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Abstract 

In high energy physics, bioinformatics, and other 
disciplines, we encounter applications involving 
numerous, loosely coupled jobs that both access and 
generate large data sets. So-called Data Grids seek to 
harness geographically distributed resources for such 
large-scale data-intensive problems. Yet effective 
scheduling in such environments is challenging, due to 
a need to address a variety of metrics and constraints 
(e.g., resource utili zation, response time, global and 
local allocation policies) while dealing with multiple, 
potentially independent sources of jobs and a large 
number of storage, compute, and network resources.  

We describe a scheduling framework that addresses 
these problems. Within this framework, data movement 
operations may be either tightly bound to job 
scheduling decisions or, alternatively, performed by a 
decoupled, asynchronous process on the basis of 
observed data access patterns and load. We develop a 
family of job scheduling and data movement 
(replication) algorithms and use simulation studies to 
evaluate various combinations. Our results suggest that 
while it is necessary to consider the impact of 
replication on the scheduling strategy, it is not always 
necessary to couple data movement and computation 
scheduling. Instead, these two activities can be 
addressed separately, thus significantly simpli fying the 
design and implementation of the overall Data Grid 
system. 

 

1. Introduction 

A Grid is a distributed collection of computer and 
storage resources maintained to serve the needs of some 
community or virtual organization (VO) [18, 19]. Any 
of the potentially large number of authorized users 
within that VO has access to al l or some of these 
resources, and is able to submit jobs to the Grid and 
expect responses. The choice of algorithms used to 
schedule jobs in such environments wil l depend on the 
target application. Our focus here is on scheduling 
algorithms suitable for large-scale data-intensive 
problems, such as those that arise in the high-energy 
physics (HEP) experiments currently being developed at 

CERN [1], which will generate petabytes of scientific 
data by 2006. In those experiments, a community of 
hundreds of physicists around the world wil l submit, 
individually and collectively, ultimately mill ions of 
jobs, each accessing some subset of that data.  

Scheduling is a challenging task in this context. The 
data-intensive nature of individual jobs means it can be 
important to take data location into account when 
determining job placement. Replication of data from 
primary repositories to other locations can be an 
important optimization step, so as to reduce the 
frequency of remote data access. And the large number 
of jobs and resources means that centralized algorithms 
may be ineffective. Thus, for example, scheduling 
algorithms that focus only on maximizing processor 
util ization by mapping jobs to idle processors 
(disregarding costs associated with fetching remote 
data) are unlikely to be efficient. 

To address this problem, we have defined a general 
and extensible scheduling framework within which we 
can instantiate a wide variety of scheduling algorithms, 
and then used simulation studies to explore the 
effectiveness of different algorithms within this 
framework. 

We assume a system model in which many users 
submit requests for job execution from any one of a 
large number of sites. At each site, we place three 
components: an External Scheduler (ES), responsible 
for determining where to send jobs submitted to that 
site; a Local Scheduler (LS), responsible for 
determining the order in which jobs are executed at that 
particular site; and a Dataset Scheduler (DS), 
responsible for determining if and when to replicate 
data and/or delete local files. The choice of algorithms 
for each component defines a particular scheduling 
system. 

Within this framework, we have defined a family of 
four ES and three DS algorithms, LS algorithms being 
widely researched in the past [4]. Our ES algorithms 
dispatch jobs to a random site, the least loaded site, the 
local site, or a site where required data already exists. 
Our DS algorithms perform no asynchronous 
replication, or alternatively, choose a random or the 
least loaded neighbor for replication of popular datasets 
(we shall use file and dataset interchangeably for the 
rest of the paper). In the ‘no replication’ case, a job 



   

execution is preceded by a fetch of the required data, 
leading to a strong coupling between job scheduling and 
data movement. By contrast, the other two replication 
strategies are loosely coupled to job execution. 

