
0018-9162/00/$10.00 © 2000 IEEE60 Computer

R E S E A R C H  F E A T U R E

A National-Scale
Authentication
Infrastructure

T
oday, individuals and institutions in science
and industry are increasingly forming virtual
organizations to pool resources and tackle a
common goal. In one example, the National
Science Foundation’s Partnerships for Ad-

vanced Computational Infrastructure program pro-
vide a next-generation infrastructure for computa-
tional science. PACIs, relatively large and long-lived
virtual organizations funded for five to 10 years, link
some 50 institutions and thousands of researchers.
Other virtual organizations, however, may be smaller
and more fleeting.

Participants in virtual organizations commonly need
to share resources such as data archives, computer
cycles, and networks—resources usually available only
with restrictions based on the requested resource’s
nature and the user’s identity. Thus, any sharing mech-
anism must have the ability to authenticate the user’s
identity and determine whether the user is authorized
to request the resource. Virtual organizations tend to
be fluid, however, so authentication mechanisms must
be flexible and lightweight, allowing administrators to
quickly establish and change resource-sharing arrange-
ments. Nevertheless, because virtual organizations
complement rather than replace existing institutions,
sharing mechanisms cannot change local policies and
must allow individual institutions to maintain control
over their own resources.

Our group has created and deployed an authentica-
tion and authorization infrastructure that meets these
requirements: the Grid Security Infrastructure.1 GSI
offers secure single sign-ons and preserves site control
over access policies and local security. It provides its
own versions of common applications, such as FTP and
remote login, and a programming interface for creat-
ing secure applications. Dozens of supercomputers and
storage systems already use GSI, a level of acceptance
reached by few other security infrastructures.

MULTISITE AUTHENTICATION
Virtual organizations must have a reliable means

for identifying requestors, but participant indepen-
dence complicates authentication across multiple sites.
PACIs provide a good example of both the issues and
the technical requirements for a multisite authentica-
tion infrastructure.

The PACI community
The NSF PACIs—two consortia of some 50 univer-

sities and government laboratories—are dedicated to
developing next-generation scientific problem-solving
tools. Virtual organizations in their own right, the
PACIs independently provide resources to an even
larger and less-formal national user community of
many thousands of researchers, educators, and stu-
dents. The various subsets of the PACI community
interact in different ways, whether to develop a next-
generation software system, operate a remote electron
microscope, or access a supercomputer. Most of these
interactions involve some form of authentication and
authorization.

PACI institutions all have long histories of running
computing facilities, and each has well-established poli-
cies and procedures for various aspects of facility oper-
ation, including computer security and, in particular,
authentication and authorization. Many member sites
run standard Unix authentication using DES-encrypted
passwords, several run various flavors of Kerberos and
the distributed computing environment (DCE), and a
few use one-time password mechanisms. 

In the PACIs’ early days, efforts were made to con-
vince a core set to run Kerberos, with the vague hope
of eventually establishing it as the predominant cross-
realm authentication tool. However, this approach
quickly proved infeasible for various technical, finan-
cial, and political reasons. Clearly, member institu-
tions will continue to use both Kerberos and

The authors’ Grid Security Infrastructure lets users access resources at
any participating site without repeated authentication, while preserving a
site’s ability to use site-specific security mechanisms and enforce local
access control.
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non-Kerberos solutions within their sites for the fore-
seeable future. The resource-sharing mechanisms the
PACI community uses must be able to coexist with
these different local mechanisms.

Technical requirements
Without an integrated authentication and autho-

rization solution, virtual organizations have used a
variety of ad hoc schemes to achieve resource sharing,
such as giving users an account at each institution with
distinct login names and passwords. Some put infor-
mation on Web sites with access controlled via other
passwords. This multiplicity of mechanisms and pass-
words makes access difficult, discouraging informa-
tion sharing and collaboration. It also hinders the
creation of software that securely spans resources at
multiple institutions or that allows secure collabora-
tion between users at multiple institutions.

Users. For users, the primary requirement is sim-
plicity: Access to the virtual organization’s resources
should not be significantly different from access to
the local organization’s resources. There should be a
single sign-on, where users need to log on only  once
to access all permitted resources. Programs running
on a user’s behalf should possess a subset of the user’s
rights and have access to the permitted resources.2

The solution, then, must transparently interface with
common remote access tools: remote login via Telnet
and rlogin, file access via FTP, Web browsers, and pro-
gramming libraries such as CORBA and MPI. It must
also allow implementation of new intersite applica-
tions by providing standardized APIs for accessing
security functions. For example, a group developing
collaborative design tools should be able to easily inte-
grate authentication and authorization mechanisms.

