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Abstract 

 
Scientific applications require sophisticated data 

management capabilities. We present the design and 
implementation of a Data Replication Service (DRS), 
one of a planned set of higher-level data management 
services for Grids. The capabilities of the DRS are 
based on the publication capability of the Lightweight 
Data Replicator (LDR) system developed for the LIGO 
Scientific Collaboration. We describe LIGO 
publication requirements and LDR functionality. We 
also describe the design and implementation of the 
DRS in the Globus Toolkit Version 4.0 environment 
and present performance results.  

 
1. Introduction 

 
Scientific application domains spend considerable 

effort on managing the large amounts of data produced 
during experimentation and simulation. Required 
functionality includes large scale data transfer, 
validation, replication, and catalog registration 
operations. To facilitate the demanding data 
publication and access requirements of scientists, 
application communities have developed customized, 
higher-level Grid data management services that are 
built on top of standard low-level Grid components 
such as data transport protocols and replica catalogs.  

For example, the Laser Interferometer Gravitational 
Wave Observatory (LIGO) collaboration [1, 2, 21] 
replicates data extensively and stores more than 40 
million files across ten locations. Experimental data 
sets are produced at two LIGO instrument sites and 
replicated at other LIGO sites to provide scientists with 
local access to data. In addition, scientists analyze the 
data and publish their results, which may also be 
replicated. LIGO researchers developed the 
Lightweight Data Replicator (LDR) System [20] for 
data management. LDR is built on top of standard Grid 
data services such as the Globus Replica Location 
Service [8, 9] and the GridFTP data transport protocol 

[3]. LDR provides a rich set of data management 
functionality, including a pull-based model for 
replicating necessary files to a LIGO site; efficient data 
transfer among LIGO sites; a distributed metadata 
service architecture; an interface to local storage 
systems; and a validation component that verifies that 
files on a storage system are correctly registered in a 
local RLS catalog. 

Another example of a customized, high-level data 
management system is Don Quijote [7], a replica 
management service developed for the ATLAS (A 
Toroidal LHC ApparatuS) high energy physics 
experiment [4]. Don Quijote is a proxy service that 
provides management of data replicas across three 
heterogeneous Grid environments used by ATLAS 
scientists: the US Grid3, the NorduGrid and the LCG-2 
Grid. Each Grid uses different middleware, including 
different underlying replica catalogs. Don Quijote 
provides capabilities for replica discovery, creation, 
registration and renaming after data validation.  

Other examples of scientific Grid projects that have 
developed customized, high-level data management 
services include high energy physics projects in 
Europe, such the LHC Computing Grid (LCG) 
middleware [19], the gLite system [12] and the 
DataGrid Reptor system [18]. Many Grid applications, 
such as the Earth System Grid [6], use a web portal to 
coordinate data publication, discovery and access 
using Grid middleware.  

The functionality of these high-level data 
management services varies by application domain, but 
they share several requirements:  
• The need to publish and replicate large scientific 

datasets consisting of thousands or millions of 
files 

• The need to register data replicas in catalog(s) and 
discover them 

• The need to perform metadata-based discovery of 
desired datasets 

• Some applications require the ability to validate 
the correctness of replicas 



In general, updates to datasets and replica 
consistency services are not required, since most 
scientific datasets are accessed in a read-only manner.  

While the efforts described above have been quite 
successful in providing production data management 
services to individual scientific domains, each project 
has spent considerable effort and resources to design, 
implement and maintain its data management system. 
Often, scientists would prefer that their effort be spent 
on science rather than on infrastructure development. 
Another disadvantage of these customized data 
management services is that they typically cannot be 
re-used by other applications.  

