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Abstract 
    Application run-time information is a fundamental 
component in application and job scheduling. However, 
accurate predictions of run times are difficult to achieve 
for parallel applications running in shared 
environments where resource capacities can change 
dynamically over time. In this paper, we propose a run-
time prediction technique for parallel applications that 
uses regression methods and filtering techniques to 
derive the application execution time without using 
standard performance models. The experimental results 
show that our use of regression models delivers 
tolerable prediction accuracy and that we can improve 
the accuracy dramatically by using appropriate filters. 
  
1. Introduction 

 
    Application run-time information is needed in most 
application and job-scheduling approaches for parallel 
and distributed systems, as well as in resource selection 
in Grid computing environments ([5][9][11][12]). 
However, accurate predictions of application run times 
are difficult to achieve, especially for parallel 
applications running in shared environments, where 
resource capacities (e.g., CPU load, bandwidth, latency) 
can change dynamically over time and poor predictions 
can dramatically affect the performance of the 
scheduler. In order to achieve accurate predictions of 
application run-times, many conventional approaches 
used in scheduling research assume that accurate 
performance models of the applications are available 
(which can be costly or even impossible to achieve) or 
that the applications execute only on space-shared 
resources where no two processes can run 
simultaneously.  
    In this paper, we propose a run-time prediction 
technique for parallel applications running in shared 
environments. Our approach derives application 
execution times without using performance models. 
Instead, it discovers the relationship between variables 
that affect the run times of the application (e.g., the 
input to the application, resource capacities) and the 
actual run times from the past application run history.  
    Our approach uses regression methods and a filtering 
technique: regression methods are applied only to 

subsets of past history (evaluated by using filters) in 
order to discover the relationship. Our work assumes 
very limited performance information (similar to 
Kapadia et al. [1] and Lee and Weissman [3]) and yet 
functions in a dynamic environment (as seen in Parashar 
and Hariri [6], Schopf and Berman [8], and Taylor et 
al.[10]). We evaluate the performance using two parallel 
applications: an N-body simulation code and a heat 
distribution code. The experimental results show that 
the use of regression methods delivers tolerable 
prediction accuracy and that we can improve the 
accuracy dramatically by using appropriate filters. 

 
2. Run-Time Prediction Using Regression 

Methods 
 

Predicting the execution times based on past application 
run history without using accurate performance models 
raises several significant issues. To make the prediction 
problem tractable, we consider the following constraints 
(detailed further in [2]). 

• The set of application input parameters that can 
affect the application run-time is known. It is 
unknown, however, to what extent the input 
parameters affect the run time; we assume only 
that this set should be tracked.  

• We do not consider parallel applications with 
run times that are nondeterministic or that 
depend on the distributions of the input data.  

• The parallel applications are not instrumented, 
so the applications need not be modified.  

• Every application executes on the same resource 
set. In other words, we do not predict how long 
an application that ran on a system X will now 
take on a system Y.  

Figure 1 shows the steps we use to predict the 
runtime of a parallel application run. The set of 
information needed for a given run we call a query 
point. This includes the input to the application run, the 
number of processors to use for the run, and the current 
status of the processors and links connecting the 
processors. 

When each application run finishes, the following 
information is recorded: (1) the input to the application 

 1



   

run, (2) the number of processors used, (3) average CPU 
load, (4) average bandwidth, (5) average latency, and 
(6) the actual run time. Note that in order to compute 
(3), (4), and (5), only the processors and communication 
links that will be used for the run are considered and 
that they are computed before the application run starts.  
    When the query point is fed into the run-time 
predictor, it first extracts a subset of past run-time 
histories that are relevant to the query point as defined 
by a set of filters (see Section 2.2). Using this selected 
dataset, the predictor applies regression methods to 
discover the relationship and then predicts the run time 
given the query point (see Section 2.1). 

 
2.1. Regression Methods 

 
Regression methods [7] are mathematical tools that are 
often used to predict the behavior of one variable (e.g., 
the actual run time), the dependent variable, from 
multiple independent variables (e.g., the input, the 
number of processors to use, and the resource status). In 
our work we use linear regression approaches that are 
less computationally expensive than other approaches. 
We do not, however, assume that the performance 
models of the applications are linear.  

Linear regression methods can be applied in 
different ways depending on which independent 
variables are used. Direct prediction (DP) treats as 
independent variables every variable that affects the run 
time; inindirect prediction (IP) the run time is predicted 
by a two-step process. Unlike DP, the linear regression 
model is applied to predict base time (time to compute 
the unit size of the problem on a processor). The 
predicted base time and query point then are used to 
generate the final run-time prediction. Both of these 
approaches are explained in additional detail in [2]. 

DP, the more traditional approach, generates 
accurate predictions when the regression models can 
capture the relationship between dependent variable and 
independent variables. On the other hand, IP introduces 
new independent variables that are a function of existing 
independent variables. Our experiments, described in 
Section 3, show that this method is superior to DP in 
most instances. 

 
2.2.  Filtering Technique 

 
Any linear regression technique attempts to fit a 

straight line to the available data to minimize the sum of 
squared deviations of the predicted values from the 
actual observations. Therefore, if the observations do 
not show strong linearity, applying the linear regression 
model will not generate accurate predictions. To support 
parallel applications whose performance models are not 
linear, we use a filtering technique to extract subsets of 
observations that are close to the query point and show 
strong linearity.  

