Cactus-G:
Enabling High-Performance Simulation in Heterogeneous
Distributed Computing Environments

Gabrielle Allen* Thomas Dramlitsch* Ian Foster’* Tom Goodale*
Nick Karonis® Matei Ripeanu? Ed Seidel* Brian Toonen!

May 7, 2000

Abstract

Improvements in the performance of processors and networks means that it can be
both feasible and interesting to treat collections of workstations, servers, clusters, and
supercomputers as integrated computational resources or Grids. However, the highly het-
erogeneous and dynamic nature of such Grids makes application development extremely
difficult. In this paper, we describe an architecture and prototype implementation for a
Grid-enabled computational framework called Cactus-G. This framework integrates the
Cactus simulation system with the MPICH-G2 Grid-enabled message passing library and
in addition integrates a variety of specialized features to support efficient execution in
Grid environments. In order to evaluate and demonstrate the effectiveness of this system,
we are attempting a challenge computation involving a large astrophysics simulation dis-
tributed across multiple supercomputers at U.S. centers. In this extended abstract, we
present preliminary results that suggest that this challenge computation is feasible; the
final paper will present complete results.

KEYWORDS: Heterogeneous and Distributed Computing, Metacomputing, Problem Solv-
ing Environments, Grid, Numerical Relativity, Cactus, MPI, MPICH-G2

1 Introduction

A continued rapid evolution in both the sophistication of numerical simulation techniques and
the acceptance of these techniques by scientists and engineers means that demand for computing
cycles is increasing rapidly. This observation is particularly true at the high end of the scale:
the supercomputer centers capable of supporting the most realistic simulation studies are all

*Max Planck Institute for Gravitational Physics

tMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
'Department of Computer Science, The University of Chicago, Chicago, IL 60637

$Department of Computer Science, Northern Illinois University

grossly oversubcribed. And while commodity clusters are emerging as a promising lower-cost
alternative to tightly integrated supercomputers, they seem only to be spurring further demand.

At the same time, the capabilities of both “low-end” computers and commodity networks
are increasing rapidly, to the point where a typical research or engineering institution will soon
include large numbers of Gigaflop/s workstations connected by Gigabit/s networks, in addition
to the usual collection of high-end servers and clusters. It thus becomes feasible and indeed
interesting to think of the high-end computing environment as an integrated “Computational
Grid” [15] rather than a set of disjoint point sources. For this Grid to be widely useful, it is
essential to be able to design applications that are flexible enough to exploit various ensembles
of workstations, servers, commodity clusters, and true supercomputers, matching application
requirements and characteristics with Grid resources to which we have access.

It is clear that the effective exploitation of such Grid computing environments could increase
dramatically the accessibility and scale of large-scale simulation. However, the development of
such Grid-enabled applications (outside the domain of the “happily,” i.e., trivially, parallel)
presents a very significant challenge, due to the high degree of heterogeneity and dynamic
behavior (in architecture, mechanisms, and performance) encountered in Grid environments.
While methods for dealing with at least some of these difficulties are known and have been
applied successfully in some situations [26, 27, 6, 28, 34|, applying these methods in real appli-
cations tends to be extremely difficult.

A promising approach to application development in such environments is to develop Grid-
enabled computational frameworks that implement the advanced techniques referred to above,
hide irrelevant complexities, and present application developers with familiar abstractions.In
this paper, we present such a framework and describe a challenge computation that we are
conducting with the goal of demonstrating the effectiveness of our approach.

The framework, which we term Cactus-G, builds on two major software systems, namely the
Cactus simulation framework [3, 2] and the Globus-based MPICH-G2 implementation of MPI
integrating the two systems and extending them to incorporate various advanced techniques
for Grid execution.

The challenge computation involves a computationally demanding problem from astro-
physics, namely the detailed simulation of two colliding black holes. We seek, by harnessing
multiple supercomputers, to execute this simulation at an unprecedented resolution. However,
the framework provided by Cactus-G is sufficiently general that many different applications can
become Grid-enabled; it is not in any way limited to the parituclar astrophysics application.
This extended abstract presents preliminary results that suggest that this challenge computa-
tion is feasible; the full paper will include detailed performance analysis and results for the full
problem.