Our long-term goal is to generalize much of the 
functionality provided by these systems and make it 
application-independent. We plan eventually to 
provide a set of flexible, composable, general-purpose, 
higher-level data management services to support Grid 
applications. These services should build upon existing 
lower level Grid services and should be configurable 
by policy to meet the needs of a variety of application 
domains. We envision that this suite of data 
management services will  provide capabilities such as 
data replication and validation that can be used 
individually or in combination. While application 
communities may still need to provide some domain-
specific data management capabilities, our goal is to 
reduce the amount of effort required by each 
community to design, implement and maintain services 
for data management.  

In this paper, we describe the design, 
implementation and performance of one higher-level 
data management service, the Globus Data Replication 
Service (DRS). The functionality of the DRS is based 
on the publication capability of the LIGO Lightweight 
Data Replicator (LDR) system. The DRS builds on 
lower-level Grid data services, including the Globus 
Reliable File Transfer (RFT) service [16] and Replica 
Location Service (RLS) [8, 9]. The function of the 
DRS is to ensure that a specified set of files exists on a 
storage site by comparing the contents of an RLS 
Local Replica Catalog with a list of desired files, 
transferring copies of the missing files from other 
locations and registering them in the replica catalog. 
The DRS is implemented as a Web service that 
complies with the Web Services Resource Framework 
(WS-RF) specifications and is available as a technical 
preview component in the Globus Toolkit Version 4 
release.   

The contributions of this paper include: 1) a 
description of the data publication capability provided 
by the LIGO LDR system; 2) a generalization of this 
functionality to specify characteristics of an 
application-independent Data Replication Service 

(DRS); 3) a description of the design and 
implementation of DRS in the GT4 environment; and 
4) an evaluation of the performance of DRS in a wide 
area Grid. The paper concludes with a discussion of 
related work and our future plans for developing 
additional data management services.  

 
2. LIGO and The Lightweight Data 

Replicator Service 
 
The functionality included in our Data Replication 

Service is motivated by a careful examination of the 
data publication capability provided by the LIGO 
Lightweight Data Replicator System. In this section, 
we describe LIGO data publication requirements and 
the LDR publication functionality.  

Throughout this paper, we will use the terms logical 
and physical file name. A logical file name (LFN) is a 
unique identifier for the contents of a file. Typically, a 
Virtual Organization (for example, a scientific 
collaboration) defines and manages the logical 
namespace and guarantees uniqueness of logical names 
within that organization. A physical file name (PFN) is 
the location of a copy of the file on a storage system. 
The physical namespace is managed by the file system 
or storage system. The LIGO environment currently 
contains more than six million unique logical files and 
more than 40 million physical files stored at ten sites.  

 
2.1 Data Publishing Requirements in LIGO 
 
The publishing requirements for LIGO have grown 

over time and are of two types. First, the two LIGO 
detectors at Livingston and Hanford produce data sets 
at a rate of slightly less than a terabyte per day during 
LIGO experimental runs. Each detector produces a file 
every 16 seconds that contains data for those 16 
seconds of measurements. These files range in size 
from 1 to 100 megabytes. The GEO detector in 
Germany is also part of the LIGO scientific 
collaboration and produces data sets. All these data 
sets are copied to the main data repository at CalTech, 
which stores data in a tape-based mass storage system. 
Other sites in the LIGO collaborative can acquire 
copies of the data sets from CalTech as well as from 
one another. 

Scientists also publish new or derived data sets as 
they perform analysis on existing data sets. For 
example, data filtering may create tens of thousands of 
new files. Another example of secondary data is 
calibration information for the interferometer data. 
Scientists typically want to publish these new data sets 
immediately. Scientists at all the LIGO sites participate 



in this process of analysis and data set publication. The 
workload for this type of publishing activity tends to 
be highly variable. Over time, the rate of publication of 
these derived data sets is growing. While currently 
approximately 1/3 of the data sets in the LIGO 
infrastructure are derived data products and 2/3 are 
raw data sets from the LIGO detectors, the proportion 
of derived data sets is rapidly increasing.  

