
poster-paper, in Proceedings of Cluster 2003, December 2003.

Run-Time Prediction of Parallel Applications on Shared Environments

Byoung-Dai Lee
blee@cs.umn.edu

Dept. of Computer Science and Engineering
University of Minnesota, Twin Cities, MN

Jennifer M. Schopf
jms@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL

Abstract
 Application run-time information is a fundamental
component in application and job scheduling. However,
accurate predictions of run times are difficult to achieve
for parallel applications running in shared
environments where resource capacities can change
dynamically over time. In this paper, we propose a run-
time prediction technique for parallel applications that
uses regression methods and filtering techniques to
derive the application execution time without using
standard performance models. The experimental results
show that our use of regression models delivers
tolerable prediction accuracy and that we can improve
the accuracy dramatically by using appropriate filters.

1. Introduction

 Application run-time information is needed in most
application and job-scheduling approaches for parallel
and distributed systems, as well as in resource selection
in Grid computing environments ([5][9][11][12]).
However, accurate predictions of application run times
are difficult to achieve, especially for parallel
applications running in shared environments, where
resource capacities (e.g., CPU load, bandwidth, latency)
can change dynamically over time and poor predictions
can dramatically affect the performance of the
scheduler. In order to achieve accurate predictions of
application run-times, many conventional approaches
used in scheduling research assume that accurate
performance models of the applications are available
(which can be costly or even impossible to achieve) or
that the applications execute only on space-shared
resources where no two processes can run
simultaneously.
 In this paper, we propose a run-time prediction
technique for parallel applications running in shared
environments. Our approach derives application
execution times without using performance models.
Instead, it discovers the relationship between variables
that affect the run times of the application (e.g., the
input to the application, resource capacities) and the
actual run times from the past application run history.
 Our approach uses regression methods and a filtering
technique: regression methods are applied only to

subsets of past history (evaluated by using filters) in
order to discover the relationship. Our work assumes
very limited performance information (similar to
Kapadia et al. [1] and Lee and Weissman [3]) and yet
functions in a dynamic environment (as seen in Parashar
and Hariri [6], Schopf and Berman [8], and Taylor et
al.[10]). We evaluate the performance using two parallel
applications: an N-body simulation code and a heat
distribution code. The experimental results show that
the use of regression methods delivers tolerable
prediction accuracy and that we can improve the
accuracy dramatically by using appropriate filters.

2. Run-Time Prediction Using Regression

Methods

Predicting the execution times based on past application
run history without using accurate performance models
raises several significant issues. To make the prediction
problem tractable, we consider the following constraints
(detailed further in [2]).

• The set of application input parameters that can
affect the application run-time is known. It is
unknown, however, to what extent the input
parameters affect the run time; we assume only
that this set should be tracked.

• We do not consider parallel applications with
run times that are nondeterministic or that
depend on the distributions of the input data.

• The parallel applications are not instrumented,
so the applications need not be modified.

• Every application executes on the same resource
set. In other words, we do not predict how long
an application that ran on a system X will now
take on a system Y.

Figure 1 shows the steps we use to predict the
runtime of a parallel application run. The set of
information needed for a given run we call a query
point. This includes the input to the application run, the
number of processors to use for the run, and the current
status of the processors and links connecting the
processors.

When each application run finishes, the following
information is recorded: (1) the input to the application

 1

run, (2) the number of processors used, (3) average CPU
load, (4) average bandwidth, (5) average latency, and
(6) the actual run time. Note that in order to compute
(3), (4), and (5), only the processors and communication
links that will be used for the run are considered and
that they are computed before the application run starts.
 When the query point is fed into the run-time
predictor, it first extracts a subset of past run-time
histories that are relevant to the query point as defined
by a set of filters (see Section 2.2). Using this selected
dataset, the predictor applies regression methods to
discover the relationship and then predicts the run time
given the query point (see Section 2.1).

2.1. Regression Methods

Regression methods [7] are mathematical tools that are
often used to predict the behavior of one variable (e.g.,
the actual run time), the dependent variable, from
multiple independent variables (e.g., the input, the
number of processors to use, and the resource status). In
our work we use linear regression approaches that are
less computationally expensive than other approaches.
We do not, however, assume that the performance
models of the applications are linear.

Linear regression methods can be applied in
different ways depending on which independent
variables are used. Direct prediction (DP) treats as
independent variables every variable that affects the run
time; inindirect prediction (IP) the run time is predicted
by a two-step process. Unlike DP, the linear regression
model is applied to predict base time (time to compute
the unit size of the problem on a processor). The
predicted base time and query point then are used to
generate the final run-time prediction. Both of these
approaches are explained in additional detail in [2].

DP, the more traditional approach, generates
accurate predictions when the regression models can
capture the relationship between dependent variable and
independent variables. On the other hand, IP introduces
new independent variables that are a function of existing
independent variables. Our experiments, described in
Section 3, show that this method is superior to DP in
most instances.

