
 Wide Area Data Replication for Scientific Collaborations

Ann Chervenak, Robert Schuler,
Carl Kesselman

USC Information Sciences Institute
(annc, carl, schuler@isi.edu)

Scott Koranda, Brian Moe
University of Wisconsin Milwaukee

(skoranda, bmoe@gravity.phys.uwm.edu)

Abstract

Scientific applications require sophisticated data

management capabilities. We present the design and
implementation of a Data Replication Service (DRS),
one of a planned set of higher-level data management
services for Grids. The capabilities of the DRS are
based on the publication capability of the Lightweight
Data Replicator (LDR) system developed for the LIGO
Scientific Collaboration. We describe LIGO
publication requirements and LDR functionality. We
also describe the design and implementation of the
DRS in the Globus Toolkit Version 4.0 environment
and present performance results.

1. Introduction

Scientific application domains spend considerable

effort on managing the large amounts of data produced
during experimentation and simulation. Required
functionality includes large scale data transfer,
validation, replication, and catalog registration
operations. To facilitate the demanding data
publication and access requirements of scientists,
application communities have developed customized,
higher-level Grid data management services that are
built on top of standard low-level Grid components
such as data transport protocols and replica catalogs.

For example, the Laser Interferometer Gravitational
Wave Observatory (LIGO) collaboration [1, 2, 21]
replicates data extensively and stores more than 40
million files across ten locations. Experimental data
sets are produced at two LIGO instrument sites and
replicated at other LIGO sites to provide scientists with
local access to data. In addition, scientists analyze the
data and publish their results, which may also be
replicated. LIGO researchers developed the
Lightweight Data Replicator (LDR) System [20] for
data management. LDR is built on top of standard Grid
data services such as the Globus Replica Location
Service [8, 9] and the GridFTP data transport protocol

[3]. LDR provides a rich set of data management
functionality, including a pull-based model for
replicating necessary files to a LIGO site; efficient data
transfer among LIGO sites; a distributed metadata
service architecture; an interface to local storage
systems; and a validation component that verifies that
files on a storage system are correctly registered in a
local RLS catalog.

Another example of a customized, high-level data
management system is Don Quijote [7], a replica
management service developed for the ATLAS (A
Toroidal LHC ApparatuS) high energy physics
experiment [4]. Don Quijote is a proxy service that
provides management of data replicas across three
heterogeneous Grid environments used by ATLAS
scientists: the US Grid3, the NorduGrid and the LCG-2
Grid. Each Grid uses different middleware, including
different underlying replica catalogs. Don Quijote
provides capabilities for replica discovery, creation,
registration and renaming after data validation.

Other examples of scientific Grid projects that have
developed customized, high-level data management
services include high energy physics projects in
Europe, such the LHC Computing Grid (LCG)
middleware [19], the gLite system [12] and the
DataGrid Reptor system [18]. Many Grid applications,
such as the Earth System Grid [6], use a web portal to
coordinate data publication, discovery and access
using Grid middleware.

The functionality of these high-level data
management services varies by application domain, but
they share several requirements:
• The need to publish and replicate large scientific

datasets consisting of thousands or millions of
files

• The need to register data replicas in catalog(s) and
discover them

• The need to perform metadata-based discovery of
desired datasets

• Some applications require the ability to validate
the correctness of replicas

In general, updates to datasets and replica
consistency services are not required, since most
scientific datasets are accessed in a read-only manner.

While the efforts described above have been quite
successful in providing production data management
services to individual scientific domains, each project
has spent considerable effort and resources to design,
implement and maintain its data management system.
Often, scientists would prefer that their effort be spent
on science rather than on infrastructure development.
Another disadvantage of these customized data
management services is that they typically cannot be
re-used by other applications.