 
2.2 LDR Data Publishing  
 
In this section, we describe how the LDR system 

supports LIGO data publishing.  
Figure 1 illustrates the services and daemons 

deployed at a typical LIGO site. First, each of the ten 
LIGO sites includes a local storage system where data 
replicas are stored. Each site also includes a GridFTP 
server that is used for efficient transfer of files among 
LIGO sites. Each site also deploys a Metadata Catalog 
that contains associations between logical file names 
and metadata attributes. In addition, each site deploys 
two Replica Location Service (RLS) [8, 9] servers: a 
Local Replica Catalog (LRC) that stores mappings 
from logical names to physical storage locations and a 
Replica Location Index (RLI) that collects state 
summaries from all ten LRCs deployed in the LIGO 
environment. A query to any RLI identifies all LRCs 
in the LIGO deployment that contain mappings for a 
logical file name. Each LIGO site also runs scheduling 
and transfer daemons that play important roles in 
publication. 
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Figure 1: Illustrates the deployment of services 
and daemons on a typical LIGO site. 

The publishing component of the Lightweight Data 
Replicator System works as follows. Each LDR site 
runs a scheduling daemon that initiates local data 
transfers using a pull model. The scheduling daemon 
queries the site’s local metadata catalog to request sets 

of files with specified metadata attributes. These sets 
of files are called collections, and each collection has a 
priority level that determines the order in which files 
from different collections will be transferred to the 
local site. For each file in a collection, the scheduling 
daemon checks the RLS Local Replica Catalog to 
determine whether the desired file already exists on the 
local storage system. If not, the daemon adds that file’s 
logical name to a priority-based scheduling queue.  

An LDR site also runs a transfer daemon that 
periodically checks this list of requested files and 
initiates data transfer operations. For each file on the 
list in order from highest to lowest priority, the transfer 
daemon queries the RLS Replica Location Index 
server to find locations in the Grid where the file exists 
and randomly chooses among the available locations. 
Then the transfer daemon initiates data transfer 
operations from the remote site to the local site using 
the GridFTP data transport protocol. The daemon 
interacts with the local storage management logic to 
store the files correctly and registers the newly-copied 
files in the Local Replica Catalog.  

The LRC sends periodic summaries about its state, 
including the existence of newly-replicated files, to 
Replica Location Index servers at all LIGO locations. 
Thus, other sites in the LIGO deployment can discover 
the new replicas by querying their local RLI servers.  

If a data transfer operation does not complete 
successfully, LDR puts the logical file names back on 
the prioritized list of requested files to be retried later. 

 
3. Design of the Data Replication Service 

 
Next, we present the design of a higher-level data 

replication service suitable for use by scientific 
collaborations that require wide area data replication. 

 
3.1 Generalizing the LDR Publication Scheme 

 
Our goal in designing the Data Replication Service 

was to generalize LDR’s publication functionality to 
provide a similar capability that is independent of the 
LIGO infrastructure and useful for a variety of 
application domains.  

Aspects of our design, which draw upon the 
features supported by the LDR model, include:  
• an interface to specify which file(s) are required 

on the local site; 
• use of Globus RLS to discover where replicas 

exist in the Grid and whether they exist at the local 
site; 

• use of a selection algorithm for choosing among 
available replicas of desired data files; 



• use of the Reliable File Transfer Service and 
GridFTP data transport protocol to copy data from 
selected remote location(s) to the local site; and 

• registration of new files in the Globus RLS. 
In contrast to LDR, we chose to make the design of 

DRS independent of any particular metadata service 
architecture, such as the fully replicated and distributed 
service deployed in LIGO. In LDR, the scheduling 
daemon initiates data transfers by performing a 
metadata catalog query to identify the list of desired 
files. By contrast, our service interface simply allows 
the user to specify a list of logical files that should be 
copied to a site without prescribing how the list is 
generated, which allows DRS to be compatible with 
other application-specific metadata catalogs. 

