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Abstract 
 

Peer-to-peer (P2P) file-sharing applications 
generate a large part if not most of today's Internet 
traffic. The large volume of this traffic (thus the high 
potential benefits of caching) and the large cache sizes 
required (thus nontrivial costs associated with 
caching) only underline that efficient cache 
replacement policies are important in this case. P2P 
file-sharing traffic has several characteristics that 
distinguish it from well studied Web traffic and that 
require a focused study of efficient cache management 
policies. This paper uses trace driven simulations to 
compare traditional cache replacement policies with 
new policies that try to exploit characteristics of the 
P2P file-sharing traffic generated by applications 
using FastTrack protocol. 

 
1. Introduction 
 

In recent years, the growth of the Web traffic 
carried by protocols in the HTTP family has 
encouraged development of caching. Research in this 
field resulted in caching policies well suited for the 
characteristics of Web traffic. However the relatively 
small size of Web objects and the decreasing cost of 
disk and memory make today’s Web caches able to 
store most cacheable content and to rarely need 
perform cache replacement operations. The hit rates, 
and thus performance impact, of Web caches is limited 
to values below 40% [5,6] by Web traffic patterns and 
by the limited cacheability of Web objects. One current 
trend observed for Web traffic, the increases popularity 
of dynamically created, non-cacheable content 
decreases the potential benefits of caching.  

Today, the traffic volume of the most popular P2P 
file sharing protocol, FastTrack (used by file sharing 
applications like Kazaa, iMesh and Grockster which, 
according to www.slyck.com, totaled more than 4.5M 
users in January 2004) has increased to the extent that 

it may dominate the Internet traffic [3,7,8]. This makes 
caching efforts concentrating on Web objects less 
effective since they target a small part of the overall 
traffic volume, whose cacheability is further reduced 
by the presence of dynamically generated content. As a 
consequence, there is a growing interest in using 
caching mechanisms for the large volume of FastTrack 
traffic. An additional incentive lies in the fact that 
objects transported by file sharing protocols are 
generally immutable and are therefore always 
cacheable.  

This paper aims to answer the following question: 
Does the experience on caching Web objects research 
translate directly to P2P file-sharing traffic, in 
particular FastTrack traffic? The salient features of this 
traffic, mainly large file sizes, file size variability, and 
ability to split a single file download into tens of 
download sessions over extended durations, suggest 
that a cache for this traffic may behave differently than 
a pure ‘Web’  cache. Yet to date there has been only 
limited work on cacheability of this traffic [9].  

We use a trace-driven simulation approach and aim 
to evaluate the cache replacement policies that were 
successful for Web traffic, and to introduce new 
policies specialized for FastTrack traffic. We focus on 
the technical aspects without considering legal or 
security issues that can be relevant causes of concern 
for cache deployment. Note, however, that the same 
issues have generated concerns for Web caching, 
although the issue of intellectual property rights was 
never as significant as in the case of file sharing. 

The paper is organized as follows: the next section 
presents the most relevant characteristics of the 
FastTrack protocol. Section 3 discusses the traces used. 
Section 4 presents the main questions about cache 
operation that the paper attempts to answer, and 
describes the replacement policies studied. Simulator 
design and simulation results are described in Sections 
5 and 6. 

 



2. FastTrack Protocol 
 
The Kazaa network, the most popular application 

using the FastTrack protocol, consists of two entity 
types: a Kazaa user agent which downloads and shares 
files, and a Kazaa supernode which serves as a referral 
service to where the requested files can be found. File 
identification is based on content: each file is assigned 
a unique identifier based on the actual content of the 
file. This enables a universal file identification scheme 
regardless of their advertised file name that may 
change from user to user (however different versions of 
the same content, e.g., music files with different quality 
or with slightly different duration, might still be treated 
as distinct). All Kazaa user agents establish a channel 
with their local supernode over which they inform the 
supernode of the files they share, and over which they 
send their search requests for files. This channel may 
be viewed as a control channel whose purpose is to 
enable actual file transfers carried out over data 
channels established directly between two Kazaa user 
agents (a downloader and uploader) and is therefore a 
pure peer-to-peer channel. Since the actual file 
transfers take place solely over the data channels, the 
control channel, while interesting in its own, has little 
relevance to the topic of this paper, hence we omit its 
details. As a summary, we outline the various steps of a 
typical file transfer sequence: 
��When Kazaa agent A is started, it establishes a 

persistent control channel with its supernode. 
��Assume user at agent A is interested in Mozart 40 

symphony. Agent A will send a search request to its 
supernode over the control channel. 

��The supernode uses its local database and 
collaborates with other supernodes to compile a list 
of other agents that store the file, and sends this list 
back to agent A. 

