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Abstract

Much scientific data is not obtained from
measurements but rather derived from other data by the
application of computational procedures. We hypothesize
that explicit representation of these procedures can
enable documentation of data provenance, discovery of
available methods, and on-demand data generation (so-
called “virtual data”). To explore this idea, we have
developed the Chimera virtual data system, which
combines a virtual data catalog, for representing data
derivation procedures and derived data, with a virtual
data language interpreter that translates user requests
into data definition and query operations on the database.
We couple the Chimera system with distributed “Data
Grid” services to enable on-demand execution of
computation schedules constructed from database
queries. We have applied this system to two challenge
problems, the reconstruction of simulated collision event
data from a high-energy physics experiment, and the
search of digital sky survey data for galactic clusters,
with promising results.

1 Introduction

In many scientific disciplines, the analysis of “data”
(whether obtained from scientific instruments, such as
telescopes, colliders, or climate sensors, or from
numerical simulations) is a significant community activity.
As a result of this activity, communities construct, in a
collaborative fashion, collections of derived data (e.g., flat
files, relational tables, persistent object structures) with
relationships between data objects corresponding to the
computational procedures used to derive one from another
(Figure 1). Recording and discovering these relationships
can be important for many reasons, as illustrated by the
following vignettes.

“I’ve come across some interesting data, but I need to
understand the nature of the corrections applied when it
was constructed before I can trust it for my purposes.”

“I want to search an astronomical database for galaxies
with certain characteristics. If a program that performs this
analysis exists, I won’t have to write one from scratch.”

“I want to apply an astronomical analysis program to
millions of objects. If the program has already been run
and the results stored, I’ll save weeks of computation.”

“I’ve detected a calibration error in an instrument and
want to know which derived data to recompute.”

“I want to find those results that I computed last month,
and the details of how I generated them.”

More generally, we want to be able to track how data
products are derived—with sufficient precision that one
can create and/or re-create data products from this
knowledge. One can then explain definitively how data
products are created, something that is often not feasible
even in carefully curated databases. One can also
implement a new class of “virtual data management”
operations that, for example, “re-materialize” data
products that were deleted, generate data products that
were defined but never created, regenerate data when data
dependencies or transformation programs change, and/or
create replicas of data products at remote locations when
re-creation is more efficient than data transfer.

In order to explore the benefits of data derivation
tracking and virtual data management, we have designed,
prototyped, and experimented with a virtual data system
called Chimera. A virtual data catalog (based on a
relational virtual data schema) provides a compact and
expressive representation of the computational procedures
used to derive data, as well as invocations of those
procedures and the datasets produced by those
invocations. A virtual data language interpreter executes
requests for constructing and querying database entries.
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Figure 1: Relationships among programs,
computations, and data



We couple Chimera with other Data Grid services [1,
11, 18, 28] to enable the creation of new data by
executing computation schedules obtained from database
queries, and the distributed management of resulting data.

We have applied the Chimera system successfully to
two challenging physics data analysis computations, one
involving the generation and reconstruction of simulated
high-energy physics collision event data from the
Compact Muon Solenoid (CMS) experiment at CERN
[20, 25], and the other the detection of galactic clusters in
Sloan Digital Sky Survey (SDSS) data [4, 29]. Our results
demonstrate our ability to track data derivations and to
schedule large distributed computations in response to
user virtual data queries. Others have successfully used
some of these techniques in the analysis of data from the
LIGO gravitational wave observatory [14].

The importance of being able to document provenance
is well known [30]. Our work builds on preliminary
explorations within the GriPhyN project [5, 15, 16]. There
are also relationships to work in database systems [9, 10,
31] and versioning [8, 26]. Cui and Widom [12, 13]
record the relational queries used to construct materialized
views in a data warehouse, and then exploit this
information to explain lineage. Our work can leverage
these techniques, but differs in two respects: first, data is
not necessarily stored in databases and the operations used
to derive data items may be arbitrary computations;
second, we address issues relating to the automated
generation and scheduling of the computations required to
instantiate data products.

Early work on conceptual schemas [21] introduced
virtual attributes and classes, with a simple constrained
model for the re-calculation of attributes in a relational
context.�Subsequent work produced an integrated system
for scientific data management called ZOO [22], based on
a special-purpose ODBMS that allowed for the definition
of “derived” relationships between classes of objects. In
ZOO, derivations can be generated automatically based on
these relationships, using either ODBMS queries or
external transformation programs. Chimera is more
specifically oriented to capturing the transformations
performed by external programs, and does not depend on
a structured data storage paradigm or on fine-grained
knowledge of individual objects that could be obtained
only from an integrated ODBMS.