3.2 Data Replication Service Design Overview 
 
The function of the Data Replication Service (DRS) 

is to ensure that a specified set of files exist on a 
storage site. The operations of the DRS include 
discovery, identifying where desired data files exist on 
the Grid; transfer, copying the desired data files to the 
local storage system efficiently; and registration, 
adding location mappings to the Replica Location 
Service so that other sites may discover newly-created 
replicas. Throughout DRS replication operations, the 
service maintains state about each file, including which 
operations on the file have succeeded or failed.  

Principles that guided our fundamental design 
decisions included: 
• Design of a composable architecture based on 

reusable lower-level services; 
• Use of a flexible deployment model to allow for 

site-specific deployment configurations; and 
• Adoption of the Web Services Resource 

Framework (WS-RF) [10] standards to promote 
interoperability. 

Following the WS-RF specification, the general 
structure of the DRS consists of a WS-Resource 
deployed in a WS-RF-compliant container. The 
container takes responsibility for many of the 
“plumbing” issues related to communication, 
messaging, logging, and security. The WS-Resource 
construct allows for stateful resources within a Web 
services context [10, 13]. In the DRS, the stateful 
resource represents a replication request created by a 
client, allowing the client to access the state of the 
replication request and to control its behavior. We call 
the DRS resource a “Replicator.” 

A WS-Resource exposes state information in the 
form of WS-ResourceProperties. The DRS Replicator 

resource exposes resource properties pertaining to the 
replication request, including: 
• Status – indicates whether the request is pending, 

active, suspended, terminated, or destroyed; 
• Stage – the current stage in the replication, which 

may be discover, transfer, or register; 
• Result – the final result of the request, which may 

be none, finished, failed, or exception; and 
• Count – a count of total, finished, failed, and 

terminated files in the replication. 
To access a Replicator’s resource properties, clients 

may use standard WS-RF defined operations to get a 
resource property, get multiple resource properties, 
query resource properties, and subscribe to resource 
properties. Subscriptions enable clients to receive 
asynchronous notifications when a resource property 
changes. The Replicator also defines an interface to 
find the status of specific files in the request by logical 
filename or by status and allows the client to specify 
an offset and limit in case the result set is very large. 

Lifecycle is another important aspect of the design. 
Clients begin by passing a create message to the DRS, 
which creates a Replicator resource. The create 
message includes a URL of a file that contains the 
details of the replication request: a listing of the files to 
be replicated and the destinations for newly created 
replicas. The URL of the request file may be a file, 
http, or ftp URL; in the latter cases the DRS loads the 
request file from the remote location. After creating the 
Replicator resource, the client uses start, stop, suspend, 
and resume operations to control the replication 
activity. Finally, the client destroys the resource using 
the WS-RF standard destroy or set termination time 
operations. Once destroyed, the Replicator resource 
along with its resource properties may not be accessed. 

To perform key operations of data replication, DRS 
depends on two non-WS services, GridFTP and RLS, 
and two other WS-RF services, RFT and Delegation.  

We considered design alternatives for DRS. We 
could have extended the existing RFT implementation 
to include replica registration capabilities. However, 
the RFT service is evolving quickly and independently, 
and it would be challenging to incorporate ongoing 
RFT changes into the DRS implementation. In the 
future, we may build DRS and other high-level 
services based on the Globus GRAM job execution 
service.   

 
4. DRS Implementation 

 
Figure 2 depicts the implementation of the Globus 

Data Replication Service in a typical deployment 
scenario where a DRS at a local site replicates data 



from one or more remote sites. The GT4 Delegation 
service is co-located with the services that use the 
delegated credentials, so DRS, RFT and Delegation are 
deployed together. The RLS and GridFTP services 
may be deployed together with DRS or on separate 
servers. The intent of the design is to provide a flexible 
deployment model that allows various configurations. 

 

 
Figure 2: Illustrates deployment and operation 

of DRS in Web Service container along with RFT 
service and non-web service RLS and GridFTP.  