2 The Computational Grid Environment

The computational Grid environments that we seek to harness in this work are different in
many respects from the “standard” parallel computing environment. In particular:

e A parallel computer is usually fairly homogeneous. In contrast, a Grid may incorporate
nodes with completely different processor types, memory sizes, etc.

e A parallel computer typically has a dedicated, optimized, high bisection bandwidth com-

munications network with a generally fixed topology. In contrast, a Grid can have a
highly heterogeneous and unbalanced communication network, comprising a mix of dif-
ferent intramachine networks and a variety of Internet connections whose bandwidth and
latency characteristics may vary greatly in time and space.

A parallel computer typically had a stable configuration. In contrast, resource availability
in a Grid can vary dramatically over time and space.

A parallel computer typically runs a single operating system and provides basic utilities
such as file system and resource manager. In contrast, a Grid environment, being a
collection of single vendor machines, integrates potentially radically different OS and
utilities.

A conventional parallel program will not run efficiently (or perhaps at all) in such an envi-
ronment. High communication latencies, low bandwidths, and unequal processor powers will
together ensure that overall performance is poor. The following is a partial list of the specialized
techniques that can be used to overcome these problems.

1.

Smart resource selection. While many resources may be available to us, not all may be
appropriate for our application. A resource selection strategy that takes into account both
application characteristics and resource properties (e.g., performance, cost) can allow us
to meet cost and performance requirements [35].

. Resource reservations. A variant of #1 is to use reservation mechanisms to guarantee

availability of critical resources (e.g., networks) [16].

. Irreqular data distributions. We can avoid load imbalances by using irregular data dis-

tributions that optimize overall performance. In computing these data distributions, we
need information about the application itself, the target computers, and the networks
that connect these computers [31, 29].

Grid-aware communication schedules. We can schedule communication (and computa-
tion) so as to maximize overlap between computation and communication, for example
by computing on the interior of a region while exchanging boundary data. We can group
communications so as to increase message sizes. We can also organize data distributions
and/or use dedicated communication processors so as to manage the number of processors
that engage in inter-machine communication.

Redundant computation. We can perform redundant computation to reduce communica-
tion costs. For example, increasing the size of the “shadow” region in a finite difference
code allows us to increase communication granularity significantly, at the cost of unnec-
essary computation.

Coroutining of other computation. It is common in scientific computing to analyze out-
put data after computation completes, in a separate postprocessing phase. The amount
of data and computing involved in postprocessing can be significant, so in an Grid en-
vironment, we may want to trade off computation for communication by coroutining
“postprocessing” with simulation.

7. Protocol tuning. We can tune a particular protocol based on known characteristics of the
application and environment: e.g., by selecting TCP window sizes [33].

8. Selection of alternative protocols. We can use specialized protocols for wide area commu-
nication that take into account application-specific knowledge. For example, we may be
able to exploit multicast or use protocols other than TCP, so as to avoid TCP overheads
such as slow start.

9. Adaptive strategies. We can compensate for changes in the behavior of the application
and/or resources by reapplying any of the strategies listed above during program execu-
tion [30, 19].

10. Network-aware communication algorithms. We can improve the performance of commu-
nication operations by using specialized network-aware algorithms [24, 10, 20, 21, 5].

11. Grid infrastructure. We can reduce dramatically the difficulties associated with operating
in heterogeneous multi-domain environments by using appropriate Grid services (e.g.,
resource discovery, single-sign on, resource management) to access remote resources [14,

17, 23, 37).

3 The Cactus-G Toolkit

Each of the techniques listed in the preceding section is difficult to apply in an application
program; applying a collection of these techniques in a coordinated fashion can be extremely
challenging. The Cactus-G Toolkit represents an attempt to overcome this challenge. In the
following, we first describe the Cactus and MPICH-G2 systems, then describe the architecture
of Cactus-G, and finally review the status of our Cactus-G prototype.

3.1 Cactus and MPICH-G2

Originally developed as a framework for the numerical solution of Einstein’s Equations [32],
Cactus [7, 3, 2] has evolved into a general-purpose, open source, problem solving environment
that provides a unified modular and parallel computational framework for scientists and engi-
neers.