2.2. Filtering Technique

Any linear regression technique attempts to fit a

straight line to the available data to minimize the sum of
squared deviations of the predicted values from the
actual observations. Therefore, if the observations do
not show strong linearity, applying the linear regression
model will not generate accurate predictions. To support
parallel applications whose performance models are not
linear, we use a filtering technique to extract subsets of
observations that are close to the query point and show
strong linearity.

The closeness of each data point to the query point is
defined by the distance function of the filter. Since the
range and distribution of variables used for run-time
predictions are unknown, the distance function should
normalize distances with respect to the query point. In
addition, the extent to which individual variables
influence the run time is also different. Therefore, the
importance of each variable with respect to the run time
also should be incorporated into the distance function.
Formally, the distance between data point (d1, d2, …, dn)
and query point (q1, q2, …, qn) is defined as:

weightiw

ttimeatidofvalueobservedt
iD

k
iD

tk
k
iD

tk

iqid
iqidnceLocalDista

n

i iwiqidnceLocalDistaDistance

:

:

1
min

1
max

),(

1
*),(

≤≤
−

≤≤

−
=

∑
=

=

For each dimension, a local distance is computed
that denotes how distant the value of a variable is from
the corresponding variable in the query point, and is
normalized to 1. The denominator used in the local
distance function represents the range of the variable
based on the observed data.
We used four filters in our experiments. Table 1 shows
the names and variables used to calculate the distance
metric for each filter. We use the number of processors
in all of our filters; the rest of the data is first sorted by
this variable, and then others are considered as part of
the filtering function. Hence, only the past run time
history data that has the same value as the one in the
query point is used to compute distances.

Figure 1. Sequence of steps to predict the run time
of a parallel application run. The information for
the application run is given by the query point.

of proc.

Resource status

Input params.

Query point Run-Time Predictor

Run-Time History

Filter

Regression
Methods

Predicted run-time

 2

Table 1. Filters and their variables
Filter Name Variables Used

NP Number of processors used
NP_R Number of processors used, Resource capacities
NP_PARM Number of processors used, Input parameters
NP_R_PARM Number of processors used, Resource capacities, Input parameters

3. Empirical Analysis

We conducted experiments using two parallel

applications implemented in MPI: an N-body simulation
code and a heat distribution code. We also evaluated
two types of background load: homogeneous and
heterogeneous. Because of space constraints, we detail
here only heterogeneous load and the N-body
application; full experimental results are given in [2,3].

The N-body problem is concerned with determining
the effects of forces between bodies (for example,
astronomical bodies that are attracted to each other
through gravitational forces). The N-body problem also
appears in other areas, including molecular dynamics
and fluid dynamics [13]. We implemented an O(N2)
version of an N-body simulation code using the master-
slave paradigm. For each time step, the master sends the
entire set of bodies to each slave and also assigns a
portion of the bodies to each slave. The slaves compute
the new positions and velocities for their assigned
bodies and then return the new data to the master. We
randomly select problem sizes from 2,000 to 13,000
bodies and a number of processors from one to twenty.

We deployed the applications on the data grid nodes
at Argonne National Laboratory. This testbed consists
of 20 dual 845 MHz Intel Pentium III machines with
512 MB memory interconnected with 100 Mbit
Ethernet. Resource status such as CPU load, bandwidth,
and latency are measured every 5 minutes by the
Network Weather Service (NWS) [14].

The status of each participating processor can affect
the performance of the parallel applications. For this
reason, we compared the performance of our technique
using a heterogeneous background workload, in which
each machine shows different background workload
patterns. The competing workloads on the resources
were generated by other users on the system in the
normal course of use. They were not simulated or
generated from traces. Hence, every run experienced a
slightly different load.

We measured the prediction accuracy using the
normalized percentage error, defined by

timerunmeasuredofaverageRunTimeAVG

spredictionofnumbertotalSize

RunTimeAVGSize

predictedRunTimemeasuredRunTime
Error

−

∑ −
=

:)(

:

100*
)(*

%

3.1. Results

Figure 2 shows the results for the N-body

application with a heterogeneous background load.
Additional experiments are given in [2,3]. Filtering
improved the prediction accuracy significantly in our
experiments under both homogenous and heterogeneous
loads. The run-time predictors that take into account
both CPU load and latency always produce better
prediction accuracy. The best two were the predictor
using NP_PARM filter with 20.2% error in DP and the
predictor using NP_PARM filter with 22.9% error in IP,
respectively.

When IP is applied, the NP_PARM filter (which
uses only the number of processors and input
parameters) generated noticeably improved
performance. In IP, however, the improvement achieved
by the other filters was either negligible or worse than
the prediction accuracy of the run-time predictor
without filters. This result can be explained by the
following equation modeling IP.

{ } { 10 α*rs*SαS

T*S

+∗= }
=RunTime

When IP is applied, the NP_PARM filter (which
uses only the number of processors and input
parameters) generated noticeably improved
performance. In IP, however, the improvement achieved
by the other filters was either negligible or worse than
the prediction accuracy of the run-time predictor
without filters. This result can be explained by the
following equation modeling IP.