��Agent A establishes a data channel to some of the 
agents specified in the reply, and requests different 
ranges of the file from each. The ranges might 
overlap, and together span the whole file. It is 
common for an agent to prematurely abort a 
connection when it is able to receive an equivalent 
range from a better source. 

��Once user agent A obtains the complete file, it 
updates its supernode of the new file it shares. 
The splitting of a single file download into multiple 

TCP sessions is a central feature of the FastTrack 
protocol, and requires a few new terms. As in [2], we 
use download session or simply session to describe a 
single TCP session between two agents, over which a 
range of a file (none, part, or all of the file) is 
transferred. We use download cycle for the logical 

transfer of a whole file, which might consist of tens of 
sessions and might extend over hours or even days. 

 
Figure 1. FastTrack cache installation used for trace 
gathering. 
 
3. Trace Collection and Traffic Statistics 

 
The FastTrack traces we analyze have been 

obtained from a P2P proxy cache installed at a large 
Israeli ISP. This installation has been active for above a 
year, and handles on average 2000 concurrent 
download sessions with about 80 Mbs of generated 
traffic. A server is installed at the border between the 
local user base of the ISP and the Internet cloud (see 
Figure 1). Based on destination port number for each 
TCP connection a Layer 4 switch redirects all Kazaa 
traffic to this server. Thus, the server is able to 
intercept all downloads performed by local users from 
the external Internet. We note that in the data we 
analyze we focus on downloads performed by local 
users and completely ignore downloads performed by 
outside users from local file providers (in other words 
we are only interested in incoming traffic). The cache 
used in the installation had a size of 200GB and 1GB 
of main memory. 

The traces we analyze cover a 26-day period from 
1/25/2003 to 2/20/2003. They consist of about 4.2 
million sessions over which 12.2 TB of data were 
transferred. The traces were divided into two parts: the 
first part covers the first period of 11 days during 
which 4,7 TB were transmitted, and the second part 
covers the remaining days during which 7,5 TB were 
transmitted. The first part was used to fill the cache, 
while the second part was used to evaluate replacement 
policies on a warmed-up cache. 

The analysis of other traces from the same source 
[2] has shown a high reference locality: the ideal byte 



hit rate of a cache was estimated at 67%. [2] also 
estimates that a cache size of about 200GB should be 
sufficient to achieve a byte hit rate of about 60%. 
Further characteristics of the traffic observed in this 
specific installation are detailed in [3]. Subsequent 
analysis of the behavior of similar P2P proxy caches 
installed at two other ISPs revealed identical behavior, 
indicating that the traffic we are analyzing is a 
representative sample of FastTrack traffic.  
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Figure 2. Cumulative distribution function (CDF) for the 
percentage of the file requested in each request. 
Observe that 80% of all requests ask for 10% of the file 
or less. 
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Figure 3. Cumulative distribution function (CDF) for the 
start of range requested relative to file size 

 
Sessions each trace are ordered by their termination 

time. For each download session we use the following 
information:  
��The unique file ID for the file downloaded, 
��The range requested in the session, 
��The size of the entire file, and 
��The actual number of bytes that were transferred 

during the session  

4. Peer-to-Peer Cache Operation and 
Replacement Policies 

 
This section presents the cache replacement policies 

we investigate as well as the main aspects of P2P cache 
operation that impact on performance. Apart from the 
question: “What is the best replacement policy?” , this 
study aims to study three different issues on P2P 
caching that have not been relevant for Web caching.  
We present these issues first then we look into 
effectiveness of cache replacement policies.   
 
4.1. When Does a Hit Occur? 

 
In the case of FastTrack traffic, the answer to the 

simple question “When does a hit occur?”  is no longer 
as obvious as for caching of regular Web objects. The 
request is made for a range of a file and the cache may 
contain various ranges that might overlap with the 
requested range.  

To satisfy the request completely, the cache should 
contain the entire requested range. We shall refer to 
this scenario as ‘ full P2P caching’ . In this case the 
cache is both transparent (there are no changes in the 
download protocol) and passive (the cache does not 
originate download requests ). In this case however, 
requests that are only partially cached will not be 
served. To address this inefficiency two alternatives are 
possible.  Firstly, in a scenario we refer as ‘partial P2P 
caching’  the cache can remain passive but give up 
transparency: it would modify the current download 
protocol to negotiate with the client the download of 
sub-ranges of the requested range. Alternatively the 
cache can become active and issue a download request 
itself for the missing sub-ranges.  In this case the cache 
acts as a FastTrack client itself. In brief we use 
“partial/full P2P caching”  as shortcuts for “caching that 
serves partial/full hits” . 