To study the effectiveness of these different 
scheduling algorithms, we have developed a modular 
and extensible discrete event Data Grid simulation 
system, ChicSim (Chicago Simulator). Our simulation 
results show a marked increase in Grid performance 
when the right combination of loosely coupled 
replication and scheduling policies are used. Our results 
also show that evaluating scheduling algorithms on their 
own, without considering the impact of replication 
techniques can lead to sub-optimal choices. 

The outline of the paper is as follows. Section 2 
reviews related work in the arena of grid scheduling and 
data placement. In Section 3, we provide details of our 
proposed model and in Section 4 describe the 
scheduling and replication algorithms that we evaluate. 
Simulation details and results are discussed in Section 5 
and we conclude and point to future directions in 
Section 6. 

2. Related Work 

Most previous scheduling work has considered data 
locali ty/storage issues as secondary. We discuss work 
that has recognized the importance of data location in 
grid scheduling.  

Thain et al. [26] describe a system that links jobs and 
data by binding execution and storage sites into I/O 
communities that reflect physical reali ty. As they 
present building blocks for such communities but do not 
address policy issues, this work is complementary to our 
work on scheduler policies. The same comment applies 
to work on Execution Domains [9], a framework that 
defines bindings between computing power and data 
resources in a grid such that applications are scheduled 
to run at CPUs that have access to required data and 
storage. 

Casanova et al. [14] describe an adaptive scheduling 
algorithm for parameter sweep applications in Grid 
environments that takes data storage issues into account. 
Their approach is to place files strategically for 
maximum reuse. The basic difference between their 
work and ours is that our heuristic also actively 
replicates/pre-stages fi les. In addition, while [14] makes 
scheduling decisions central ly, assuming ful l knowledge 
of current loads, network conditions and topology, we 
concentrate on a distributed and presumably more 
scalable model, in which each site takes informed 
decisions based on its view of the Grid. 

Heuristics li ke Max-min and Min-Min are used for 
Level-by-Level scheduling of DAGS by Alhusaini et al 
in [5]. They consider data location as a parameter but 
assume that resource performance characteristics are 
perfectly predictable. What sets our work apart from 
other grid scheduling research is that we consider 
dynamic data replication as a fundamental part of the 
scheduling problem. 

3. System Model and Scheduling Problem 

We model a Data Grid as a set of sites, each 
comprising a number of processors and a l imited 
amount of storage; a set of users, each associated with a 
site; and a set of fi les, each of a specified size, initially 
mapped to sites according to some distribution. We 
assume that all processors have the same performance 
and that all processors at a site can access any storage at 
that site. Each user generates jobs according to some 
distribution. Each job requires that a specified set of 
fi les be available before it can execute. It then executes 
for a specified amount of time on a single processor, 
and finally generates a specified set of files. 

A particular Data Grid execution (DGE) is defined 
by a sequence of job submissions, allocations, and 
executions along with data movements. A DGE can be 
characterized according to various metrics, such as 
elapsed time, average response time, processor 
util ization, network util ization, and storage uti li zation. 
The scheduling problem in a Data Grid is thus to define 
algorithms that wil l produce DGEs that are both correct 
and good with respect to one or more metrics. 

In order to allow for a systematic description and 
analysis of a range of algorithms, we define a 
scheduling framework in which scheduling logic is 
encapsulated in three modules (see Figure 1): 

 
• External Scheduler (ES): Users submit jobs to 

the External Scheduler they are associated with. 
The ES then decides which remote site to send 
the job to depending on some scheduling 
algorithm. It may need external information li ke 
load at a remote site or the location of a dataset, 
to make its decisions.  

• Local Scheduler (LS): Once a job is assigned to 
run at a particular site (and sent to an incoming 
job queue) it is then managed by the Local 
Scheduler. The LS of a site decides how to 
schedule all j obs allocated to i t, on its local 
resources. 