Our long-term goal is to generalize much of the
functionality provided by these systems and make it
application-independent. We plan eventually to
provide a set of flexible, composable, general-purpose,
higher-level data management services to support Grid
applications. These services should build upon existing
lower level Grid services and should be configurable
by policy to meet the needs of a variety of application
domains. We envision that this suite of data
management services will provide capabilities such as
data replication and validation that can be used
individually or in combination. While application
communities may still need to provide some domain-
specific data management capabilities, our goal is to
reduce the amount of effort required by each
community to design, implement and maintain services
for data management.

In this paper, we describe the design,
implementation and performance of one higher-level
data management service, the Globus Data Replication
Service (DRS). The functionality of the DRS is based
on the publication capability of the LIGO Lightweight
Data Replicator (LDR) system. The DRS builds on
lower-level Grid data services, including the Globus
Reliable File Transfer (RFT) service [16] and Replica
Location Service (RLS) [8, 9]. The function of the
DRS is to ensure that a specified set of files exists on a
storage site by comparing the contents of an RLS
Local Replica Catalog with a list of desired files,
transferring copies of the missing files from other
locations and registering them in the replica catalog.
The DRS is implemented as a Web service that
complies with the Web Services Resource Framework
(WS-RF) specifications and is available as a technical
preview component in the Globus Toolkit Version 4
release.

The contributions of this paper include: 1) a
description of the data publication capability provided
by the LIGO LDR system; 2) a generalization of this
functionality to specify characteristics of an
application-independent Data Replication Service

(DRS); 3) a description of the design and
implementation of DRS in the GT4 environment; and
4) an evaluation of the performance of DRS in a wide
area Grid. The paper concludes with a discussion of
related work and our future plans for developing
additional data management services.

2. LIGO and The Lightweight Data

Replicator Service

The functionality included in our Data Replication

Service is motivated by a careful examination of the
data publication capability provided by the LIGO
Lightweight Data Replicator System. In this section,
we describe LIGO data publication requirements and
the LDR publication functionality.

Throughout this paper, we will use the terms logical
and physical file name. A logical file name (LFN) is a
unique identifier for the contents of a file. Typically, a
Virtual Organization (for example, a scientific
collaboration) defines and manages the logical
namespace and guarantees uniqueness of logical names
within that organization. A physical file name (PFN) is
the location of a copy of the file on a storage system.
The physical namespace is managed by the file system
or storage system. The LIGO environment currently
contains more than six million unique logical files and
more than 40 million physical files stored at ten sites.

2.1 Data Publishing Requirements in LIGO

The publishing requirements for LIGO have grown

over time and are of two types. First, the two LIGO
detectors at Livingston and Hanford produce data sets
at a rate of slightly less than a terabyte per day during
LIGO experimental runs. Each detector produces a file
every 16 seconds that contains data for those 16
seconds of measurements. These files range in size
from 1 to 100 megabytes. The GEO detector in
Germany is also part of the LIGO scientific
collaboration and produces data sets. All these data
sets are copied to the main data repository at CalTech,
which stores data in a tape-based mass storage system.
Other sites in the LIGO collaborative can acquire
copies of the data sets from CalTech as well as from
one another.

Scientists also publish new or derived data sets as
they perform analysis on existing data sets. For
example, data filtering may create tens of thousands of
new files. Another example of secondary data is
calibration information for the interferometer data.
Scientists typically want to publish these new data sets
immediately. Scientists at all the LIGO sites participate

in this process of analysis and data set publication. The
workload for this type of publishing activity tends to
be highly variable. Over time, the rate of publication of
these derived data sets is growing. While currently
approximately 1/3 of the data sets in the LIGO
infrastructure are derived data products and 2/3 are
raw data sets from the LIGO detectors, the proportion
of derived data sets is rapidly increasing.