 
4.2. Should the Cache Ignore User Aborts? 

 
A second question is whether a cache should ignore 

user aborts in the case of a cache miss. A user abort 
generally is issued when the user agent has found a 
better source for the requested information. Therefore, 
in this case a cache that is serving a miss could stop 
receiving the information, since it is clear that it will 
not be needed. On the other hand, the cache could keep 
downloading to anticipate future user requests. This 
behavior would be a form of prefetching. Since range 
requests of FastTrack user agents frequently overlap, 
ignoring aborts could increase the byte hit rate. 



If the main goal of caching is reducing generated 
network traffic, then the a decision on how the cache 
should handle user aborts can be made once it is known 
how ignoring aborts affects the amount of data 
downloaded by the cache. In other words, would the 
increased byte hit rate that results from more caching 
compensate for the increased download traffic to the 
cache? 

 
4.3. Should a Cache Replace File Ranges? 

 
A cache replacement policy can be viewed as a 

specialized instance of the well-known knapsack 
problem. The set of files cached has to maximize a 
certain utility function while satisfying a size 
constraint. In the knapsack problem, it is often easier to 
store many objects if the sizes of all objects are small 
relative to the knapsack size. A P2P cache that stores 
file ranges might therefore benefit from the 
replacement of individual ranges instead of whole files, 
because ranges are smaller and offer more flexibility to 
the replacement policy. 

This hypothesis would fail if the reference locality 
of FastTrack requests would always focus on entire 
files instead of a range of the file. If FastTrack user 
would always (or very frequently) download entire 
files or large portions of a file, then it would not make 
sense for the cache to replace individual file ranges. To 
verify this initial objection to the replacement of 
ranges, we have calculated the distribution of request 
sizes relative to the entire file size. To obtain this 
statistic, each request size was divided by the size of 
the entire file, and the resulting values were plotted as 
a cumulative distribution function (Figure 2). The 
statistic shows that the requested range size is not 
uniform: although small ranges form the bulk of all 
downloads, some requests might include as much as 
half of the file. The statistic of range request size was 
prepared in two variants. In one of the variants, user 
aborts are ignored and the size of the entire requested 
range is used; in the other variant, only the number of 
transmitted bytes is used. Figure 2 presents the second 
variant only, since the resulting difference is not 
significant. User aborts lead to an increased number of 
small range requests and an increased number of 
requests to download the whole file. 

We have also investigated the distribution for the 
beginning of the requested range, relative to the file 
size (Figure 3), which is much more evenly distributed. 
It can be concluded that generally range requests are 
short and ask for any portion of the file. Additionally, 
user aborts tend to increase the number of small 
requests. 

When we refer to the granularity at which the cache 
operates, we use the term file-based replacement policy 
when the cache operates at a file granularity (as in 
caching of Web objects) and range-based replacement 
policy when the cache operates at a file-range 
granularity. The initial assessment based on trace 
statistics of range request size and position seem to 
support the assumption that range-based policies could 
be more effective. One of the goals of this paper is to 
verify this hypothesis. 

A range-based policy would require a larger 
memory overhead for range metadata, but in this paper 
we shall ignore this aspect since it is specific to an 
implementation of the cache and of the range metadata. 
Most cache replacement policies presented in the 
following two subsections can be used both for files 
and ranges. 

 
4.4. Basic Replacement Policies 

 
This section presents some of the cache replacement 

policies that have been studied for Web caching [5,6]. 
A replacement policy can be generally defined by a 
comparison rule that compares two cached items (two 
files for a file-based policy or two ranges for a range-
based policy). Once such a rule is known, all objects in 
the cache can be sorted in an increasing order, and this 
is sufficient to apply a replacement policy: the cache 
will remove the object of lowest value with respect to 
the given comparison rule.  

Each cached item (a file or a range) has several 
attributes, such as access time (the last time when the 
object was accessed), or size. These attributes are used 
by the replacement policies we present below. 

The simplest replacement policies are easily 
expressed using comparison rules. Least Recently Used 
(LRU) and Minimum Size (MINS) are two such 
policies; their binary negations, Most Recently Used 
(MRU) and Maximum Size (MAXS) will also be 
included in the evaluation.  Greedy-Dual Size (GDS) is 
a replacement policy (described in detail in [1]) that 
has been used with success for Web caching. GDS 
incorporates in a simple way the most important 
characteristics of an object in the cache: its access 
history, file size, and recentness of the last access.  