• Dataset Scheduler (DS): The DS at each site 
keeps track of the popularity of each dataset 
locally available. It then replicates popular 
datasets to remote sites depending on some 
algorithm. The DS may need external 
information l ike whether the data already exists 
at a site, load at a remote site etc. before taking a 
decision. 

Different mappings between users and External 
Schedulers lead to different scenarios. For example, a 
one-to-one mapping between External Schedulers and 
users would mean each user takes scheduling decisions 
on their own, while a single ES in the system would 
mean a central scheduler to which all users submit their 
jobs. For our experiments we assume one ES per site. 
We wil l study other mappings in the future. 



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Interactions among Data Grid components  
 

The external information a module needs can be 
obtained either from an information service (e.g., the 
Globus Toolkit’s Monitoring and Discovery Service 
[15], Network Weather Service [28]) or directly from 
sites. 

4. Scheduling and Replication Algorithms 

There are two distinct functionalities we are 
interested in, external scheduling and data replication. 
For each, we define and evaluate a range of different 
algorithms. 

Each site may have its own local scheduling policy 
that is implemented by the LS. Management of internal 
resources is a problem widely researched in the past [4] 
and we use FIFO (first in first out) as a simplification. 

An External Scheduler selects a remote site to which 
to send a job, based on one of four algorithms: 

 
• JobRandom: A randomly selected site. 

• JobLeastLoaded: The site that currently has the 
least load. (A variety of definitions for load are 
possible; here we define it simply as the least 
number of jobs waiting to run.) 

• JobDataPresent: A site that already has the 
required data. If more than one site qualifies 
choose the least loaded one. 

• JobLocal : Always run jobs locally. 

In each case, any data required to run a job is fetched 
locally before the task is run if i t is not already present 
at the site. 

For the Dataset Scheduler, we define three alternative 
algorithms: 

• DataDoNothing: No active replication takes 
place. Datasets are pre-assigned to different 
sites and no dynamic replication policy is in 
place. Data may be fetched from a remote site 
for a particular job, in which case it is cached 
and managed using LRU. A cached dataset is 
then available to the grid as a replica. 

• DataRandom: The DSM keeps track of the 
popularity of the datasets it contains, and when 
the popularity exceeds a threshold those 
datasets are replicated to a random site on the 
grid. 

• DataLeastLoaded: The DSM chooses the least 
loaded site from its li st of known sites (we 
define this as neighbors) as a new host for a 
popular dataset. 

We thus have a total of 4x3=12 algorithms to evaluate. 

5. Simulation Studies and Results 

We have constructed a discrete event simulator 
ChicSim to evaluate the performance of different 
combinations of job and task scheduling algorithms. 
ChicSim is built on top of Parsec [3], a C-based 
simulation language. We describe in turn the simulation 
framework, experiments performed, and results. 
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5.1. Simulation Framework 

In the absence of real traces from real data grids, we 
model the amount of processing power needed per unit 
of data, and the size of input and output datasets, on the 
expected values of CMS experiments [21], but 
otherwise generate synthetic data distributions and 
workloads, as we now describe.  

As described in Section 3, we assume a certain 
number of users, sites, and datasets. (Table 1 specifies 
the simulation parameters used for our study.) We 
assume a hierarchical network topology much like that 
envisioned by the GriPhyN project [6]. Datasets sizes 
are selected randomly with a uniform distribution 
between 500 MB to 2 GB and with initiall y only one 
replica per dataset in the system. Users are mapped 
evenly across sites and submit a number of jobs in strict 
sequence, with each job being submitted only after the 
previous job submitted by that user has completed. 

Each job requires a single input file and runs for 
300D seconds, where D is the size of the input file in 
GB. The transfer of input files from one site to another 
incurs a cost corresponding to the size of the file 
divided by the nominal speed of the link. As job output 
is of negligible size as compared to input, we ignore 
output costs. We model network contention by keeping 
track of the number of simultaneous data transfers 
across a l ink and decreasing the bandwidth available for 
each transfer accordingly. 