We can also draw parallels drawn between Chimera
and workflow [23, 27] and knowledge management
systems that allow for the definition, discovery, and
execution of (computational) procedures.�

The rest of this article is as follows. We first introduce
the Chimera virtual data system and describe its virtual
data schema and language (Sections 2-4). Then, we
discuss the integration of Chimera with Data Grids
(Section 5), our experiences applying the system to
challenge problems (Section 6), and future directions.

2 Chimera Architecture

The architecture of the Chimera virtual data system is
depicted in Figure 2. In brief, it comprises two principal
components: a virtual data catalog (VDC; this
implements the Chimera virtual data schema) and the
virtual data language interpreter, which implements a
variety of tasks in terms of calls to virtual data catalog
operations.

Applications access Chimera functions via a standard
virtual data language (VDL), which supports both data
definition statements, used for populating a Chimera
database (and for deleting and updating virtual data
definitions), and query statements, used to retrieve
information from the database. One important form of
query returns (as a directed acyclic graph, or DAG) a
representation of the tasks that, when executed on a Data
Grid, create a specified data product. Thus, VDL serves as
a lingua franca for the Chimera virtual data grid, allowing
components to determine virtual data relationships, to
pass this knowledge to other components, and to populate
and query the virtual data catalog without having to
depend on the (potentially evolving) catalog schema.

Chimera functions can be used to implement a variety
of applications. For example, a virtual data browser might
support interactive exploration of VDC contents, while a
virtual data planner might combine VDC and other
information to develop plans for computations required to
materialize missing data (Section 5).

The Chimera virtual data schema defines a set of
relations used to capture and formalize descriptions of
how a program can be invoked, and to record its potential
and/or actual invocations. The entities of interest—
transformations, derivations, and data objects—are as
follows; we describe the schema in more detail below.

Data Grid Resources
(distributed execution

and data management)

VDL Interpreter
(manipulate derivations

and transformations)

Virtual Data Catalog
(implements Chimera
Virtual Data Schema)

Virtual Data
Applications

Virtual Data Language
(definition and query)

Task Graphs
(compute and data

movement tasks, with
dependencies)

SQL

Chimera

Figure 2: Schematic of the Chimera architecture



• A transformation is an executable program.
Associated with a transformation is information that
might be used to characterize and locate it (e.g.,
author, version, cost) and information needed to
invoke it (e.g., executable name, location, arguments,
environment).

• A derivation represents an execution of a
transformation. Associated with a derivation is the
name of the associated transformation, the names of
data objects to which the transformation is applied,
and other derivation-specific information (e.g., values
for parameters, time executed, execution time). While
transformation arguments are formal parameters, the
arguments to a derivation are actual parameters.

• A data object is a named entity that may be consumed
or produced by a derivation. In the applications
considered to date, a data object is always a logical
file, named by a logical file name (LFN); a separate
replica catalog or replica location service is used to
map from logical file names to physical location(s)
for replicas [2, 11]. However, data objects could also
be relations or objects. Associated with a data object
is information about that object: what is typically
referred to as metadata.

We do not address here the question of how the data
dependency information maintained within the Chimera
system is produced. Information about transformations
and derivations can potentially be declared explicitly by
the user, extracted automatically from a job control
language, produced by higher-level job creation interfaces
such as portals, and/or created by monitoring job
execution facilities and file accesses.

Information can be recorded in the virtual data system
at various times and for various purposes. Transformation
entries generated before invocation can be used to locate
transformations and guide execution. Derivation entries
generated before jobs are executed can provide
information needed to generate a file. Entries generated
after a job is executed record how to regenerate a file.
Consider, for example, transformation entries that define
the four stages of a simulation pipeline. An initial query
for the output of this pipeline returns a DAG that, when
executed, generates files called f1 - f4. Subsequent
deletion of file f3 followed by a retrieval request for that
file results only in the re-execution of stage 3 of the
pipeline.

3 Chimera Virtual Data Schema

We describe here the Chimera virtual data schema,
shown in Figure 3.