2.2 LDR Data Publishing

In this section, we describe how the LDR system

supports LIGO data publishing.
Figure 1 illustrates the services and daemons

deployed at a typical LIGO site. First, each of the ten
LIGO sites includes a local storage system where data
replicas are stored. Each site also includes a GridFTP
server that is used for efficient transfer of files among
LIGO sites. Each site also deploys a Metadata Catalog
that contains associations between logical file names
and metadata attributes. In addition, each site deploys
two Replica Location Service (RLS) [8, 9] servers: a
Local Replica Catalog (LRC) that stores mappings
from logical names to physical storage locations and a
Replica Location Index (RLI) that collects state
summaries from all ten LRCs deployed in the LIGO
environment. A query to any RLI identifies all LRCs
in the LIGO deployment that contain mappings for a
logical file name. Each LIGO site also runs scheduling
and transfer daemons that play important roles in
publication.

Local
Replica
Catalog

Replica
Location

Index

GridFTP
Server

Metadata
Catalog

MySQL
Database

Scheduler
Daemon

Transfer
Daemon

Prioritized
List of

Requested
Files

Site
Storage
System

Figure 1: Illustrates the deployment of services
and daemons on a typical LIGO site.

The publishing component of the Lightweight Data
Replicator System works as follows. Each LDR site
runs a scheduling daemon that initiates local data
transfers using a pull model. The scheduling daemon
queries the site’s local metadata catalog to request sets

of files with specified metadata attributes. These sets
of files are called collections, and each collection has a
priority level that determines the order in which files
from different collections will be transferred to the
local site. For each file in a collection, the scheduling
daemon checks the RLS Local Replica Catalog to
determine whether the desired file already exists on the
local storage system. If not, the daemon adds that file’s
logical name to a priority-based scheduling queue.

An LDR site also runs a transfer daemon that
periodically checks this list of requested files and
initiates data transfer operations. For each file on the
list in order from highest to lowest priority, the transfer
daemon queries the RLS Replica Location Index
server to find locations in the Grid where the file exists
and randomly chooses among the available locations.
Then the transfer daemon initiates data transfer
operations from the remote site to the local site using
the GridFTP data transport protocol. The daemon
interacts with the local storage management logic to
store the files correctly and registers the newly-copied
files in the Local Replica Catalog.

The LRC sends periodic summaries about its state,
including the existence of newly-replicated files, to
Replica Location Index servers at all LIGO locations.
Thus, other sites in the LIGO deployment can discover
the new replicas by querying their local RLI servers.

If a data transfer operation does not complete
successfully, LDR puts the logical file names back on
the prioritized list of requested files to be retried later.

3. Design of the Data Replication Service

Next, we present the design of a higher-level data

replication service suitable for use by scientific
collaborations that require wide area data replication.

3.1 Generalizing the LDR Publication Scheme

Our goal in designing the Data Replication Service

was to generalize LDR’s publication functionality to
provide a similar capability that is independent of the
LIGO infrastructure and useful for a variety of
application domains.

Aspects of our design, which draw upon the
features supported by the LDR model, include:
• an interface to specify which file(s) are required

on the local site;
• use of Globus RLS to discover where replicas

exist in the Grid and whether they exist at the local
site;

• use of a selection algorithm for choosing among
available replicas of desired data files;

• use of the Reliable File Transfer Service and
GridFTP data transport protocol to copy data from
selected remote location(s) to the local site; and

• registration of new files in the Globus RLS.
In contrast to LDR, we chose to make the design of

DRS independent of any particular metadata service
architecture, such as the fully replicated and distributed
service deployed in LIGO. In LDR, the scheduling
daemon initiates data transfers by performing a
metadata catalog query to identify the list of desired
files. By contrast, our service interface simply allows
the user to specify a list of logical files that should be
copied to a site without prescribing how the list is
generated, which allows DRS to be compatible with
other application-specific metadata catalogs.

3.2 Data Replication Service Design Overview

The function of the Data Replication Service (DRS)

is to ensure that a specified set of files exist on a
storage site. The operations of the DRS include
discovery, identifying where desired data files exist on
the Grid; transfer, copying the desired data files to the
local storage system efficiently; and registration,
adding location mappings to the Replica Location
Service so that other sites may discover newly-created
replicas. Throughout DRS replication operations, the
service maintains state about each file, including which
operations on the file have succeeded or failed.