The name Cactus comes from its design, which features a central core (or flesh) which con-
nects to application modules (or thorns) through an extensible interface. Thorns can implement
custom-developed scientific or engineering applications, such as computational fluid dynamics,
as well as a range of computational capabilities, such as data distribution and checkpointing.
An expanding set of Cactus toolkit thorns provides access to many software technologies being
developed in the academic research community, such as the Globus Toolkit, as described below;
HDF5 parallel file I/O; the PETSc scientific computing library; adaptive mesh refinement; web
interfaces; and advanced visualization tools.

Cactus runs on many architectures, including uniprocessors, clusters, and supercomputers.
Parallelism and portability are achieved by hiding features such as the MPI parallel driver layer,
[/O system, and calling interface under a simple abstraction API. These layers are themselves
implemented as thorns that can be interchanged and called as desired. The PETSc scientific

4

library has similar concepts of data distribution neutral libraries [4], but Cactus goes further by
providing modularity at virtually every level. For example, the abstraction of parallelism allows
one to plug in different thorns that implement an MPI-based unigrid domain decomposition,
with very general ghost zone capabilities, or an adaptive mesh domain decomposer, or a PVM
version of the same kinds of libraries. A properly prepared scientific application thorn will work,
without changes, with any of these parallel domain decompositon thorns, or others developed
to take advantage of new software or hardware technologies.

The second system that contributes to Cactus-G is MPICH-G2, an MPI implementation
designed to exploit heterogeneous collections of computers. MPICH-G2 is a second-generation
version of the earlier MPICH-G [13]. Like MPICH-G, MPICH-G2 exploits Globus services [14]
for resource discovery, authentication, resource allocation, executable staging, startup, manage-
ment, and control; it extends MPICH-G by incorporating faster communications and quality
of service, among other new features.

Other efforts concerned with message passing in heterogeneous environments include PACX [18],
MetaMPI, STAMPI [22], IMPI [8], and MPIconnect [12]. MPICH-G2 is distinguished by its
tight integration with the popular MPICH implementation of MPI and its use of Globus mech-
anisms to overcome security and other problems.

3.2 Cactus-G Architecture

The Cactus-G system defines a set of appropriately layered abstractions and associated libraries,
such that irrelevant (from a performance viewpoint) complexities are hidden from higher layers,
while performance-critical features are revealed. The design of such a system must inevitably
evolve over time as a result of empirical study. However, our experiences to date persuade us
that the architecture illustrated in Figure 1 has some attractive properties, as we describe in
the following.

At the highest level, we have a Grid-aware application. For the user, the abstraction pre-
sented is a high-performance numerical simulation. The user controls the behavior of the
simulation by specifying initial conditions, resolution, etc.; the simulation may in turn reveal
performance data. All details of how this simulation is performed on a heterogeneous collection
of computers are encapsulated within the application.

This Grid-aware application is built from several layers. At the top of these layers lie the var-
ious Cactus application thorns, which are used to perform the actual scientific calculation (e.g.,
solve differential equations from various branches of physics). These thorns can be written in
Fortran or C, but they do not necessarily have to be Grid-aware. The application programmer
only needs to take care to use correct algorithms, differenting-schemes, equations etc. Some of
these schemes will be better than others in a Grid environment, and hence a Grid-aware set of
application thorns will be useful, but in principle not required. All details of how data is dis-
tributed across processors and how communication is done is still hidden from the programmer
at this level.

Next, we have the Grid-aware infrastructure thorns, which provide all features, layers, and
drivers which the application thorns need, namely parallelism, I/O, web-interfaces, visualization
and many more. These thorns contain all details about communication, data mapping, parallel-
[/O etc. An application thorn writer simply includes those thorns into his code (without
having to modify his application thorn) depending on his needs (e.g. wants to run single,

Cactus-G applications in astrophysics, CFD, etc, etc.

Application-oriented
performance feedback

Grid-enabled Cactus flesh and thorns

Info on Decompositions,
structure, costs comm schedules, etc.