A logical transformation is characterized by its
identifying name, the namespace within which the name is

unique, and a version number. The signature of the
transformation includes input and output parameters,
which need not be files. A transformation may have an
arbitrary number of formal arguments. Thus the
relationship between TRANSFORMATION and FORMALARG
is 1:N.

A transformation may have more than one derivation,
each supplying different values for the parameters. A
derivation may be applicable to more than one
transformation. Thus, versioning allows for a range of
valid transformations to apply, increasing the degrees of
freedom for schedulers to choose the most applicable one.

An ACTUALARG relates to a derivation. Its value
captures either the LFN or the value of a non-file
parameter. A FORMALARG may contain an optional default
value, captured in a similar fashion by the same VALUE
class. The VALUE class is an abstract base class for either
a single value (SCALAR) or a list of similar values (LIST),
which are collapsed union-fashion into a single table.

The relationships between a transformation and its
formal parameters, on the one hand, and a dependent
derivation and its actual parameters, on the other, are not
independent of each other. Each instantiation of an actual
parameter maps to exactly one formal parameter
describing the entry. The binding is created using the
argument name, not its position in the argument list.

Figure 3: UML description of the Chimera schema



The arguments on the command line of a
transformation are captured in multiple fragments, each
either a reference to a formal argument, or a textual string.

Scheduler- and runtime environment-specific data is
abstracted in the PROFILE table. For example, in the case
of a Unix environment variable, the namespace is “env”,
the key within this namespace is the environment variable
name, and the value is a list of fragments, either
references to bound variables or textual strings.

The FRAGMENT table captures three child classes, either
a textual string, a LFN or a reference to a bound variable.
The three child classes are collapsed into a single table.

The lower portion of the diagram deals with the
physical location of any given transformation [16].

Finally, we note that Chimera applications will
typically also require a METADATA table, which maps from
(key, value) attribute pairs to LFNs, and a REPLICA table,
which maps from LFNs to physical file locations.
However, these relations are frequently implemented via a
separate metadata catalog [7] and/or replica catalog [11]
and so they are not considered here.

4 Chimera Virtual Data Language

As noted above, the Chimera virtual data language
(VDL) comprises both data definition and query
statements. We first introduce two data derivation
statements, TR and DV, and then discuss queries. While
our implementation uses XML internally, we use a more
readable syntax here.

4.1 The TR Data Definition Statement

A TR statement defines a transformation. When the
VDL interpreter processes such a statement, it creates a
transformation object within the virtual data catalog. For
example, the following definition provides the information
required to execute a program app3.

TR t1( output a2, input a1,
none env="100000",
none pa="500" ) {

app vanilla = "/usr/bin/app3";
arg parg = "-p "${none:pa};
arg farg = "-f "${input:a1};
arg xarg = "-x -y ";
arg stdout = ${output:a2};
profile env.MAXMEM = ${none:env};

}

This definition reads as follows. The first line assigns
the transformation a name (t1) for use by derivation
definitions, and declares that t1 reads one input file
(formal parameter name a1) and produces one output file
(formal parameter name a2). The parameters declared in

the TR header line are transformation arguments and can
only be file names or textual arguments.

The APP statement specifies (potentially as an LFN)
the executable that implements the execution.

The first three ARG statements describe how the
command line arguments to app3 (as opposed to the
transformation arguments to t1) are constructed. Each
ARG statement comprises a name (here, parg, farg, and
xarg) followed by a default value, which may refer to
transformation arguments (e.g., a1) to be replaced at
invocation time by their value. The special argument
stdout (the fourth ARG statement in the example) is used
to specify a filename into which the standard output of an
application would be redirected.

Argument strings are concatenated in the order in
which they appear in the TR statement to form the
command line. The reason for introducing argument
names is that these names can be used within DV
statements to override the default argument values
specified by the TR statement.

Finally, the PROFILE statement specifies a default
value for a Unix environment variable (MAXMEM) to be
added to the environment for the execution of app3.

4.2 The DV Data Definition Statement

A DV statement defines a derivation. When the VDL
interpreter processes such a statement, it records a
transformation invocation within the virtual data catalog.
A DV statement supplies LFNs for the formal filename
parameters declared in the transformation and thus
specifies the actual logical files read and produced by that
invocation. For example, the following statement records
an invocation of transformation t1 defined above.