  
4.5. Specialized Replacement Policies 

 
The basic policies described in the previous section 

do not exploit all the information available to a 
FastTrack cache. For example, a file stored in a cache 
may consist of several ranges with gaps in between. An 
important piece of information is how much of the total 



file is stored in the cache. The objects stored in a 
FastTrack cache can have the following specialized 
attributes: 
��maximum size: the maximum size of the object - for 

files, it can be larger than the size of the object in the 
cache, 

��transmitted bytes: the amount of information that has 
been sent to users from this object. This can take into 
account user aborts: when an object is used to serve a 
hit, the number of bytes downloaded before the user 
sent an abort is added to the transmitted bytes of the 
object. 

��scaled access time: a number that takes into account 
the updated part of the object. When the object is 
accessed, the difference between the present time and 
the object's previous access time is weighted by the 
portion of the object that has been requested and this 
number is added to the scaled access time. If requests 
are always made for entire objects, such as in Web 
caching, this policy is equivalent to LRU. 
The first specialized policy we present is a 

file-based policy that tries to take into account the 
proportion of the file that is stored in the cache. If the 
cache stores almost the whole file, then it has the best 
chance of serving a range request for that file. The 
policy will be called Minimum Relative Size 
(MINRS): it removes from the cache the files that have 
the smallest cached content relative to the entire file 
size. For range-based policies, we have evaluated only 
one specialized policy, that of MINRS.  

Another possibility is to take into account how 
much data was served from a cached object. For Web 
caching, this is the equivalent of a frequency-based 
policy (such as LFU). However, objects in a FastTrack 
cache have to take into account user aborts and can 
change their sizes when new ranges are added. The 
policies of Least Sent Bytes (LSB) and Least Relative 
Sent Bytes (LRSB) use the transmitted bytes of an 
object. This attribute is increased whenever the object 
is used to serve a hit, by the amount of downloaded 
bytes before the user sent an abort. LRSB divides that 
amount by the maximum file size. 

 
5. Simulator Design 

 
We use a trace driven simulation to compare various 

cache replacement strategies. We use CacheSim a 
Java-based simulation and traffic statistics package that 
has been used to study HTTP traffic and cache filtering 
[4]. We extended CacheSim with the capability to 
process FastTrack traces and to simulate file- and 
range-based policies 

CacheSim implements replacement policies as 
priority queues. The ordering in the priority queue is 
determined by a comparison rule. This implementation 
allows easily adapting CacheSim to range-based 
caching for the FastTrack protocol.  

Cache replacement is executed after objects are 
inserted. In other words, it is possible that a new object 
causes a temporary cache overflow that is followed by 
a reduction of cache size. No high/low watermarks are 
used, therefore the cache starts to replace objects when 
it reaches maximum capacity and stops removing 
objects when it has sufficient space to store the new 
object. The main reason for executing cache 
replacement after insertion is that before insertion it is 
difficult to tell how much space will be needed. When 
a new file range is inserted, it could overlap with 
ranges already in the cache, and then the cache requires 
less space than the entire range size.  

CacheSim code is released under the GNU public 
license and is available from the authors on request. 

 
6. Comparison of Replacement Policies 

 
The results of the comparison of replacement 

policies are presented in Figures 4-6. Figures 4 and 5 
present byte hit rates of various policies for full and 
partial caching, respectively. Results for both file- 
(suffix ‘ -F’  in the plots) and range-granularity (suffix ‘ -
R’) for replacement policies are presented. Figure 6 
presents together the performance of the best policies 
for partial and full P2P caching. All figures show the 
ideal hit rates achievable for an infinite cache for the 
trace used.  As mentioned in Section 3, the first part of 
the trace is used to warm-up the cache, so the presented 
results are byte hit rates for a warmed-up cache.   

Results for range-based full P2P caching show a 
good performance for LRU. On the other hand, the 
performance of Minimum Size (MINS) is surprisingly 
good, while Maximum Size (MAXS) performs poorly. 
A possible explanation is to consider how the cache 
determines that a hit occurred and the distribution of 
beginnings of range requests: a cache needs to have the 
entire requested range in order to serve the request. 
However, range requests are evenly distributed across 
the entire file. Therefore, cache entries that are large 
have a better chance of serving a request. The policy 
that removes large cache entries performs poorly, while 
a policy that removes small cache entries performs 
well.  

The poor performance of the Greedy-Dual Size 
(GDS) policy can be explained similarly. GDS prefers 
to remove larger cache entries, and pays the same 
performance penalty as Maximum Size. Minimum 



Relative Size (MINRS) does not perform as well as 
MINS; the reason could be that this policy may 
discriminate against the full inclusion of large objects 
that generate a lot of byte hits in the cache. For large 
objects, new ranges are very small relative to entire file 
size and will be first removed by MINRS. 