Grid-aware data decomposer, comm
scheduler, etc., etc.

MPI function calls, attributes to
ontrol operation/query properties

MPICH-G2: Grid-enabled MPI

(@]

Obtain information
on structure, state
of Grid resources

Specify where to create
processes; upcalls signal failure

DUROC: Co-allocation service

Negotiate security, allocation,
startup, monitoring, termination

Grid Services: Security, resource discovery, resource
management, communication, instrumentation, etc.

Grid Fabric: A heterogeneous mix of computers,
networks, storage systems etc.

Figure 1: Cactus-G architecture, showing the information and control flows between the differ-
ent layers

parallel or multi-host jobs). An important thorn in our case is the so-called PUGH-thorn, wich
provides parallelism based on a MPI-implementation such as MPICH-G2. This thorn has been
specifally improved and optimized in order to work even more efficiently in a heterogenous
Grid environment. Other important thorns include those used to compute Grid-oriented data
distributions, communication schedules, and so forth.

Below this we have a Grid-enabled communication library: specifically, MPICH-G2, an im-
plementation of the MPI standard capable of running MPI programs across heterogeneous com-
puting resources. The abstraction presented is the MPI programming model; the programmer
queries structure and state and controls behavior of the underlying implementation via getting
and setting, respectively, attribute values associated with MPI communicators. All details of
how the MPI programming model is implemented across different resources are encapsulated,
including startup, Grid-aware collective operations [20], monitoring, and control.

The Grid-enabled MPI implementation makes use of functions provided by a co-allocation
library: in our case, the Dynamically Updated Resource Online Co-Allocator (DUROC) [9].

This library abstracts away details relating to how a set of processes are created, monitored, and
managed in a coordinated fashion across different computers. The programmer can specify a set
of machines on which processes are to be started; the DUROC library manages the acquisition
of those resources and the creation of those processes. Upcalls are used to notify higher-level
code of errors, timeouts, etc., hence allowing higher-level code to adapt if desired.

Finally, a set of Grid services abstract away the myriad complexities of heterogeneous en-
vironments. These services provide uniform protocols and APIs for discovering, authenticating
with, reserving, starting computation on, and in general managing computational, network,
storage, and other resources.

3.3 Cactus-G Implementation

While we are far from having a complete realization of the architecture just described, we have
implemented substantial components. In particular, we have developed Grid-aware thorns for
Cactus that support flexible data distributions, hence enabling (for example) grid points to be
mapped to processors in a heterogeneous system according to their power and the amount of
off-machine communication they have to do. We have also incorporated support for variable-
sized shadow regions, hence allowing message size to be increased at the cost of some redundant
computation. Furthermore, these techniques have been shown to work with MPICH-G2, which
supports external management of TCP protocol parameters, the simultaneous use of multiple
communication methods, Grid-aware collective operations, and efficient and secure startup
across multiple computers. In principle a large family of scientific and engineering application
thorns may be plugged into this environment, becoming Grid-enabled.

To date, the selection of data distribution, communication strategy, and so forth are largely
manual processes, with a few exceptions. Data gathered during the present study will help with
development of more automated methods, for example for computing shadow region sizes.

4 The Challenge Problem: Colliding Black Holes

In order to evaluate the effectiveness of the Cactus-G system, we apply it to a substantial
application, one that has been driving an entire community of astrophysicists, relativists, and
computational scientists for many years: namely, the collision of two black holes. One reason
for current scientific interest in this problem is that new observatories may be able to detect
the gravitational waves generated by such events [1].

The colliding black holes problem requires a solution to Einstein’s equations of general
relativity, which are some of the most complicated in mathematical physics, forming a complex
set, of nonlinear elliptic-hyperbolic coupled equations with dozens of variables and thousands
of terms. This problem has generated numerous large scale collaborations among researchers
across many disciplines, has led to several “Grand Challenge”-style projects in both the U.S.
and in Europe [25, 32, 36, 11].