DV t1(
a2=@{output:run1.exp15.T1932.summary},
a1=@{input:run1.exp15.T1932.raw},
env="20000", pa="600" );

The string immediately after the DV keyword names
the transformation invoked by the derivation.

In contrast to transformations, derivations need not be
named explicitly via VDL statements. They can be located
in the catalog by searching for them via the logical
filenames named in their IN and OUT declarations as well
as by other attributes, as discussed below.

Actual parameters in a derivation and formal
parameters in a transformation are associated by name.
For example, the statements above result in parameter a1
of t1 receiving the value run1.exp15.T1932.raw and
a2 the value run1.exp15.T1932.summary.

The example DV definition corresponds to the
following invocation:

export MAXMEM=20000
/usr/bin/app3 –p 600 \



–f run1.exp15.T1932.raw –x –y \
> run1.exp15.T1932.summary

Filenames listed as IN and OUT in a transformation
need not necessarily appear as command line arguments in
a corresponding derivation. For example, if a filename
was determined directly by the executable through an
internal definition or is determined dynamically, it might
not appear on the command line even though the file is
read or written by the application. In such cases,
applications that know or can detect what filenames were
read and written by an application could, after the fact,
create a derivation record to describe these dynamic data
dependencies.

The filename insertion semantics described here
support a wide variety of argument passing conventions.
Executables with argument passing conventions that
cannot be expressed in these terms must be executed by
creating “wrapper” scripts or executables that adapt the
VDL conventions to those expected by the executable. For
example, applications that read the names of further input
files from a “control” file can often be handled with a
wrapper that accepts the filenames as command line
arguments and places them in the control file before
calling the actual application. In some cases, the creation
of the control file itself could be described as a
transformation that reads several files and produces the
control file as its output. Then the real transformation can
be described as having the control file as an input.

4.3 Tracking Derivation Dependencies

Chimera’s VDL supports the tracking of data
dependency chains among derivations. For example, the
following statements define two derivations (as well as
two transformations), such that the output of the first is the
input to the second. Thus, we can conclude that (unless
file2 or file3 exist) to generate file3 we must run
trans1 before trans2, and use its output file (file2) as
the input file for trans2.

TR trans1( output a2, input a1 ) {
app vanilla = "/usr/bin/app1";
arg stdin = ${input:a1};
arg stdout = ${output:a2};

}
TR trans2( output a2, input a1 ) {

arg vanilla = "/usr/bin/app2";
arg stdin = ${input:a1};
arg stdout = ${output:a2};

}
DV trans1( a2=@{output:file2},

a1=@{input:file1} );
DV trans2( a2=@{output:file3},
a1=@{input:file2} );

We can thus construct arbitrarily complex directed
acyclic execution graphs (DAGs) automatically. For
example, consider the transformations illustrated in Figure
4. Four logical files, named f.a, f.b, f.c, and f.d in the

figure, are produced as a result of this computation. The
output from a first node generate is stored into file f.a.
Two processes findrange each operate on disjoint
subsets of the input f.a, publishing their results in f.b

and f.c, respectively. A final node, analyze, combines
the two halves.

The following statements define the transformations
generate, findrange, and analyze, and the
derivations that produce files f.a, f.b, f.c, and f.d.

TR generate( output a ) {
app vanilla = "generator.exe";
arg stdout = ${output:a2};

}
TR findrange( output b, input a,

none p="0.0" ) {
app vanilla = "ranger.exe";
arg arg = "-i "${:p};
arg stdin = ${output:a};
arg stdout = ${output:b};

}
TR analyze( input a[], output c ) {

app vanilla = "analyze.exe";
arg files = ${:a};
arg stdout = ${output:a2};

}
DV generate( a=@{output:f.a} );
DV findrange( b=@{output:f.b},

a=@{input:f.a}, p="0.5" );
DV findrange( b=@{output:f.c},

a=@{input:f.a}, p="1.0" );
DV analyze( a=[ @{input:f.b},

@{input:f.c} ], c=@{output:f.d} );

Notice that the transformation findrange is invoked
twice, with different values for the command line
argument -i specifying different search ranges.