 

Table 1: Simulation parameters used in study 

Total number of Users 120 

Number of Sites 30 

Compute Elements/Site 2-5 

Total number of Datasets 200 

Connectivity Bandwidth 10 MB/sec (scenario 1) 
100 MB/sec (scenario 2) 

Size of Workload 6000 jobs 

  

The jobs (i .e., input file names) needed by a 
particular user are generated randomly according to a 
geometric distribution (Figure 2), with the goal of 
modeling situations in which a community focuses on 
some datasets more than others. Note that we do not 
attempt to model changes in dataset popularity over 
time. 

5.2. Experiments 

We ran a total of 72 simulation experiments. For each 
of our 4x3=12 pairs of scheduling algorithms, we ran 
six experiments: three with data grid parameters as 
above and three with network bandwidth increased by a 
factor of ten. Within each set of three, we ran with 
different random seeds in order to evaluate variance; in 
practice, we found no significance variation. For each 
experiment, we measured:  

• Average amount of data transferred (bandwidth 
consumed) per job 

• Average job completion time (max (queue 
time, data transfer time) + compute time) 

• Average idle time for a processor 

The amount of data transferred is important from the 
perspective of overall resource util ization, while system 
response time is of more concern to users. Since the 
data transfer needed for a job starts while the job is still 
in the processor queue of a site, the average job 
completion time includes the maximum of the queue 
time and transfer time.  

The idle time of processors helps measure the total 
util ization of the system under the different algorithms. 
When a processor is idle, either the job queue of that 
site is empty or the datasets needed for the jobs in the 
queue are not yet available at that site. 
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Figure 2: Dataset popularity follows a 
geometric distribution. Here we show the 

popularity of 60 datasets. 

5.3. Results and Discussion 

Figures 3 and 4 show the average response time, data 
transported and average idle time for the system 
parameters of Table 1 for the different combinations of 
the data migration and job scheduling algorithms. The 
results are the average over the three experiments 
performed for each algorithm pair. 

When no replication (DataDoNothing) is used, 
algorithm JobLocal (“ compute where the job 
originates”) performs the best in terms of response time 
and algorithm JobDataPresent (“ compute where the data 
is”) performs the worst. Although data is uniformly 
distributed across the gird, the geometric distribution of 
dataset popularity causes certain sites to be overloaded 
when algorithm JobDataPresent is used, thus degrading 
its performance. 

When we introduce a replication policy, algorithm 
JobDataPresent performs remarkably better than the 
other three alternatives with respect to al l three metrics. 
It also performs much better than the best algorithm in 
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Figure 3: Average response time (a) and average data transferred (b) for the various algorithms 

 
the absence of replication. Clearly, dynamic replication 
helps to reduce hotspots created by popular data and 
enables load sharing. Notice that strategy 
JobDataPresent performs li ttle data transfer (Figure 3b), 
as datasets are moved only as a result of explicit 
replication. Moreover, job completion times are 
significantly shorter for JobDataPresent + Replication 
(Figure 3a), as jobs are not held up waiting for required 
input data. Similarly, the idle time of processors is 
significantly smaller (Figure 4) for JobDataPresent with 
replication. However, replication does not have a 
positi ve effect on the other three algorithms; the 
response times remain the same or worsen.  
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Figure 4: Percentage of time when processors 
are idle (not in use or waiting for data)  

 
As Figure 3b il lustrates, the difference in the average 

amount of data transferred between algorithm 
JobDataPresent and the others is very large (> 400 
MB/job). Clearly, if data locali ty issues are not 
considered, even the best scheduling algorithms fall 
prey to data transfer bottlenecks. The point we want to 
bring forth via these results is the fol lowing: if the 
scheduling algorithms were studied by themselves 

(using DataDoNothing), we would conclude that 
algorithm JobLocal of running jobs locally was the best 
choice. However algorithm JobDataPresent teamed with 
replication works much better than any other scenario. 
Similarly, a replication policy that might work well by 
itself may not guarantee the best overall performance of 
the grid. Only by studying the effects of the 
combination of different replication and scheduling 
policies were we able to come up with a solution that 
works better than each isolated study.  