 3

N-body Sim lulation Codes (DP)

0

10

2 0

3 0

4 0

50

6 0

witho ut f ilter N P N P _R N P _P A R M N P _R _P A R M

Filter Type

N
or

m
al

iz
ed

 P
er

ce
nt

ag
e

Er
ro

r(
%

)

load
load+band
load+lat
load+band+lat
band
lat
band+lat

Data Streams for
Resource Status

N-body Sim lulation Codes (IP)

0

10

2 0

3 0

4 0

50

6 0

70

8 0

witho ut f ilter N P N P _R N P _P A R M N P _R _P A R M

Filter Type

N
or

m
al

iz
ed

 P
er

ce
nt

ag
e

Er
ro

r(
%

)

load
load+band
load+lat
load+band+lat
band
lat
band+lat

Data Streams for
Resource Status

Figure 2. Normalized percentage error of various run-time predictors under heterogeneous background
workloads.

{ } { 10 α*rs*SαS

T*S

+∗=

=RunTime

}

The first term (S*α0) explains the main effects, and
the second term (S*rs*α1) defines the interaction effects
between S and rs. Typically, the main effects have a
larger impact on the, as reflected by the magnitude of
the coefficients of each term. Therefore, filtering over
the main effects can collect closer data points to the
query point. In the N-body simulation example, S
represents the quantity {the number of bodies/the
number of processors}, and filters that include S
generate more accurate predictions. The NP_R_PARM
filter, which includes the number of bodies and the
number of processors, as well as resource status,
performs worse than the other predictors even though it
uses the main effect for filtering. We believe this is
because the filter only allows the consideration of data
points very close to the query point, and therefore
cannot capture the relationships correctly.

4. Conclusions and Future Work

In this paper, we propose a run-time prediction
technique that is based on linear regression methods and
filtering techniques in order to discover the relationship
between variables that affect the run times of
applications running on shared clusters and the actual
run times. The experimental results show that without
accurate performance models, our prediction techniques
can generate satisfactory prediction accuracies for
parallel applications running in shared environments.

Acknowledgments
We thank Charles Bacon for testbed support. This work
was supported in part by the Mathematical Information
and Computational Sciences Division Subprogram of
the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under
contract W-31-109-Eng-38.

 4

References

[1] Nirav H. Kapadia, Jose A. B. Fortes, and Carla E.

Brodley, “Predictive Application-Performance
Modeling in a Computational Grid Environment”,
Proceedings of the 8th IEEE International Symposium
on High Performance Distributed Computing, 1999.

[2] Byoung-Dai Lee and Jennifer M. Schopf, “Run-Time
Prediction of Parallel Applications on Shared
Environments (long-version)”, Argonne National
Laboratory Technical Report #ANL/MCS-P1088-
0903, September 2003.

[3] Byoung-Dai Lee and Jon B. Weissman, “Adaptive
Resource Scheduling for Network Services”,
Proceedings of the 3rd International Workshop on Grid
Computing, 2002.

[4] Byoung-Dai Lee, Run-Time Prediction Logs,
http://www.cs.umn.edu/~blee.

[5] Muthucumaru Maheswaran and Howard Jay Siegel, “A
Dynamic Matching and Scheduling Algorithm for
Heterogeneous Computing Systems”, Proceedings of
the 7th IEEE Heterogeneous Computing Workshop,
1998.

[6] M. Parashar and S. Hariri, “Interpretive Performance
Prediction for Parallel Application Development”,
Journal of Parallel and Distributed Computing, vol.
60, no.1, pp.17-47, 2000.

[7] John A. Rice, “Mathematical Statistics and Data
Analysis”, Duxbury, 1995.

[8] Jennifer M. Schopf and Francine Berman,
“Performance Prediction in Production Environments”,
Proceedings of IPPS/SPDP, 1998.

[9] A. Takefusa, H. Casanova, S. Matsouka and F.
Berman, “A Study of Deadline Scheduling for Client-
Server Systems on the Computational Grid”,
Proceedings of the 10th IEEE International Symposium
on High Performance Distributed Computing, 2001.

[10] Valerie Taylor, Xingfu Wu, Jonathan Geisler, Xin li,
and Zhiling Lan, “Prophesy: Automating the Modeling
Process”, Proceedings of 3rd International Workshop
on Active Middleware Services 2001.

[11] Sathish S. Vadhiyar and Jack J. Dongarra, “A
Metascheduler for the Grid”, Proceedings of the 3rd
International Workshop on Grid Computing, 2002.

[12] Jon B. Weissman, “Predicting the Cost and Benefit for
Adapting Data Parallel Applications on Clusters”,
Journal of Parallel and Distributed Computing, vol.
62: p 1248-1271, 2002.

[13] B. Wilkinson and M. Allen, “Parallel Programming”,
Prentice Hall, 1999.

[14] Rich Wolski, Neil T. Spring and Jim Hayes, “The
Network Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing”,
Journal of Future Generation Computing Systems,
1998.

 5

	Acknowledgments