4.4 Compound Transformations

A compound transformation describes the coordinated
(perhaps concurrent) execution of multiple programs and
the passing of files among them. It is described in the
same manner as a simple transformation, with a single
derivation statement. All internal transformation
invocations within a compound transformation are tracked
in the catalog, along with all files read and produced by
the internal transformation steps. The system can thus
remain fully cognizant of all data dependencies, and
arbitrary files within those dependency chains can be
deleted and later re-derived, based on stored knowledge.

generate f.a

findrange

findrange f.b

f.c

analyze f.d



Figure 4: Example directed acyclic graph

A transformation is either a simple transformation or a
compound transformation. A compound transformation is
itself composed of references to one or more
transformations, each of which in turn are either simple or
compound. In all other respects, and in particular, from
the point of view of its external interface and semantics,
compound and simple transformations are
indistinguishable. Thus, compound transformations can
themselves contain compound transformations.

4.5 Queries

VDL provides various commands for extracting
derivation and transformation definitions. Since VDL is
implemented in SQL, this query set is readily extensible.
Query output can (optionally) be returned in the same
format as the commands that could be used to re-create
the matching entries. Query commands can be used both
by end-user query systems (e.g., a virtual data browser)
and by automated Grid components such as a data analysis
system.

In brief, VDL query commands allow one to search for
transformations by specifying a transformation name,
application name, input LFN(s), output LFN(s), argument
matches, and/or other transformation metadata. One can
search for derivations by specifying the associated
transformation name, application name, input LFN(s),
and/or output LFN(s). An important search criterion is
whether derivation definitions exist that invoke a given
transformation with specific arguments. From the results
of such a query, a user can determine if desired data
products already exist in the data grid, and can retrieve
them if they do and create them if they do not.

Query output options specify, first of all, whether
output should be recursive or non-recursive (recursive
shows all the dependent derivations necessary to provide
input files assuming no files exist) and second whether to
present output in columnar summary, VDL format (for re-
execution), or XML.

5 Chimera as a Data Grid Component

We discuss some of the issues that arise when the
Chimera system is incorporated as a component within a
larger Data Grid system. As illustrated in Figure 2, a
virtual data “application” can combine information from
both Chimera and other Data Grid components as it
processes user requests for virtual data. For example, an
application might combine information about the
materialization status of a requested derivation with
information about the physical location of replicas and the
availability of computing resources to determine whether
to access a remote copy or (re-)generate a data value.

One proposed Data Grid architecture [17] interposes a
planner between an application and other components
illustrated in Figure 2. The planner accepts abstract DAGs
from the application, that is, DAGs that refer only to
LFNs and not to specific physical instances of files, and
that are thus not yet bound to specific Grid locations. For
LFNs needed as input, an abstract DAG does not specify
if these files already exist at a computation site, need to be
copied there, or should be re-derived; for LFNs produced
as output, the planner must determine where to place the
newly created file. Location decisions must also be made
recursively for any additional derivations needed.

The planner examines the abstract DAG, selects an
execution site for each node, and then determines how to
obtain and transport the data needed by each computation.
The planner must also determine how to deal with the
relocation of physical files produced by a job, if policies
require that these files be relocated to specific physical
file storage servers. The planner may evaluate several
different execution plans, based for example on cost
estimates for data movement vs. re-creation.

The output of the request planner is a concrete DAG
that refers only to real physical file names and specifies
the steps that must be followed to compute or transport
any input data that does not yet exist at its execution site.

6 Experiences with the Chimera System

We describe application experiments with our Chimera
prototype, conducted on the small-scale Data Grid shown
in Figure 5. (Subsequent experiments will use the larger
International Virtual Data Grid Laboratory [6].) This Grid
used Globus Toolkit resource management and data
transfer components [17], Condor schedulers and agents
[19, 24], and the DAGman job submission agent to
coordinate resources at four sites.
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Figure 5: The Data Grid used in our experiments



In our experiments, we did not consider data
replication. The persistent location of all data products
was the site at which the VDL interpreter resided. All data
files needed by executables were pulled to the executing
sites, and all data files from successful executions were
returned to the submission site upon completion of data
derivations. All data transfers used the Grid-enabled data
transfer tool GridFTP [2].

As we explain, the results demonstrate that Chimera
can manage complex interdependencies among
application invocations that occur in practice. We have
also validated the capability of the Chimera system on a
variety of larger and more complex artificial DAGs.

6.1 CMS Data Reconstruction

We used the Chimera prototype to assess the feasibility
of using virtual data descriptions for data products
involved in the production of Monte Carlo-based
simulations of high-energy physics collision events in the
CMS experiment [20].