Principles that guided our fundamental design
decisions included:
• Design of a composable architecture based on

reusable lower-level services;
• Use of a flexible deployment model to allow for

site-specific deployment configurations; and
• Adoption of the Web Services Resource

Framework (WS-RF) [10] standards to promote
interoperability.

Following the WS-RF specification, the general
structure of the DRS consists of a WS-Resource
deployed in a WS-RF-compliant container. The
container takes responsibility for many of the
“plumbing” issues related to communication,
messaging, logging, and security. The WS-Resource
construct allows for stateful resources within a Web
services context [10, 13]. In the DRS, the stateful
resource represents a replication request created by a
client, allowing the client to access the state of the
replication request and to control its behavior. We call
the DRS resource a “Replicator.”

A WS-Resource exposes state information in the
form of WS-ResourceProperties. The DRS Replicator

resource exposes resource properties pertaining to the
replication request, including:
• Status – indicates whether the request is pending,

active, suspended, terminated, or destroyed;
• Stage – the current stage in the replication, which

may be discover, transfer, or register;
• Result – the final result of the request, which may

be none, finished, failed, or exception; and
• Count – a count of total, finished, failed, and

terminated files in the replication.
To access a Replicator’s resource properties, clients

may use standard WS-RF defined operations to get a
resource property, get multiple resource properties,
query resource properties, and subscribe to resource
properties. Subscriptions enable clients to receive
asynchronous notifications when a resource property
changes. The Replicator also defines an interface to
find the status of specific files in the request by logical
filename or by status and allows the client to specify
an offset and limit in case the result set is very large.

Lifecycle is another important aspect of the design.
Clients begin by passing a create message to the DRS,
which creates a Replicator resource. The create
message includes a URL of a file that contains the
details of the replication request: a listing of the files to
be replicated and the destinations for newly created
replicas. The URL of the request file may be a file,
http, or ftp URL; in the latter cases the DRS loads the
request file from the remote location. After creating the
Replicator resource, the client uses start, stop, suspend,
and resume operations to control the replication
activity. Finally, the client destroys the resource using
the WS-RF standard destroy or set termination time
operations. Once destroyed, the Replicator resource
along with its resource properties may not be accessed.

To perform key operations of data replication, DRS
depends on two non-WS services, GridFTP and RLS,
and two other WS-RF services, RFT and Delegation.

We considered design alternatives for DRS. We
could have extended the existing RFT implementation
to include replica registration capabilities. However,
the RFT service is evolving quickly and independently,
and it would be challenging to incorporate ongoing
RFT changes into the DRS implementation. In the
future, we may build DRS and other high-level
services based on the Globus GRAM job execution
service.

4. DRS Implementation

Figure 2 depicts the implementation of the Globus

Data Replication Service in a typical deployment
scenario where a DRS at a local site replicates data

from one or more remote sites. The GT4 Delegation
service is co-located with the services that use the
delegated credentials, so DRS, RFT and Delegation are
deployed together. The RLS and GridFTP services
may be deployed together with DRS or on separate
servers. The intent of the design is to provide a flexible
deployment model that allows various configurations.

Figure 2: Illustrates deployment and operation

of DRS in Web Service container along with RFT
service and non-web service RLS and GridFTP.

The client begins by using the Delegation Service to

create a delegated credential (1) that may be used by
other services to act on behalf of the user according to
his or her permissions. The client may create a request
file (2) containing an explicit description of the

replication request in terms of the desired files,
identified by their logical file names, and the desired
destination locations, identified by URLs. The client
sends a message to the DRS (3) to create the
Replicator resource and passes the request file’s URL,
which the Replicator then retrieves and reads (4).

