of internal
resources is a problem widely reseached in the past [4]
and we use FIFO (first in first out) asasimplification.

An Externa Scheduler seleds a remote site to which
to send ajob, based onone of four algorithms:

» JobRandom: A randomly seleded site.

* JobLeastLoaded: The sitethat currently hasthe
least load. (A variety of definitions for load are
possble; here we define it simply as the least
number of jobs waiting to run.)

e JobDataPresent: A site that arealy has the
required data. If more than one site qudifies
choose the least loaded one.

« JobLocal: Alwaysrun jobs locdly.

In ead case, any data required to run a job is fetched
locdly before the task is run if it is nat dready present
at the site.

For the Dataset Scheduler, we define threeaternative
algorithms:

« DataDoNothing: No adive replicdion takes
place Datasets are pre-assgned to dfferent
sites and no dynamic replicaion pdicy is in
place Data may be fetched from a remote site
for a particular job, in which case it is caded
and managed using LRU. A cached dataset is
then avail able to the grid as areplica

« DataRandom: The DSM keeps track of the
popularity of the datasets it contains, and when
the popularity exceals a threshold those
datasets are replicaed to a random site on the
grid.

o DatalLeastLoaded: The DSM chooses the least
loaded site from its list of known sites (we
define this as neighbars) as a new host for a
popular dataset.

Wethus have atota of 4x3=12 algorithms to evaluate.
5. Simulation Studiesand Results

We have constructed a discrete event simulator
ChicSim to evaluate the performance of different
combinations of job and task scheduling agorithms.
ChicSim is huilt on top d Pasec [3], a C-based
simulation language. We describe in turn the simulation
framework, experiments performed, and results.



5.1. Simulation Framework

In the dsence of red traces from red data grids, we
model the anount of processng paver needed per unit
of data, and the size of input and output datasets, on the
expected values of CMS experiments [21], but
otherwise generate synthetic data distributions and
workloads, as we now describe.

As described in Sedion 3, we &sume a cetan
number of users, sites, and datasets. (Table 1 spedfies
the simulation parameters used for our study.) We
asaime ahierarchicd network topology much like that
envisioned by the GriPhyN projed [6]. Datasets szes
are sdeded randomly with a uniform distribution
between 500 MB to 2 GB and with initialy only one
replica per dataset in the system. Users are mapped
evenly acoss $tes and submit a number of jobsin strict
sequence, with ead job being submitted only after the
previous job submitted by that user has completed.

Eadh job requires a singe input file aad runs for
300D semnds, where D is the size of the input file in
GB. The transfer of input files from one site to ancather
incurs a cost correspording to the size of the file
divided by the nomina speed of the link. As job ouput
is of negligible size & compared to input, we ignore
output costs. We model network contention by keegping
tradk of the number of simultaneous data transfers
aaossalink and deaeasing the bandwidth available for
ead transfer accordingly.

Table 1: Simulation parameters used in study

Total number of Users 120

Number of Stes 30

Compute Elements/Site 2-5

Total number of Datasets 200

Conredivity Bandwidth 10 MB/sec(scenario 1)
100MB/sec(scenario 2)

Size of Workload 6000 jobs

The jobs (i.e, input file names) needed by a
particular user are generated randomly acording to a
geometric digtribution (Figure 2), with the goal of
modeling situations in which a community focuses on
some datasets more than ahers. Note that we do not
attempt to modd changes in dataset popuarity owver
time.

5.2. Experiments

Weran atotal of 72 simulation experiments. For each
of our 4x3=12 pairs of scheduling algorithms, we ran
Six experiments. three with data grid parameters as
above and threewith network bandwidth increased by a
fador of ten. Within ead set of three, we ran with
different random seeds in order to evaluate variance in
pradice we found ro significance variation. For eah
experiment, we measured:

* Average anount of datatransferred (bandwidth
consumed) per job

+ Average job completion time (max (queue
time, data transfer time) + compute time)

* Averageidle time for a processor

The anount of data transferred is important from the
perspedive of overal resource utilizaion, while system
resporse time is of more concern to users. Since the
data transfer needed for a job starts while thejob is dill
in the procesoor queue of a site, the average job
completion time includes the maximum of the queue
time and transfer time.

The idle time of processors helps measure the tota
utilization of the system under the different algorithms.
When a processor is idle, either the job queue of that
site is empty or the datasets needed for the jobs in the
gueue are not yet available e that site.
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Figure 2: Dataset popularity follows a
geometric distribution. Here we show the
popularity of 60 datasets.

5.3. Resultsand Discussion

Figures 3 and 4 show the average resporse time, data
transparted and average idle time for the system
parameters of Table 1 for the different combinations of
the data migration and job scheduling agorithms. The
results are the average over the three eperiments
performed for each agorithm pair.