Sites. The concerns of resource-providing sites con-
strain an authentication and authorization infra-
structure in two ways: 

• Sites typically cannot easily replace or modify
their intradomain security solution, so we need
a distinct interdomain solution that interoperates
with local security solutions, is at least as strong
as local solutions so that it does not weaken site
security, and is easy to understand so that site
administrators can trust it.

• Site administrators must have tight control over
policies governing access to their resources,
including how users establish their identity and
which users have access to which resources.

The “Technical Alternatives for Multisite
Authentication” sidebar explains why the two most
popular authentication approaches —Kerberos3 and
secure shell—did not meet these requirements,
prompting us to develop GSI.

GRID SECURITY INFRASTRUCTURE
GSI is an alternative approach to intersite security.

We began developing it under the Globus research
project4 to support distributed computing environ-
ments, or Computational Grids,5 which are similar to
virtual organizations. GSI deals with interdomain
operations, bridging the different local security solu-
tions of constituent sites. As Figure 1 shows, GSI
includes several significant features: 

• Credentials, using standard X.509v3 certificates
as the private keys, represent the identity of each
entity—user, resource, program—specifying the
entity’s name and additional information, such
as a public key. A certification authority (CA)—
a trusted third party—ties an identity to a public-
private key pair by signing a certificate.

• An authentication algorithm, defined by the

Two widely used authentication approaches—Kerberos and secure
shell—do not meet our requirements.

Kerberos
Kerberos—used alone or under the distributed computing environment—

authenticates users through a secure transaction with a centrally maintained
key server. Kerberos achieves interorganizational, or cross-realm, authentica-
tion by designating trustworthy key servers in other organizations. Kerberos
meets many of the basic requirements for virtual organization authentication,
but it presents two problems:

• Using Kerberos for intersite authentication also means using it for
intrasite authentication, which is often not feasible because of equip-
ment and staffing costs.

• Sites must negotiate many cross-realm authentication agreements, and
many sites resist surrendering too much control over local policy. 

Secure shell
Secure shell (SSH), a widely used login technology, meets a number of

our requirements: It is based on public-key authentication technology, uses
link encryption to protect user credentials, and is easily deployed. Users like
SSH because it provides basic remote login and file copy capabilities with-
out a lot of complexity. SSH, however, has two significant drawbacks:

• It requires users to manage their own cross-site authentication rela-
tionships by copying public keys (or keeping track of passwords) for
all sites they access, a task that can be burdensome if they access many
sites. Moreover, SSH does not give sites control over authorization,
so they cannot, for example, deny access to a particular user without
invading user privacy.

• SSH supports only limited capabilities—remote shell and file trans-
fer—but not others that require authentication, such as collaborative
environments and Web browsers.

Technical Alternatives for Multisite Authentication
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Secure Socket Layer Version 3 (SSLv3) protocol,
checks the entity’s identity. The veracity of an
entity’s identity is only as good as the trust placed
in the CA that issued the certificate, so the local
administrator installs these certificates, which are
then used to verify the certificate chains.

• An entity can delegate a subset of its rights—such
as a process a program creates—to a third party
by creating a temporary identity called a proxy.
Proxy certificates can form a chain, beginning
with the CA and growing, as first the user, then
the user’s proxies, sign certificates. By checking
the certificate chain, processes started on sepa-
rate sites by the same user can authenticate to one
another by tracing back along the certificate
chain to find the original user certificate.

• Each resource can specify its policy for deter-
mining whether to accept incoming requests. The
initial GSI used a simple access control list, but

the current version uses other techniques.
• The authentication protocol verifies the global

identity of involved parties, but GSI must con-
vert this name to a local subject name—such as
a login name or Kerberos principal—before the
local security system can use the name. GSI does
this by consulting a simple text-based map file—
under the local site’s control—that defines the
binding between global and local names.

• The standard interface GSS-API provides access
to security operations.6 GSI uses OpenSSL or
SSLeay, the free implementation of SSLv3, for its
authentication protocols and support for proxy
certificates. SSLv3 is used widely for Web security,
has been well scrutinized for security problems,
and has broad acceptance as a mature protocol.

Even though relatively simple, our architecture meets
all user and system requirements we consider vital:
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Figure 1. Schematic showing the basic operations that GSI supports. Following the dark line from the top left-hand corner, we
first see user authentication via public-key mechanisms applied to the user’s credential (CU), followed by creation of a tempo-
rary user proxy credential (CUP), then subsequent requests to remote resources, represented by resource proxies holding
resource proxy credentials (CR), and finally authorization and global-to-local identity mapping at an individual site, resulting in
the creation of a remote process at Site 2, with its own delegated credential (CP). We also see how such a remote process can
use its delegated credential to initiate further requests to other sites (in this case, a process creation request to Site 1) and
engage in authenticated interprocess communication (the dashed line). 
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• For users, the global name and proxy credentials
mean the user needs only one authentication to
access all resources, and proxy credentials and
delegation allow programs running on a user’s
behalf to access resources. The use of X.509,
SSLv3, and GSS-API standards facilitates the
development of common GSI-enabled tools and
more complex applications.