The Replicator accesses the user’s delegated
credential (5) and begins the discovery phase of
replication by querying (6) the Replica Location Index
to find the LRCs that contain mappings for the
requested files. The Replicator invokes a catalog filter
class (implemented by the user, specific to their site’s
requirements) to filter out unwanted catalogs from the
rest of the discovery phase. The Replicator then
queries (7) each of the remaining remote Local Replica
Catalogs to get the physical file names associated with
the requested files. The Replicator uses a source
selector class (again implemented by the user, specific
to their site’s requirements) to select the desired source
files for each file to be replicated.

The Replicator then moves on to the transfer phase
of the replication by using the RFT service to create a
RFT resource (8) and start the transfer. At this point,
control is passed to RFT, which also retrieves the
delegated credential (9). RFT sets up the file transfers
(10), while GridFTP servers perform the data transfer
between sites (11). Once the file transfers are
complete, the Replicator checks the status of the RFT
resource and gets the status (12) of each file in the
transfer request to ensure that each file transferred
successfully.

The Replicator then moves to the register phase of
the replication by adding mappings (13) for the newly
created replicas to its Local Replica Catalog. In time,
the Local Replica Catalog updates (14) its Replica
Location Index along with RLIs located at remote sites
to make the new replicas visible throughout the Grid
environment.

Finally, the client may check the status of its
Replicator resource (15) and query the status of each
of the files in its replication request.

The present implementation of the DRS is based on
the Java version of the Globus Toolkit Web services
container and utilizes standard database interfaces.
Based on this infrastructure, the DRS inherits the
capabilities associated with WS-RF resources. These
include standard interfaces to query resource properties
synchronously and subscribe to resource property
changes via asynchronous notification [17]. Also, the
DRS uses the WS Authentication & Authorization
APIs [15] to communicate securely with other services
in the deployment, to properly authenticate users, and
to ensure that users perform operations permitted to
them by administrators of the system.

5. Data Replication Service Performance

In this section, we present wide area performance

measurements for our DRS implementation.
The local site, which is the destination for the pull-

based transfers, is located in Los Angeles. It is a dual-
processor, 1.1 GHz Pentium III workstation with 1.5
GBytes of memory and a 1 Gbit Ethernet connection.
This machine runs a GT4 container and deploys
services including RFT and DRS as well as GridFTP
and RLS (which are not Web services). When a client
on this machine makes a DRS request, the DRS
Replicator Resource is created and started in this
container. DRS queries the local RLI and then queries
the remote LRC to find the physical locations of source
files. Next, DRS initiates file transfers by invoking the
RFT service, which creates an RFT Resource. The
RFT service coordinates data transfers from the remote
site to local storage using GridFTP.

The remote site where desired data files are stored
is a machine at Argonne National Laboratory in
Illinois. This machine is a dual-processor, 3 GHz Intel
Xeon workstation with 2 gigabytes of memory with
1.1 terabytes of disk storage. This remote machine runs
a GT4 container as well as GridFTP and RLS services.
The RLS Local Replica Catalog at the remote site is
queried by the DRS in Los Angeles during the
discovery of file locations. During RFT transfer
operations, the GridFTP server on this machine acts as
the source for pull-based transfers to the local site.

For all our tests, we report the following
measurements.
• Create Replicator is the time for the DRS service

to create a persistent Replicator resource,
including storing resource state in a database.

• Start is the time required for the DRS service to
'start' the Replicator resource.

• Discover is the time to perform lookups in the
local RLI and remote LRC(s) for all logical files
that will be replicated in this request.

• Create RFT is the time required to create the RFT
Resource associated with the DRS request.

• Transfer is the total time taken by the RFT Service
to transfer all files in the request.

• Register is the time required to register the LFN-
PFN mappings for new replicas in the LRC.

For a transfer of a single 1 gigabyte-file, we use
four parallel TCP streams for the GridFTP transfer and
a TCP buffer size of 1,000,000. These parameter
values are based on guidance in the GridFTP
documentation [14]. We ran this transfer five times
and obtained the average performance shown in Table
1.