 
The client begins by using the Delegation Service to 

create a delegated credential (1) that may be used by 
other services to act on behalf of the user according to 
his or her permissions. The client may create a request 
file (2) containing an explicit description of the 

replication request in terms of the desired files, 
identified by their logical file names, and the desired 
destination locations, identified by URLs. The client 
sends a message to the DRS (3) to create the 
Replicator resource and passes the request file’s URL, 
which the Replicator then retrieves and reads (4). 

The Replicator accesses the user’s delegated 
credential (5) and begins the discovery phase of 
replication by querying (6) the Replica Location Index 
to find the LRCs that contain mappings for the 
requested files. The Replicator invokes a catalog filter 
class (implemented by the user, specific to their site’s 
requirements) to filter out unwanted catalogs from the 
rest of the discovery phase. The Replicator then 
queries (7) each of the remaining remote Local Replica 
Catalogs to get the physical file names associated with 
the requested files. The Replicator uses a source 
selector class (again implemented by the user, specific 
to their site’s requirements) to select the desired source 
files for each file to be replicated. 

The Replicator then moves on to the transfer phase 
of the replication by using the RFT service to create a 
RFT resource (8) and start the transfer. At this point, 
control is passed to RFT, which also retrieves the 
delegated credential (9). RFT sets up the file transfers 
(10), while GridFTP servers perform the data transfer 
between sites (11). Once the file transfers are 
complete, the Replicator checks the status of the RFT 
resource and gets the status (12) of each file in the 
transfer request to ensure that each file transferred 
successfully. 

The Replicator then moves to the register phase of 
the replication by adding mappings (13) for the newly 
created replicas to its Local Replica Catalog. In time, 
the Local Replica Catalog updates (14) its Replica 
Location Index along with RLIs located at remote sites 
to make the new replicas visible throughout the Grid 
environment. 

Finally, the client may check the status of its 
Replicator resource (15) and query the status of each 
of the files in its replication request. 

The present implementation of the DRS is based on 
the Java version of the Globus Toolkit Web services 
container and utilizes standard database interfaces. 
Based on this infrastructure, the DRS inherits the 
capabilities associated with WS-RF resources. These 
include standard interfaces to query resource properties 
synchronously and subscribe to resource property 
changes via asynchronous notification [17]. Also, the 
DRS uses the WS Authentication & Authorization 
APIs [15] to communicate securely with other services 
in the deployment, to properly authenticate users, and 
to ensure that users perform operations permitted to 
them by administrators of the system. 



5. Data Replication Service Performance 
 
In this section, we present wide area performance 

measurements for our DRS implementation.  
The local site, which is the destination for the pull-

based transfers, is located in Los Angeles. It is a dual-
processor, 1.1 GHz Pentium III workstation with 1.5 
GBytes of memory and a 1 Gbit Ethernet connection. 
This machine runs a GT4 container and deploys 
services including RFT and DRS as well as GridFTP 
and RLS (which are not Web services). When a client 
on this machine makes a DRS request, the DRS 
Replicator Resource is created and started in this 
container. DRS queries the local RLI and then queries 
the remote LRC to find the physical locations of source 
files. Next, DRS initiates file transfers by invoking the 
RFT service, which creates an RFT Resource. The 
RFT service coordinates data transfers from the remote 
site to local storage using GridFTP.  

The remote site where desired data files are stored 
is a machine at Argonne National Laboratory in 
Illinois. This machine is a dual-processor, 3 GHz Intel 
Xeon workstation with 2 gigabytes of memory with 
1.1 terabytes of disk storage. This remote machine runs 
a GT4 container as well as GridFTP and RLS services. 
The RLS Local Replica Catalog at the remote site is 
queried by the DRS in Los Angeles during the 
discovery of file locations. During RFT transfer 
operations, the GridFTP server on this machine acts as 
the source for pull-based transfers to the local site.  