Perhaps surprisingly, we found no significant 
performance differences between the two replication 
algorithms that we evaluated, DataLeastLoaded and 
DataRandom. 

Strategy JobDataPresent along with DataRandom or 
DataLeastLoaded, “ scheduling jobs at data sources and 
actively replicated popular data” turns out to be the 
winner as it ensures load sharing in the Grid with 
minimal data transfer.  

5.4. Impact of Network Performance  

The experiments performed with faster networks 
allow us to evaluate the sensitivity of our algorithms to 
this factor. We find, not surprisingly, that if network 
bandwidth is increased by a factor of ten, the 
performance of all algorithms that involve extensive 
data transfer (JobRandom, JobLeastLoaded, and 
JobLocal) improve dramatically (Figure 5), while 
strategy JobDataPresent performs more or less 
consistently as it does not involve a large amount of 
data movement. The point to be noted here is that under 
these new conditions, algorithm JobLocal of fetching 
data and executing jobs locally performs almost as well 
as algorithm JobDataPresent and there is no clear 
winner in terms of response time. Thus, while we 
believe that the system parameters of Table 1 are 
realistic for a global scientific Grid, we must be careful 
to evaluate the impact of future technological changes 
on our results. 
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6. Conclusions and Future Work 

We have addressed the problem of scheduling job 
executions and data movement operations in a 
distributed “Data Grid” environment, with the goal of 
identifying both general principles and specific 
algorithms that can be used to achieve good system 
util ization and/or response times. In support of this 
investigation, we have developed a modular and 
extensible Data Grid scheduling framework within 
which can be instantiated a variety of different job 
scheduling and data movement scheduling algorithms. 
We have also instantiated this framework with four 
different job scheduling algorithms and three different 
replication algorithms, and then used a Data Grid 
simulation system, ChicSim, to evaluate the 
performance of different algorithm combinations. 

Our results show, first of all , that the choice of 
scheduling algorithm has a significant impact on system 
performance. Second, we find that it is important to 
address both job and data scheduling explicitl y: for 
example, simply scheduling jobs to idle processors, and 
then moving data if required, performs significantly less 
well than algorithms that also consider data location 
when scheduling. Most interestingly, we find that we 
can achieve particularly good performance with an 
approach in which jobs are always scheduled where 
data is located, and a separate replication process at 
each site periodically generates new replicas of popular 
datasets. We note that this approach has significant 
implementation advantages when compared to (say) 
approaches that attempt to generate a globally optimal 
schedule: first, it effectively decouples job scheduling 
and data replication, so that these two functions can be 
implemented and optimized separately, and second it 
permits highly decentral ized implementations. 

These results are promising, but in interpreting their 
significance we have to bear in mind that they are based 
on synthetic workloads and simplified Grid scenarios. 
In future work, we will i nvestigate more realistic 
scenarios (e.g., multiple input fi les) and real user access 
patterns (we are currently working on using workloads 
from Fermi Laboratory [2]). 

We also plan to validate our simulation results on 
real grids, such as those being developed within the 
GriPhyN project [6] and by participants in the 
International Virtual Data Grid Laboratory [7]. 

Finally, we plan to explore adaptive algorithms that 
select algorithms dynamically depending on current 
Grid conditions. For example, slow links and large 
datasets might imply scheduling the jobs at the data 
source and using a replication policy similar to the ones 
we used for our studies. On the other hand, i f the data is 
small and networks l inks are not congested, moving the 
data to the job source, or to a third, mutually unrelated 
site might be viable alternatives. 
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