The equations to be solved are similar in some ways to those of CFD, only much more
complex. They are solved here by finite difference techniques on a regular mesh, with an explicit
time stepping scheme. Local communications are required between all neighboring grid points
due to the necessary computation of spatial derivatives appearing in the equations. As second

order finite difference approximations to derivatives are used, in principle a stencil width of two
is needed for this example; however, higher stencil widths, requiring more communications, are
supported and needed for some applications.

Our challenge problem involves multiple time steps of an extremely large Cactus compu-
tation, involving a mesh of size at least 256 x256x1024—and hopefully 512x512x2048. The
latter would be an order of magnitude larger than the largest production relativity simulations
ever performed on a single dedicated machine (a 128 GB Origin 2000). The methods used are
finite difference based, explicit time stepping procedures on an initial data set respresenting
two black holes. Such calculations are quite demanding computationally, typically requiring
several thousand floating point operations per grid point per time step, although with the most
basic algorithms used for testing Grid scenarios we have managed to reduce this to about 750
flops/time step/grid zone. Scaling within a single parallel computer is excellent [32]; scaling
between multiple computers depends critically on communication performance, as discussed
below. In our initial work, we do not coroutine postprocessing, but an obvious candidate is the
calculation of certain mathematical contraints on the solution which are known to be true ana-
lytically. The violation of these contraints is expected due to numerical error, and in production
simulations these are always computed to assess the quality of the solution. The calculation
of one of these four contraints adds several hundred flops per grid point per timestep, without
adding to communication costs.

The Grid system on which we plan to run this computation comprises supercomputers at
supercomputer centers within the U.S.: specifically, the 1,152-processor IBM RS/6000 SP at
SDSC, in San Diego, California; a 512-processor T3E at NERSC, in Berkeley, California; a
1500-processor SGI Origin array at NCSA, in Urbana-Champaign, Illinois; and a 128-processor
SGI Origin at ANL, in Argonne, Illinois. These systems are connected via Abilene and other
high-speed networks, which in principal should provide satisfactory performance.

4.1 Performance Model

We have built a performance model in order to evaluate the performance that we can expect
to achieve in a Grid environment. This model is parameterized with the number of processors,
processor performance, and network performance, allowing us to quantify the sensitivity of
overall performance to these parameters.

While space constraints do not permit a detailed presentation of this model, in brief a typical
situation is as follows:

e A typical processor can manage a subgrid of size 64 x 64 x 64, which is of order 1 Gflops
for typical black hole simulations per time step.

e The off-machine communication volume associated with this subgrid in the case of “ex-
ternal” processors, if we assume a 1-D decomposition across computers, will be 64 x64 x (2
ghost zones) x (7 fields) x (8 bytes/word)=458 KB per time step.

e Hence, if we assume a 100 Mflop/s execution rate, a 1 MB/s network, and an intermachine
latency of 50 msec, then total computation and communication time per time step will
be 10 seconds and 0.5 seconds, respectively, assuming no computation/communication
overlap. This corresponds to a computational efficiency of about 95%.

o [f we scale things to assume an 4 x 4 x 4 cube of computers on each computer, then
total communication time increases to about 0.05 + 16 x 0.45 ~ 7.2 seconds, or around
60% efficiency; with computation/communication overlap and the use of various other
techniques listed above, much of this loss of efficiency could be recovered. 80% overall
efficiency is not unrealistic.

These numbers suggest that scaling across multiple geographically distributed supercom-
puters is not impossible, although total performance achieved will be quite sensitive to details
of intermachine communication performance, load balancing, and our ability to overlap com-
putation and communication.

If we assume performance similar to that listed here, then in principle we can hope to achieve
performance in the range:

(3000 processors) x (100 Mflop/s) x (80% efficiency) = 300 Gflop/s

While certainly not a record in terms of total Flop/s rate achieved by an application, we believe
that such a result would serve as a powerful validation of the power of Grid computing.