This corresponds to a data rate during the transfer
portion of the request of approximately 49 Mbits/sec.
The table also shows standard deviation for each
measured value. We note that the variance is high on
operations such as discover, which varies from 307 to
5371 milliseconds during the five trials, and register,
which varies from 295 to 4305 milliseconds. The
discover operation accesses the remote LRC over the
wide area, which may account for some of the
variability in these numbers, while register accesses a
database on another machine in the local area network.
There is also substantial variance in the transfer times,
which is likely due to variations in the wide area
transfer bandwidth between Los Angeles and Chicago.

Table 1: Performance for DRS replicating one
file of size 1 gigabyte

Component of
Operation

Time
(milliseconds)

Standard
Deviation

Create Replicator 310.8 163.6
Start 11.4 20.5
Discover 1355.2 2245.4
Create RFT 780.8 250.12
Transfer 163207.8 88744.2
Register 2584.4 2111.7

Next, we run a test that copies ten files of size 1

gigabyte to the local site. Again, we ran the tests five
times and report average measurements. We set the
concurrency to two for RFT transfers (i.e., two RFT
worker threads performing these transfers). Individual
GridFTP transfers use parallelism of four TCP streams
and a TCP buffer size of 1,000,000. The performance
numbers are shown in Table 2.

Table 2: Performance for DRS replicating ten
files of size 1 gigabyte

Component of
Operation

Time
(milliseconds)

Standard
Deviation

Create Replicator 317 156.2
Start 12.4 19.0
Discover 449.0 184.0
Create RFT 808.6 256.9
Transfer 1186796.0 31596.9
Register 3720.8 2121.3

The time to create the Replicator and RFT resources

is similar to the previous example. The average time to
discover replicas using the RLS is less than in the
previous example and shows less variance. The data
transfer rate for this experiment was approximately
67.4 Mbits/sec. The average RLS registration time was

slightly higher than in the previous experiment and
exhibited large variance.

Finally, we performed two tests that transfer large
numbers of smaller files. We initiate a transfer of 1000
files of size 1 megabyte and of size 10 megabytes. For
these experiments, we set the concurrency to ten for
RFT transfers. Individual GridFTP transfers use
parallelism of four TCP streams and a TCP buffer size
of 100,000. The performance numbers in Table 3 and
Table 4 show values averaged over five experiments.

Table 3: DRS performance for transfer of 1000
files of size 1 megabyte

Component of
Operation

Time (msec)
File size:

1 MB

Standard
Deviation

Create Replicator 324.2 172.3
Start 10.0 17.3
Discover 2226.6 2288.0
Create RFT 2540.0 548.3
Transfer 606296.0 1107.1
Register 5537.4 464.2

Table 4: DRS performance for transfer of 1000
files of size 10 megabytes

Component of
Operation

Time (msec)
File size:

10 MB

Standard
Deviation

Create Replicator 1561.0 1643.1
Start 9.8 17.4
Discover 1286.6 196.5
Create RFT 3300.2 1090.1
Transfer 963456.0 30163.9
Register 11278.2 6602.9

As might be expected, the times to create the

Replicator and especially the RFT resources are
substantially longer in these cases than for the pervious
tests, since the services have to save state for 1000
outstanding transfer operations. The RLS discover and
register operations continue to show high variance.
The average transfer rate achieved is 13.2 Mbits/sec
for the 1 megabyte file size, which reflects the lower
efficiency of transferring relatively small files using
RFT. For the 10 megabyte file size, the transfer rate
achieved is on average 83 Mbits/sec.

These results provide insights into the performance
of DRS operations for small numbers of large files and
for larger numbers of smaller files. In future testing,
we plan to increase the scale of the number of files per
request and the size of the files transferred.

6. Related Work

The LIGO project and its participation in the Grid

Physics Network (GriPhyN) project are described in
the following references [1, 2, 11, 21]. Marka et al.
[22] describe the Network Data Analysis Server, an
early data distribution system for gravitational wave
data that provides some functionality similar to LDR.