• For sites, the architecture does not require chang-
ing the local security infrastructure; instead, sites
can simply install relatively simple GSI-enabled
servers that use well-known standards. Sites con-
trol policy through the access control list and map
file, so administrators feel comfortable with the
code and are willing to deploy it alongside SSH
and other remote access mechanisms.

GSI EXTENSIONS
As part of the Globus Toolkit, GSI now runs on

more than 80 sites. To deploy GSI, we needed to
develop several extensions that address production
facilities’ operation concerns. The most significant of
these extensions support multiple certification, inter-
face with the local Kerberos environment, support
smart cards, and facilitate Web-based computing.

Multiple certification authorities
In our initial implementation, we assumed that all

user credentials would be associated with the Globus
project’s single CA, but in practice users must be able
to present credentials obtained from any source: their
site’s CA, a CA associated with a virtual organization
such as a PACI, or a commercial CA. Thus, sites must
be able to handle credentials verified by different CAs;
at the same time, as part of their access control policy,
they must retain control over what CAs they can trust
and what they can trust these CAs to do.

Web browsers, for example, often provide control
over which CAs they trust—often by maintaining a list
of trusted CA certificates—but they do not control
what they can trust these CAs to do. In practice, how-
ever, we may want to trust only some certificates that
a given CA signs. For example, a site providing edu-
cational materials might want to trust a high school’s
CA but not trust its certificates for nonstudent users. 

To address these issues, we extended GSI with a gen-
eral-access control function specified using the Generic
Authorization and Access Control API.7 This function
lets an application reject an authentication operation
based on the subject name and chain of certificate sign-
ers rather than simply on the issuing CA’s identity.
Users, then, can present credentials from any CA, and
the site can decide whether to accept them.

Because of policy differences between sites regard-
ing acceptable CAs, users may sometimes need to pro-
vide multiple credentials to access resources at

multiple sites—an issue we are still investigat-
ing. With single sign-on, users may need differ-
ent credentials at different times, which can
require the complicated delegation of multiple
credentials. When accessing a particular
resource, a user with multiple credentials must
determine which to supply—a process better
handled by a protocol than by hit-or-miss guess-
ing. Further, we need to enhance the protocol
used to authenticate processes running on a
user’s behalf because each process may have its
own credentials. 

With the GSI deployment, both PACIs have
created a CA for sites that don’t want to run
their own. Creating these CAs was a significant
effort because of the need to define a certificate
policy acceptable to all participating institu-
tions. In particular, the National Computational
Science Alliance, based in Urbana, Illinois, put con-
siderable effort into developing such a policy, building
on the Federal Public Key Infrastructure Project’s
model certificate policy.8

Obtaining Kerberos credentials
To interface with a local security environment in

the simplest case, GSI only needs to map from the
global name to a local subject name based on a map
file entry. Many computing sites, however, use
Kerberos intrasite security, so GSI must also obtain a
set of local credentials in the form of Kerberos tick-
ets. To obtain these credentials, GSI must be able to
authenticate to a Kerberos realm, a DCE cell, or an
Andrew file system cell, and Kerberos must be able to
issue tickets based on GSI authentication, including
proxies. To facilitate this, we developed SSLK5D, a
modified Kerberos key distribution center, which
returns a ticket that can be used like any Kerberos for-
warded ticket. By controlling SSLK5D and its data-
base for mapping certificate names to Kerberos
principals, the security administrator retains control of
the Kerberos realm or DCE cell.

SSLK5D functionally resembles the IETF’s PK_INIT
draft standards and DCE RFC 68.4, with one dis-
tinction: We use SSL rather than a specialized proto-
col to communicate to the SSLK5D server. However,
as PK_INIT and RFC 68.4 become part of the stan-
dard environment, they can replace SSLK5.

As Figure 2 shows, this support for the creation of
Kerberos credentials means that GSI can interoperate
with, rather than replace, DCE.

Alternative credential management
Like many other public-key systems, GSI maintains

the user’s private key in encrypted form in the user’s
local file system. During sign on, the user provides a
pass phrase to decrypt the private key—an approach

To deploy GSI, we
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that support multiple
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that has three disadvantages:

• The private key may not be accessible when the
user travels to a remote location.

• A careless user may expose the pass phrase when
authenticating from a networked terminal.

• An adversary may retrieve the encrypted private
key, then subject it to a pass-phrase-guessing
attack.