4.2 Results to Date

At the time of writing, we have not performed the complete computation just described. How-
ever, we have performed a wide variety of preparatory experiments that lead us to believe that
we can indeed complete this computation prior to submission of the complete paper. Specifi-
cally, we have performed:

e MPICH-G2 performance studies on each of the target platforms—at the time of writ-
ing, the NERSC T3E, SDSC SP2, NCSA Origin, and ANL Origin—and verified that
performance is close that achieved by native MPI on those platforms;

e single-processor Cactus performance studies on each of the target platforms and verified
that Cactus achieves good performance on these platforms;

e single-machine performance studies on each of the target platforms and shown that we
get good single machine scalability on each of these platforms, when using MPICH-G2;

e performance tests over the network links that we expect to use, and shown that these
links can deliver reasonable performance.

We have also encountered a wide variety of mostly mundane problems (which is why we have
not yet completed the computation), relating in part to the fact that we are attempting both
to run across multiple computers to run across large numbers of processors on each computer.
These problems have included hardware failures, hardware upgrades, OS upgrades, scheduler
bugs, scheduling features that prevented true “dedicated” time, interactions between vendor
MPT and TCP implementations, and OS file descriptor limits. At the time of writing, we believe
that we are able to deal with most of these problems.
We provide more details on selected performance results in the following.

Cactus Single Computer Performance. The Cactus code has been shown to be highly
efficient, scalable, and portable across many architectures. Certain application thorns have
been developed especially for performance testing on new machines, and used as a standard
benchmark application in some cases. It has achieved over 95% scaling efficiency on a 1024
processor Cray T3E, where a large set of application thorns that solve Einstein’s equations
with general relativistic hydrodynamics achieved 142 GFlops/s. Another application thorn
set achieved over 150 MFlops/processor on the 250Mhz R12000 based Origin 2000, with over
90% scaling on 256 processors, and also achieved similar scaling on the 128 processor NT
supercluster at NCSA and a 128 processor linux cluster [32]. It has also been run already in
Grid environments for going back the 1995 I-WAY experiments. Most recently, at SC98 and
SC99 it was run on multiple T3E’s in Europe and the US, achieving reasonable scaling (of
order 50%) under very uncontrolled conditions. It is on top of this background that we are
developing and implementing the new techniques described in this paper to create Cactus-G.

MPICH-G2 Performance. MPICH-G2 maps MPI communication operations into native
MPT operations within a parallel computer or TCP/IP operations between computers. This
is generally an effective strategy, as by now native MPI implementations are typically highly
efficient. In the MPICH-G2 prototype, overhead is around 5% for the message sizes that arise
in our challenge problem.

MPICH-G vs. Native MPI in Cactus The neglible impact of MPICH-G2 overheads
on Cactus performance are demonstrated in Figure 2. We see that when using only MPI
communication, overheads are tiny; even when using both MPI and TCP/IP communication,
overheads are just a few percent.

Wide Area Performance. As might be expected, wide area performance varies greatly
according to which sites are involved. The two most distant and least well connected sites are
NCSA and SDSC; here, a single TCP ping-pong application can sustain 300 KB/s with basic
tuning of TCP parameters and no network engineering work. We expect that this number
can be improved to something close (or hopefully better) than the 1 MB/sec assumed in our
performance model above.

4.3 Additional Results for Full paper

We are well aware that this paper is extremely light on results: the difficulties noted above
mean that we only recently started on the intermachine work that are of course at the heart of
this work. Our full paper will include the following additional material:

e The results of detailed performance studies across a range of multi-machine configurations,
quantifying the impact of different Grid programming techniques on performance.

e Performance results for a large, optimized multi-machine run on at least 3000 processors
and involving a real astrophysics problem. (There is a potential for many more than 3000
processors: if we included all of the sites that have expressed an interest in participating,
we would have at least 6,000 processors. However, it is not clear that connectivity to all
these sites is adequate.)

10

82 . . .

81 r T 1

79 | .

77 ¢ 1

Execution Time (sec)
\l
[e¢]

75 ¢ 1

74 Il Il Il
mpi mpich-g2-15 mpich-g2-2g

Figure 2: Cactus performance, in seconds per time step, when executing a 256 x 256 x 320
problem on 64 processors of the SDSC Blue Horizon machine. Results are presented for na-
tive MPI, MPICH-G2 within a single partition, and MPICH-G2 when running across two
32-processor partitions, and hence using both native MPI (within a partition) and TCP/IP
(between partitions) communications. The error bars show the minimum, mean, and maxi-
mum times measured in 10 runs.