As already discussed, we envision developing a
suite of general-purpose, configurable and composable
higher-level data management services, of which the
Data Replication Service is the first. Our goal is to let
application communities deploy those services that
provide desirable functionality. By contrast, several
other Grid systems take a different architectural
approach and provide higher-level data management
capabilities using highly integrated functionality,
including replica registration, metadata management,
data discovery and maintenance of consistency among
replicas. These systems include the Storage Resource
Broker [5, 23] and Grid DataFarm [25] projects.

The Storage Resource Manager project [24] and the
DataMover client from Lawrence Berkeley Laboratory
provide efficient management of large numbers of data
transfers. However, these components do not provide
integrated replica management functionality.

7. Future Work

We plan to do more extensive performance testing

of the Data Replication Service and to scale up the size
of the files being transferred and the number of files
per DRS request. We will gain additional experience
as others use the service as part of the Globus Toolkit
4.0.

As already described, we plan to design and
implement a suite of generally-useful and configurable
high-level data management services for Grid
environments. The experience gained with the DRS in
the GT4 release and earlier experience with LDR in
the LIGO environment will drive many of our design
decisions for these new data management services.

For example, we plan to develop services that
imitate the data validation capability currently being
implemented for LDR. The goal of the validation is to
keep storage servers and catalogs synchronized. LDR
scripts periodically verify that files registered in Local
Replica Catalogs at each site actually exist on the
storage system. Less frequently, these scripts also
calculate checksums for stored files and verify that
these checksums match the expected checksums for
files registered in LRCs. The eventual goal of the

validation service is to populate LRCs automatically to
reflect the current contents of a storage system.

We also plan to develop wide-area validation
services that verify the correctness of replicas
registered in the RLS.

8. Conclusions

We have described the needs of applications for

sophisticated data management services as well our
goal of providing general, configurable, composable,
higher-level data management services for Grids. We
presented the design and implementation of the Data
Replication Service, whose functionality is based on
the publication capabilities of the successful LDR
system. We also presented wide area performance
results for this service in the Globus Toolkit Version 4
environment.

The LIGO science runs began in 2002 and are
expected to run until at least September 2007.
Throughout that time, LDR will continue to be a
production resource that provides data management
capabilities to LIGO scientists. Concurrently, LIGO
researchers will work with Grid data service designers
to enhance the functionality of the Data Replication
Service and to design future data management
services. The goal of LIGO researchers is that
eventually these services will replace the LDR system.

9. Acknowledgements

We are grateful to Mats Rynge for his help in

setting up the DRS service in the GT4.0 testbed; to
Ravi Madduri and Bill Allcock for help with RFT
testing and configuration and for providing access to
resources at ANL; and to Mike Link and Shishir
Bharathi for their assistance with security issues during
our testing.

This research was supported in part by DOE Coop-
erative Agreements DE-FC02-01ER25449 & DE-
FC02-01ER25453. Scott Koranda and Brian Moe are
supported in part by NSF grant 0326281.

10. References

1. Abbott, B., et al., Detector Description and

Performance for the First Coincidence Observations Between
LIGO and GEO. Nucl. Instrum. Meth., A517. 154-179.

2. Abramovici, A., W. Althouse, et al. LIGO: The
Laser Interferometer Gravitational-Wave Observatory.
Science, 256. 325-333.

3. Allcock, W., et al., The Globus Striped GridFTP
Framework and Server. in SC05 Conference, 2005.

4. ATLAS Project. ATLAS: A Toroidal LHC
ApparatuS, http://atlas.web.cern.ch/Atlas/, 2005.

5. Baru, C., R. Moore, et al., The SDSC Storage
Resource Broker. in CASCON'98 Conference, (1998).

6. Bernholdt, D., et al., The Earth System Grid:
Supporting the Next Generation of Climate Modeling
Research. Proceedings of the IEEE, 93 (3). 485- 495.