These concerns prompted us to extend GSI so that
it allows storage of the user’s private key on a smart
card, a credit-card-sized device that contains 4 to 16
Kbytes of memory and a microprocessor that can per-
form 1,024-bit cryptographic signing operations. The
user’s private key never leaves the card: During logon,
the proxy generation code negotiates with the card to
obtain a signed proxy certificate using the PKCS #11
protocol.

MyProxy credential server
One benefit of basing GSI on X.509 certificates and

SSLv3 is that many existing software products can
easily take advantage of it. Without modification,
common Web browsers can use GSI certificates for
authentication. Browsers, however, cannot perform
delegation, a limitation for portals and other forms of
Web-based computing. 

To work around this limitation, we developed
MyProxy, a trusted server and set of client applica-
tions. A user can delegate a proxy to the MyProxy
server along with a tag and pass phrase. A client pro-
gram can then connect to the MyProxy server later,
present the tag and pass phrase, and receive a proxy
for that user. 

In Web-based environments, the user delegates a
proxy to the MyProxy server, then connects to a Web-
based portal with any off-the-shelf browser to pro-
vide the tag and pass phrase to the portal. The portal
contacts the MyProxy server, requests a proxy for that
user, then acts on the user’s behalf.

We plan to enhance MyProxy so that it can manage
long-term credentials—private keys and certificates—
for users. Many users find managing their credentials
uninteresting and difficult, and security administrators
are concerned that users may fail to protect their long-
term private keys. By managing these, MyProxy could
ease the burden for users and help maintain security.

We are also investigating using MyProxy as a “cre-
dential wallet,” in which users could deposit all their
credentials for multiple sites. When requests for cre-
dentials come in, the MyProxy server could intelli-
gently select which credential to delegate based on the
requester’s identity.

BUILDING THE INFRASTRUCTURE
Besides the augmented GSI, multisite authentica-

tion needs various other elements, including a set of
GSI-enabled applications and various GSI-enabled
toolkits.

GSI-enabled applications
True single sign-on means that PACI users should

be able to use their GSI credentials for all PACI
authentications and for more sophisticated applica-
tions such as distributed supercomputing and collab-
orative data analysis. To accomplish this goal, we
developed GSI-enabled versions of several common
applications and verified that commercial Web
browsers can accept our credentials.
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Figure 2. GSI used in an environment where some sites—A, B, and C, and D and E—use the distributed computing environment
for intersite authentication. GSI allows a user to access resources in multiple “DCE clouds,” while also allowing DCE use
between sites when it is available.
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To GSI-enable SSH, we modified it to use GSS-API
as one of its authentication mechanisms. Van Dyke
Technologies also implemented these modifications in
their commercial SSH product, SecureCRT. Users can
present their GSI credentials for authentication to a
GSI-enabled sshd daemon, including doing delegation.
Because SSH supports multiple mechanisms—
Kerberos, RSA key pairs, and passwords—it can sup-
port GSI and still be fully backward compatible. We
have also used GSS-API to develop GSI-enabled FTP
clients and servers, including the widely used wu-ftpd
server, ncftp client, Unitree ftpd server, and HPSS pftpd
server.

GSI-based toolkits
While these GSI-enabled applications provide a

good basis for remote resource access, virtual organi-
zations such as the PACIs also want security incorpo-
rated into a wide variety of other applications. We’ve
therefore developed various tools for incorporating
GSI mechanisms into applications.

One tool, gss_assist, provides a set of convenience
functions for accessing GSS functions. GSS-API is rich
and robust but also complex, and many applications
require only a subset of GSS-API features. Gss_assist
shields application developers from unneeded com-
plexity, providing a simpler API that still implements
full GSI security. Many gss_assist functions are sim-
ple wrappers around their GSS-API counterparts, with
appropriate default values. Some are more compli-
cated, such as the wrappers around the security con-
text initialization and acceptance functions that
perform the full looping and network communication
users need for GSS-API authentication and context
establishment.

The Globus Toolkit is a GSI-based application that
provides a set of services for constructing distributed
applications. Because the Globus Toolkit uses GSI
functionality, any application that uses its mechanisms
gets security essentially for free. For example, MPICH-
G2, an extended version of the popular Message
Passing Interface standard, uses Globus Toolkit mech-
anisms for initiating remote computation and hence
does not need to do anything special to address
authentication and authorization issues when running
across multiple sites.

G SI’s basic techniques are applicable in many dif-
ferent contexts. For example, we are currently
employing this technology to create smaller

testbeds for individual scientific collaborations and
are investigating its feasibility for large high-energy
physics projects. We are enhancing GSI to reduce
the cost of establishing a virtual organization secu-
rity environment, to add support for advanced fea-

tures such as smart cards, and to restrict delegation
for more fine-grained access control. ✸
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