5 Acknowledgments

We are deeply grateful to staff at NCSA, SDSC, NERSC, and ANL who helped us perform the
experiments described here: without their help, this work would not have been possible. We
are particularly grateful to Sandra Bittner, Randy Butler, Tina Butler, Brent Draney, Victor
Hazlewood, Doru Marcusiu, Philip Papadapoulos, John Shalf, Keith Thompson, and Kenneth
Yoshimoto.

We are also pleased to acknowledge many helpful discussions with colleagues within the Grid
Application Development Software (GrADS) project, in particular Francine Berman, Andrew
Chien, Keith Cooper, Jack Dongarra, Dennis Gannon, Lennart Johnsson, Ken Kennedy, Carl
Kesselman, Daniel Reed, Linda Torczon, and Richard Wolski.

References

[1] A. A. Abramovici, W. Althouse, R. P. Drever, Y. Gursel, S. Kawamura, F. Raab, D. Shoe-
maker, L. Sievers, R. Spero, K. S. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and M. Zuker.
Ligo: The laser interferometer gravitational-wave observatory. Science, 256:325-333, 1992.

2] G. Allen, W. Benger, C. Hege, J. Mass6, A. Merzky, T. Radke, E. Seidel, and J. Shalf.
Solving einstein’s equations on supercomputers. IEEE Computer, 32(12), 1999.

11

3]

4]

[10]

[11]

[12]

[13]

[14]

[15]

G. Allen, T. Goodale, and E. Seidel. The cactus computational collaboratory: Enabling
technologies for relativistic astrophysics, and a toolkit for solving pdes by communities
in science and engineering. In 7th Symposium on the Frontiers of Massively Parallel
Computation-Frontiers 99, New York, 1999. IEEE.

Satish Balay, William D. Gropp, Lois Curfman Mclnnes, and Barry F. Smith. Efficient
management of parallelism in object oriented numerical software libraries. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Com-
puting, pages 163-202. Birkhauser Press, 1997.

P. Bhatt, V. Prasanna, and C. Raghavendra. Adaptive communication algorithms for
distributed heterogeneous systems. In Proc. 7th IEEE Symp. on High Performance Dis-
tributed Computing. IEEE Computer Society Press, 1998.

S. Brunett, D. Davis, T. Gottschalk, P. Messina, and C. Kesselman. Implementing dis-
tributed synthetic forces simulations in metacomputing environments. In Proceedings of the
Heterogeneous Computing Workshop, pages 29-42. IEEE Computer Society Press, 1998.

http://www. cactuscode. org.

IMPI Steering Committee. IMPI - interoperable message-passing interface, 1998.
http://impi.nist.gov/IMPI/.

Karl Czajkowski, Ian Foster, and Carl Kesselman. Co-allocation services for computa-
tional grids. In Proc. 8th IEEE Symp. on High Performance Distributed Computing. IEEE
Computer Society Press, 1999.

B.R. de Supinski and N.T. Karonis. Accurately measuring MPI broadcasts in a computa-
tional grid. In Proc. 8th IEEE Symp. on High Performance Distributed Computing. IEEE
Computer Society Press, 1999.

for a description of the project, see http://www.aei-
potsdam.mpg.de/research/astro/eu_network /index.html.

Graham E. Fagg, Kevin S. London, and Jack J. Dongarra. MPI_Connect managing hetero-
geneous MPI applications inter operation and process control. In Vassuk Alexandrov and
Jack Dongarra, editors, Recent advances in Parallel Virtual Machine and Message Passing
Interface, volume 1497 of Lecture Notes in Computer Science, pages 93-96. Springer, 1998.
5th European PVM/MPI Users’ Group Meeting.

I. Foster and N. Karonis. A grid-enabled MPI: Message passing in heterogeneous dis-
tributed computing systems. In Proceedings of SC’98. ACM Press, 1998.

I. Foster and C. Kesselman. Globus: A toolkit-based grid architecture. In [15], pages
259-278.

[. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing Infras-
tructure. Morgan Kaufmann Publishers, 1999.