The closeness of each data point to the query point is 
defined by the distance function of the filter. Since the 
range and distribution of variables used for run-time 
predictions are unknown, the distance function should 
normalize distances with respect to the query point. In 
addition, the extent to which individual variables 
influence the run time is also different. Therefore, the 
importance of each variable with respect to the run time 
also should be incorporated into the distance function. 
Formally, the distance between data point (d1, d2, …, dn) 
and query point (q1, q2, …, qn) is defined as: 
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For each dimension, a local distance is computed 
that denotes how distant the value of a variable is from 
the corresponding variable in the query point, and is 
normalized to 1. The denominator used in the local 
distance function represents the range of the variable 
based on the observed data. 
We used four filters in our experiments. Table 1 shows 
the names and variables used to calculate the distance 
metric for each filter. We use the number of processors 
in all of our filters; the rest of the data is first sorted by 
this variable, and then others are considered as part of 
the filtering function. Hence, only the past run time 
history data that has the same value as the one in the 
query point is used to compute distances. 

Figure 1. Sequence of steps to predict the run time
of a parallel application run. The information for
the application run is given by the query point.
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Table 1. Filters and their variables 
Filter Name Variables Used 

NP Number of processors used 
NP_R Number of processors used, Resource capacities 
NP_PARM Number of processors used, Input parameters 
NP_R_PARM Number of processors used, Resource capacities, Input parameters 

 
3. Empirical Analysis 

 
We conducted experiments using two parallel 

applications implemented in MPI: an N-body simulation 
code and a heat distribution code. We also evaluated 
two types of background load: homogeneous and 
heterogeneous. Because of space constraints, we detail 
here only heterogeneous load and the N-body 
application; full experimental results are given in [2,3].  

The N-body problem is concerned with determining 
the effects of forces between bodies (for example, 
astronomical bodies that are attracted to each other 
through gravitational forces). The N-body problem also 
appears in other areas, including molecular dynamics 
and fluid dynamics [13]. We implemented an O(N2) 
version of an N-body simulation code using the master-
slave paradigm. For each time step, the master sends the 
entire set of bodies to each slave and also assigns a 
portion of the bodies to each slave. The slaves compute 
the new positions and velocities for their assigned 
bodies and then return the new data to the master. We 
randomly select problem sizes from 2,000 to 13,000 
bodies and a number of processors from one to twenty. 

We deployed the applications on the data grid nodes 
at Argonne National Laboratory. This testbed consists 
of 20 dual 845 MHz Intel Pentium III machines with 
512 MB memory interconnected with 100 Mbit 
Ethernet. Resource status such as CPU load, bandwidth, 
and latency are measured every 5 minutes by the 
Network Weather Service (NWS) [14]. 

The status of each participating processor can affect 
the performance of the parallel applications. For this 
reason, we compared the performance of our technique 
using a heterogeneous background workload, in which 
each machine shows different background workload 
patterns. The competing workloads on the resources 
were generated by other users on the system in the 
normal course of use. They were not simulated or 
generated from traces. Hence, every run experienced a 
slightly different load.  

We measured the prediction accuracy using the 
normalized percentage error, defined by 
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3.1. Results 

 
Figure 2 shows the results for the N-body 

application with a heterogeneous background load. 
Additional experiments are given in [2,3]. Filtering 
improved the prediction accuracy significantly in our 
experiments under both homogenous and heterogeneous 
loads. The run-time predictors that take into account 
both CPU load and latency always produce better 
prediction accuracy. The best two were the predictor 
using NP_PARM filter with 20.2% error in DP and the 
predictor using NP_PARM filter with 22.9% error in IP, 
respectively.  

When IP is applied, the NP_PARM filter (which 
uses only the number of processors and input 
parameters) generated noticeably improved 
performance. In IP, however, the improvement achieved 
by the other filters was either negligible or worse than 
the prediction accuracy of the run-time predictor 
without filters. This result can be explained by the 
following equation modeling IP. 

{ } { 10 α*rs*SαS

T*S

+∗= }
=RunTime

 

When IP is applied, the NP_PARM filter (which 
uses only the number of processors and input 
parameters) generated noticeably improved 
performance. In IP, however, the improvement achieved 
by the other filters was either negligible or worse than  
the prediction accuracy of the run-time predictor 
without filters. This result can be explained by the 
following equation modeling IP. 
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Figure 2.  Normalized percentage error of various run-time predictors under heterogeneous background
workloads.
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The first term (S*α0) explains the main effects, and 
the second term (S*rs*α1) defines the interaction effects 
between S and rs. Typically, the main effects have a 
larger impact on the, as reflected by the magnitude of 
the coefficients of each term. Therefore, filtering over 
the main effects can collect closer data points to the 
query point. In the N-body simulation example, S 
represents the quantity {the number of bodies/the 
number of processors}, and  filters that include S 
generate more accurate predictions. The NP_R_PARM 
filter, which includes the number of bodies and the 
number of processors, as well as resource status, 
performs worse than the other predictors even though it 
uses the main effect for filtering. We believe this is 
because the filter only allows the consideration of data 
points very close to the query point, and therefore 
cannot capture the relationships correctly. 

 
4. Conclusions and Future Work 

 
In this paper, we propose a run-time prediction 
technique that is based on linear regression methods and 
filtering techniques in order to discover the relationship 
between variables that affect the run times of 
applications running on shared clusters and the actual 
run times. The experimental results show that without 
accurate performance models, our prediction techniques 
can generate satisfactory prediction accuracies for 
parallel applications running in shared environments.  
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