7. Branco, M., Don Quijote - Data Management for
the ATLAS Automatic Production System. in Computing in
High Energy and Nuclear Physics (CHEP) 2004.

8. Chervenak, A., et al., Giggle: A Framework for
Constructing Sclable Replica Location Services. in SC2002
Conference, (Baltimore, MD, 2002).

9. Chervenak, A.L., et al., Performance and
Scalability of a Replica Location Service. in Thirteenth IEEE
Int'l Symposium High Performance Distributed Computing
(HPDC-13), (Honolulu, HI, 2004).

10. Czajkowski, K., et al. The WS-Resource
Framework Version 1.0, 2004.

11. Deelman, E., et al., GriPhyN and LIGO, Building a
Virtual Data Grid for Gravitational Wave Scientists. in 11th
Intl. Symposium on High Performance Distributed
Computing (HPDC-11), (Edinburgh, Scotland, 2002).

12. EGEE Project. gLite Lightweight Middleware for
Grid Computing, http://glite.web.cern.ch/glite/, 2005.

13. Foster, I., et al. Modeling Stateful Resources with
Web Services version 1.0, 2004.

14. Globus Alliance. globus-url-copy Command
Documentation, http://www.globus.org/toolkit/docs/4.0/data-
-/gridftp/rn01re01.html, 2005.

15. Globus Alliance. Authentication & Authorization:
Developer's Guide, http://www-unix.globus.org/toolkit/docs-
/development/4.0-drafts/security/prewsaa/developer/, 2004.

16. Globus Alliance. Reliable File Transfer Service,
http://www.globus.org/toolkit/docs/4.0/data/rft/, 2005.

17. Graham, S., et al. Web Services Resource
Properties (WS-ResourceProperties) Version 1.1, 2004.

18. Kunszt, P., et al., Advanced Replica Management
with Reptor. in 5th International Conference on Parallel
Processing and Applied Mathematics, 2003.

19. LCG Project. LHC Computing Grid: Distributed
Production Environment for Physics Data Processing,
http://lcg.web.cern.ch/LCG/, 2005.

20. LIGO Project. Lightweight Data Replicator,
http://www.lsc-group.phys.uwm.edu/LDR/, 2004.

21. LIGO Project. Laser Interferometer Gravitational
Wave Observatory, http://www.ligo.caltech.edu/, 2004.

22. Marka, S., et al., Network Data Analysis Server
(NDAS) Prototype Development. Classical and Quantum
Gravity, 19 (7). 1537-1540.

23. Rajasekar, A., et al. Storage Resource Broker -
Managing Distributed Data in a Grid. Computer Society of
India Journal (Special Issue on SAN).

24. Shoshani, A., et al., Storage Resource Managers:
Middleware Components for Grid Storage. in Nineteenth
IEEE Symp. on Mass Storage Systems (MSS '02), (2002).

25. Tatebe, O., et al., Worldwide Fast File Replication
on Grid Datafarm. in Computing in High Energy and
Nuclear Physics (CHEP03), (2003).

http://atlas.web.cern.ch/Atlas/
http://glite.web.cern.ch/glite/
http://www.globus.org/toolkit/docs/4.0/data/rft/
http://lcg.web.cern.ch/LCG/
http://www.lsc-group.phys.uwm.edu/LDR/
http://www.ligo.caltech.edu/

	1. Introduction
	2. LIGO and The Lightweight Data Replicator Service
	2.1 Data Publishing Requirements in LIGO
	2.2 LDR Data Publishing
	3. Design of the Data Replication Service
	
	Next, we present the design of a higher-level data replication service suitable for use by scientific collaborations that require wide area data replication.
	3.1 Generalizing the LDR Publication Scheme

	4. DRS Implementation
	5. Data Replication Service Performance
	6. Related Work
	7. Future Work
	8. Conclusions
	9. Acknowledgements
	10. References