12

[16] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A distributed
resource management architecture that supports advance reservations and co-allocation.
In Proceedings of the International Workshop on Quality of Service, pages 27-36, 1999.

[17] L. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for computa-
tional grids. In ACM Conference on Computers and Security, pages 83-91. ACM Press,
1998.

[18] Edgar Gabriel, Michael Resch, Thomas Beisel, and Rainer Keller. Distributed computing
in a heterogenous computing environment. In Proc. EuroPVMMPI’98. 1998.

[19] A. Goel, D. Steere, C. Pu, and J. Walpole. Adaptive Resource Management Via Modular
Feedback Control. Technical Report 99-03, Oregon Graduate Institute, Computer Science
and Engineering, January 1999.

[20] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan. Exploiting
hierarchy in parallel computer networks to optimize collective operation performance. In
Proc. International Parallel and Distributed Processing Symposium. 2000.

[21] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoedjang. MagPIe: MPI’s
collective communication operations for clustered wide area systems. In ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP’99), pages 131—
140. ACM, May 1999.

[22] T. Kimura and H. Takemiya. Local area metacomputing for multidisciplinary problems: A
case study for fluid/structure coupled simulation. In Proc. Intl. Conf. on Supercomputing,
pages 145-156. 1998.

[23] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. In Proc.
8th Intl Conf. on Distributed Computing Systems, pages 104-111, 1988.

[24] B. Lowekamp and A. Beguelin. ECO: Efficient collective operations for communication
on heterogeneous networks. In Proceedings of the 10th International Parallel Processing
Symposium. IEEE Computer Society Press, 1997.

[25] R. Matzner, E. Seidel, S. Shapiro, L. Smarr, W.-M. Suen, S. Teukolsky, and J. Winicour.
Geometry of a black hole collision. Science, 270:941-947, 1995.

[26] Paul Messina. Distributed supercomputing applications. In [15], pages 55-73.

[27] J. Nieplocha and R. Harrison. Shared memory NUMA programming on the I-WAY. In
Proc. 5th IEEE Symp. on High Performance Distributed Computing, pages 432-441. IEEE
Computer Society Press, 1996.

[28] P. M. Papadopoulos and G. A. Geist. Wide-area ATM networking for large-scale MPPS.
In SIAM conference on Parallel Processing and Scientific Computing, 1997.

[29] R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime-compilation techniques for data par-
titioning and communication schedule reuse. Technical Report CS-TR-3055, Department
of Computer Science, University of Maryland, 1993.

13

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

Randy L. Ribler, Jeffrey S. Vetter, Huseyin Simitci, and Daniel A. Reed. Autopilot: Adap-
tive control of distributed applications. In Proc. 7th IEEE Symp. on High Performance
Distributed Computing. IEEE Computer Society Press, 1998.

J. Saltz and M. Chen. Automated problem mapping: The crystal runtime system. In Pro-
ceedings of the Second Hypercube Microprocessors Conference, Knoxville, TN, September
1986.

Edward Seidel and Wai-Mo Suen. Numerical relativity as a tool for computational astro-
physics. J. Comp. Appl. Math., 1999. in press.

J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP buffer tuning. Computer Commu-
nication Review, 28(4), 1998.

T. Sheehan, W. Shelton, T. Pratt, P. Papadopoulos, P. LoCascio, and T. Dunigan. Locally
self consistent multiple scattering method in a geographically distributed linked MPP
environment. Parallel Computing, 24, 1998.

Jaspal Subhlok, Peter Lieu, and Bruce Lowekamp. Automatic node selection for high
performance applications on networks. In Proceedings of the Seventh ACM SIGPLAN
Symposium on the Principles and Practice of Parallel Programming (PPoPP’99), pages
163-172. ACM Press, 1999.

W.-M. Suen. Computational general relativistic astrophysics: the neutron star grand
challenge project. In Proceedings of the Yukawa Conference, Kyoto, Japan, 1999.

R. Wolski. Forecasting network performance to support dynamic scheduling using the
network weather service. In Proc. 6th IEEE Symp. on High Performance Distributed
Computing, Portland, Oregon, 1997. IEEE Press.

14