For full caching, the best performance in terms of 
byte-hit rate was obtained for Least Sent Bytes. This 
policy has the advantage that it considers available 
information about user aborts. Its good performance 
may indicate that there exists a locality in the user 

aborts - perhaps some large files on slow links are 
aborted more frequently than other files. This issue 
requires more detailed investigation. The results 
indicating the superiority of LSB are in contrast with 
the results obtained in [9], where LRU, a frequency-
based policy similar to LFU, and MINS were 
compared on a live P2P cache. In that study, LRU 
performed slightly better than the frequency-based 
policy on the outbound portion of the traffic, while the 
two policies performed similarly on the inbound traffic. 
The author describes several variants of the frequency-

Figure 4: Comparison of replacement strategies for full caching 

Figure 5: Comparison of replacement strategies for partial caching. 
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based policy used, and states that the best results were 
obtained by a policy that used the number of requests 
from unique clients as a measure of frequency. Thus, 
results obtained in [9] are not directly comparable with 
our results, since LSB uses the amount of sent bytes 
taking into account user aborts.  

Range-based policies did not perform significantly 
better than file-based policies overall. However, for 
full caching some of the range-based policies (notably 
LRU) significantly outperform their file-based 
equivalents. Also, for partial caching the best policy 
(for large caches) was range-based LRU which slightly 
outperformed LSB. 

Results for full P2P caching indicate a maximum 
byte hit rate of 67% (this is similar to the estimate in 
[2]). However, when compared to [2], the cache size 
necessary for a byte hit rate that is close to maximum is 
different. In our simulations, the size of 200GB (as 
proposed in [2]) leads to a lower byte hit rate. Only a 
cache that is twice larger (400GB) could obtain a byte 
hit rate about 15% smaller than the theoretical 
maximum. This difference is explained by an increase 
in sizes of transmitted files since the observations 
reported in [2]. When the cache sizes we study are 
compared to the disk and memory sizes of the cache 
used in the experimental setup (200GB and 1GB, 
respectively) it becomes evident that effective cache 
replacement policies are can bring significant savings.  

 A FastTrack cache able to serve partial hits 
(requests for ranges that overlap with the ranges 
available in the cache) can achieve a higher byte hit 
rate. This result indicates that the performance penalty 
for maintaining transparency is significant. The best 

policy for full caching was the file-based policy of 
LSB. For partial caching the difference between LSB 
and LRU was small. The LRU and MINS range-based 
policies performed slightly better than their file-based 
variants for larger cache sizes. 

We also simulated a cache operation that ignores 
user aborts. This approach however leads to a sharp 
increase in the number bytes downloaded by the cache. 
When the cache does not ignore user aborts, an infinite 
cache downloaded about 1.5 TB (for the first log). 
When the cache ignores user aborts, byte hit rate grows 
to as much as 90% however the generated traffic grew 
to 30TB. We infer that this form of prefetching is not 
desirable when the main goal is traffic reduction. 

 
7. Summary and Future Work 

 
The results presented here are only a first step in 

exploring cache replacement policies for FastTrack 
traffic. The large volume of this traffic (thus high 
potential caching benefits) and the large cache sizes 
(thus nontrivial costs associated with caching) only 
underline that efficient cache replacement policies are 
relevant for this type of traffic. Additionally, file-
sharing traffic does not encounter the consistency 
problems that are now prevalent for Web traffic.  

Comparing the ideal byte-hit rate for full hits with 
the ideal byte-hit for partial hits shows that the latter 
approach could improve the byte-hit rate by about 
13%. However, a cache can serve partial hits only at 
the expense of losing transparency. This motivates an 
extension of the FastTrack protocol with a control 
message that notifies the requesting user agents that 

Figure 6: Best policies for partial and and full P2P caching 
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only parts of the requested range are served. The user 
agent could then initiate requests for the missing parts 
of the range and the cache would still operate 
transparently.  

Range-based replacement policies did not perform 
better than the best file replacement policies . 
However, range-based variants of basic policies 
performed better when associated with full P2P 
caching. 

The best replacement policies for FastTrack traffic 
are yet to be discovered. The possibility of 
specialization is large, and the potential of range-based 
policies that offer more flexibility is not yet fully 
exploited. The best policy proposed in this paper, 
which is a variant of a frequency-based policy that uses 
information about the number of downloaded bytes 
before a user abort, performs better than traditional 
policies used for Web caching, which shows the 
validity of the specialization approach. An important 
target of our future work is the development of other 
specialized policies. We also hope to validate our 
results on other traces and by comparing predicted hit 
rates with live cache performance. 
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