When no replicdion (DataDoNothing) is used,
algorithm  JobLocd  (“compute where the job
originates’) performs the best in terms of response time
and algorithm JobDataPresent (“ compute where the data
is’) performs the worst. Although data is uniformly
distributed aaossthe gird, the geometric distribution of
dataset popularity causes certain sites to be overloaded
when algorithm JobDataPresent is used, thus degrading
its performance

When we introduce areplicaion policy, agorithm
JobDataPresent performs remarkably better than the
other three dternatives with resped to al three metrics.
It aso performs much better than the best algorithm in
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Figure 3: Average response time (a) and average data transferred (b) for the various algorithms

the @sence of replicaion. Clealy, dynamic replicaion
helps to reduce hotspats creded by popular data and
enables load sharing. Notice tha  strategy
JobDataPresent performs little data transfer (Figure 3b),
as datasets are moved only as a result of explicit
replicaion. Moreover, job completion times are
significantly shorter for JobDataPresent + Replication
(Figure 3a), as jobs are not held up waiting for required
input data. Similarly, the idle time of processrs is
significantly smaller (Figure 4) for JobDataPresent with
replicaion. However, replicdion does not have a
positive dfed on the other three dgorithms, the
resporse times remain the same or worsen.
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Figure 4: Percentage of time when processors
are idle (not in use or waiting for data)

As Figure 3b illustrates, the differencein the average
amount of data transferred between algorithm
JobDataPresent and the others is very large (> 400
MB/job). Clealy, if data locdity issles are na
considered, even the best scheduling agorithms fall
prey to data transfer battlenedks. The point we want to
bring forth via these results is the following: if the
scheduling agorithms were studied by themselves

(using DataDoNothing), we would conclude that
algorithm JobL ocal of running jobs locdly was the best
choice However agorithm JobDataPresent teamed with
replicaion works much better than any other scenario.
Similarly, a replication pdicy that might work well by
itself may not guaranteethe best overall performance of
the grid. Only by studying the dfeds of the
combination of different replicaion and scheduling
pdicies were we &le to come up with a solution that
works better than ead isolated study.

Perhaps surprisingly, we found mo significant
performance differences between the two replication
algorithms that we evauated, Datal eastlLoaded and
DataRandom.

Strategy JobDataPresent along with DataRandom or
Datal_eastl oaded, “scheduling jobs at data sources and
adively replicaed popular data” turns out to be the
winner as it ensures load sharing in the Grid with
minimal datatransfer.

5.4. Impact of Network Performance

The eperiments performed with faster networks
allow us to eva uate the sensitivity of our agorithms to
this fador. We find, not surprisingly, that if network
bandwidth is increased by a fador of ten, the
performance of al agorithms that involve extensive
data transfer (JobRandom, JoblLeastLoaded, and
JobLocd) improve dramaticdly (Figure 5), while
strategy JobDataPresent performs more or less
consistently as it does not involve alarge anount of
data movement. The point to be noted here is that under
these new conditions, agorithm JobLocd of fetching
data and exeauting jobs locdly performs amost as well
as agorithm JobDataPresent and there is no clea
winner in terms of response time. Thus, while we
believe that the system parameters of Table 1 are
redistic for a global scientific Grid, we must be caeful
to evaluate the impad of future techndogicd changes
on our results.
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6. Conclusionsand Future Work

We have aldressd the problem of scheduling job
exeattions and data movement operations in a
distributed “Data Grid” environment, with the goa of
identifying both genera principles and specific
algorithms that can be used to achieve good system
utilization and/or response times. In suppat of this
investigation, we have developed a modular and
extensible Data Grid scheduling framework within
which can be instantiated a variety of different job
scheduling and data movement scheduling agorithms.
We have also instantiated this framework with four
different job scheduling algorithms and three different
replicaion agorithms, and then used a Data Grid
simulation system, ChicSim, to evaluae the
performanceof different algorithm combinations.

Our results sow, first of dl, that the doice of
scheduling a gorithm has a significant impad on system
performance Sewnd, we find that it is important to
address bath job and data scheduling explicitly: for
example, simply scheduling jobs to idle processors, and
then moving data if required, performs sgnificantly less
well than agorithms that aso consider data locaion
when scheduling. Most interestingly, we find that we
can adiieve particularly good performance with an
approach in which jobs are dways sheduled where
data is located, and a separate replicaion process at
ead site periodicdly generates new replicas of popular
datasets. We note that this approach has sgnificant
implementation advantages when compared to (say)
approaches that attempt to generate aglobally optimal
schedule: first, it effedively deauples job scheduling
and data replicaion, so that these two functions can be
implemented and optimized separately, and second it
permits highly decentralized implementati ors.

These results are promising, but in interpreting their
significance we have to bea in mind that they are based
on synthetic workloads and simplified Grid scenarios.
In future work, we will investigate more redistic
scenarios (e.g., multiple input files) and red user access
patterns (we ae currently working on using workloads
from Fermi Laboratory [2]).

We dso plan to validate our simulation results on
red grids, such as those being developed within the
GriPhyN projed [6] and by participants in the
International Virtual Data Grid Laboratory [7].

Finally, we plan to explore adaptive dgorithms that
sded agorithms dynamicdly depending on current
Grid conditions. For example, dow links and large
datasets might imply scheduling the jobs at the data
source and using a replication padlicy similar to the ones
we used for our studies. On the other hand, if thedatais
small and networks links are not congested, moving the
data to the job source or to a third, mutually unrelated
site might be viabl e alternatives.
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