For all our tests, we report the following 
measurements.  
• Create Replicator is the time for the DRS service 

to create a persistent Replicator resource, 
including storing resource state in a database.  

• Start is the time required for the DRS service to 
'start' the Replicator resource.  

• Discover is the time to perform lookups in the 
local RLI and remote LRC(s) for all logical files 
that will be replicated in this request.  

• Create RFT is the time required to create the RFT 
Resource associated with the DRS request.  

• Transfer is the total time taken by the RFT Service 
to transfer all files in the request. 

• Register is the time required to register the LFN-
PFN mappings for new replicas in the LRC. 

For a transfer of a single 1 gigabyte-file, we use 
four parallel TCP streams for the GridFTP transfer and 
a TCP buffer size of 1,000,000. These parameter 
values are based on guidance in the GridFTP 
documentation [14]. We ran this transfer five times 
and obtained the average performance shown in Table 
1.   

This corresponds to a data rate during the transfer 
portion of the request of approximately 49 Mbits/sec. 
The table also shows standard deviation for each 
measured value. We note that the variance is high on 
operations such as discover, which varies from 307 to 
5371 milliseconds during the five trials, and register, 
which varies from 295 to 4305 milliseconds. The 
discover operation accesses the remote LRC over the 
wide area, which may account for some of the 
variability in these numbers, while register accesses a 
database on another machine in the local area network. 
There is also substantial variance in the transfer times, 
which is likely due to variations in the wide area 
transfer bandwidth between Los Angeles and Chicago. 

Table 1: Performance for DRS replicating one 
file of size 1 gigabyte 

Component of 
Operation 

Time 
(milliseconds) 

Standard 
Deviation 

Create Replicator 310.8 163.6 
Start 11.4 20.5 
Discover 1355.2 2245.4 
Create RFT 780.8 250.12 
Transfer 163207.8 88744.2 
Register 2584.4 2111.7 

 
Next, we run a test that copies ten files of size 1 

gigabyte to the local site. Again, we ran the tests five 
times and report average measurements. We set the 
concurrency to two for RFT transfers (i.e., two RFT 
worker threads performing these transfers). Individual 
GridFTP transfers use parallelism of four TCP streams 
and  a TCP buffer size of 1,000,000.  The performance 
numbers are shown in Table 2.  

Table 2: Performance for DRS replicating ten 
files of size 1 gigabyte 

Component of 
Operation 

Time 
(milliseconds) 

Standard 
Deviation 

Create Replicator 317 156.2 
Start 12.4 19.0 
Discover 449.0 184.0 
Create RFT 808.6 256.9 
Transfer 1186796.0 31596.9 
Register 3720.8 2121.3 

 
The time to create the Replicator and RFT resources 

is similar to the previous example. The average time to 
discover replicas using the RLS is less than in the 
previous example and shows less variance. The data 
transfer rate for this experiment was approximately 
67.4 Mbits/sec. The average RLS registration time was 



slightly higher than in the previous experiment and 
exhibited large variance.  

Finally, we performed two tests that transfer large 
numbers of smaller files. We initiate a transfer of 1000 
files of size 1 megabyte and of size 10 megabytes. For 
these experiments, we set the concurrency to ten for 
RFT transfers. Individual GridFTP transfers use 
parallelism of four TCP streams and a TCP buffer size 
of 100,000.  The performance numbers in Table 3 and 
Table 4 show values averaged over five experiments.  

Table 3: DRS performance for transfer of 1000 
files of size 1 megabyte  

Component of 
Operation 

Time (msec) 
File size:  

1 MB 

Standard 
Deviation 

Create Replicator 324.2 172.3 
Start 10.0 17.3 
Discover 2226.6 2288.0 
Create RFT 2540.0 548.3 
Transfer 606296.0 1107.1 
Register 5537.4 464.2 
 

Table 4: DRS performance for transfer of 1000 
files of size 10 megabytes 

Component of 
Operation 

Time (msec) 
File size:  

10 MB 

Standard 
Deviation 

Create Replicator 1561.0 1643.1 
Start 9.8 17.4 
Discover 1286.6 196.5 
Create RFT 3300.2 1090.1 
Transfer 963456.0 30163.9 
Register 11278.2 6602.9 
 
As might be expected, the times to create the 

Replicator and especially the RFT resources are 
substantially longer in these cases than for the pervious 
tests, since the services have to save state for 1000 
outstanding transfer operations. The RLS discover and 
register operations continue to show high variance. 
The average transfer rate achieved is 13.2 Mbits/sec 
for the 1 megabyte file size, which reflects the lower 
efficiency of transferring relatively small files using 
RFT. For the 10 megabyte file size, the transfer rate 
achieved is on average 83 Mbits/sec.  

These results provide insights into the performance 
of DRS operations for small numbers of large files and 
for larger numbers of smaller files. In future testing, 
we plan to increase the scale of the number of files per 
request and the size of the files transferred.  

 

6. Related Work 
 
The LIGO project and its participation in the Grid 

Physics Network (GriPhyN) project are described in 
the following references [1, 2, 11, 21]. Marka et al. 
[22] describe the Network Data Analysis Server, an 
early data distribution system for gravitational wave 
data that provides some functionality similar to LDR. 

As already discussed, we envision developing a 
suite of general-purpose, configurable and composable 
higher-level data management services, of which the 
Data Replication Service is the first. Our goal is to let 
application communities deploy those services that 
provide desirable functionality. By contrast, several 
other Grid systems take a different architectural 
approach and provide higher-level data management 
capabilities using highly integrated functionality, 
including replica registration, metadata management, 
data discovery and maintenance of consistency among 
replicas. These systems include the Storage Resource 
Broker [5, 23] and Grid DataFarm [25] projects.  

The Storage Resource Manager project [24] and the 
DataMover client from Lawrence Berkeley Laboratory 
provide efficient management of large numbers of data 
transfers. However, these components do not provide 
integrated replica management functionality.  

 
7. Future Work 

 
We plan to do more extensive performance testing 

of the Data Replication Service and to scale up the size 
of the files being transferred and the number of files 
per DRS request. We will gain additional experience 
as others use the service as part of the Globus Toolkit 
4.0.  

As already described, we plan to design and 
implement a suite of generally-useful and configurable 
high-level data management services for Grid 
environments. The experience gained with the DRS in 
the GT4 release and earlier experience with LDR in 
the LIGO environment will drive many of our design 
decisions for these new data management services.  

For example, we plan to develop services that 
imitate the data validation capability currently being 
implemented for LDR. The goal of the validation is to 
keep storage servers and catalogs synchronized. LDR 
scripts periodically verify that files registered in Local 
Replica Catalogs at each site actually exist on the 
storage system. Less frequently, these scripts also 
calculate checksums for stored files and verify that 
these checksums match the expected checksums for 
files registered in LRCs. The eventual goal of the 



validation service is to populate LRCs automatically to 
reflect the current contents of a storage system.  

We also plan to develop wide-area validation 
services that verify the correctness of replicas 
registered in the RLS.  

 
8. Conclusions 

 
We have described the needs of applications for 

sophisticated data management services as well our 
goal of providing general, configurable, composable, 
higher-level data management services for Grids. We 
presented the design and implementation of the Data 
Replication Service, whose functionality is based on 
the publication capabilities of the successful LDR 
system. We also presented wide area performance 
results for this service in the Globus Toolkit Version 4 
environment.  

The LIGO science runs began in 2002 and are 
expected to run until at least September 2007.  
Throughout that time, LDR will continue to be a 
production resource that provides data management 
capabilities to LIGO scientists. Concurrently, LIGO 
researchers will work with Grid data service designers 
to enhance the functionality of the Data Replication 
Service and to design future data management 
services. The goal of LIGO researchers is that 
eventually these services will replace the LDR system.  
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