Event simulation is critical to the design and operation
of the complex detector that is at the heart of CMS, and is
also used to test the scientific and data management
software systems on which CMS will depend.

This complex physics data derivation process
comprises the following four-stage pipeline of
transformations (i.e., executables).

1. pythia using Monte Carlo techniques to
determine randomly the physics attributes of a
specific collision event.

2. cmsim determines how that event would affect
the CMS detector.

3. writehits converts the information into a
persistent object data structure in an object-
oriented database system.

4. writedigis determines the digital signals that the
detector would produce from the event.

The first two stages produce files as output, while the
second two stages produce object-oriented databases that
are contained in the files of an Objectivity federation.

In these experiments, we sidestepped many of the
complications of managing data stored in object form by
configuring simulations to produce just one event per file,
instead of the usual hundreds. However, we did use the
Objectivity database used in normal CMS simulation.

6.2 SDSS Galactic Structure Detection

Our second Chimera application concerns the analysis
of data from the Sloan Digital Sky Survey (SDSS) [29].
As described at www.sdss.org, “…the Sloan Digital Sky
Survey is the most ambitious astronomical survey project
ever undertaken. The survey will map in detail one-quarter

of the entire sky, determining the positions and absolute
brightness of more than 100 million celestial objects. It
will also measure the distances to more than a million
galaxies and quasars.” The project, which will survey the
night sky at an unprecedented resolution, is currently in its
third year of data taking. When complete in 2004 it will
have collected around 40 TB of image and spectroscopic
data, and 3TB of catalog metadata.

Working with collaborators at Fermilab, we applied the
concept of virtual data to one scientific challenge problem
on the SDSS project—that of locating galactic clusters in
the image collection [3]. The goal of this application is to
create a database of galaxy clusters for the entire survey.
A highly simplified view of this problem is as follows.

The sky is tiled into a set of regular “fields.” For each
field, clusters are searched for in that field and in some set
of neighboring fields, using the concepts of “brightest
cluster galaxy” (BCG) and “brightest red galaxy” (BRG)
to determine cluster candidates [3]. The resulting
algorithm is a tree-structured pipeline (Figure 6)
comprising the following five transformations.

1. fieldPrep extracts from the full data set required
measurements on the galaxies of interest and
produces new files containing this data. The new
files are about 40 times smaller than the full data
sets.

2. brgSearch calculates the unweighted BCG
likelihood for each galaxy. The unweighted
likelihood may be used to filter out unlikely
candidates for the next stage.

3. bcgSearch calculates the weighted BCG
likelihood for each galaxy. This is the heart of
the algorithm, and the most expensive step.

4. bcgCoalesce determines whether a galaxy is the
most likely galaxy in the neighborhood.

5. getCatalog removes extraneous data and stores
the result in a compact format.

Further details of the algorithms and astrophysics
mentioned here are provided elsewhere [3, 4, 32].

Figure 7 shows the actual dataflow found in the last
three stages of a small computation in which 24
brgSearch transformations (the leaves) reduce 156 files
down to the root, where the getCatalog transformation
produces the cluster catalog for a single field of the sky.
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Figure 6: SDSS cluster identification workflow.



Figure 7: DAG for cluster identification workflow.

The derivation getCatalog now becomes a function
that can invoke all the prior four dependent steps. To
generate “virtual” results for the entire sky, we define one
derivation of the getCatalog transformation for each field
of the current survey.

This application motivated an important extension to
the virtual data paradigm to permit the specification of
transformations where the input and output file names are
a function of one or more transformation arguments and
thus cannot be known at the time when the transformation
or even the derivation are defined. In the cluster finding
mechanism, the celestial coordinates of the neighboring
fields that will be required to locate the clusters within a
given field of the survey are a function of that central
field’s coordinates—i.e., they are the neighbors of that
central field, and their coordinates and hence their file
names must be computed dynamically once the
coordinates of the central field are known. Table 1
characterizes the five transformations used in the pipeline
in terms of the number of static and dynamic file names.

Table 1: Input and output files for galactic cluster
identification computation

Transform Fixed
files in

No. of varying
input lists &
files/list

Fixed
files
out

Varying
output
lists

fieldPrep 1 1
(13*12)

1
(13*12)

brgSearch 1 1
(13*12)

1
(13*12)

bcgSearch 1 2
(13*12,13*12)

1
(7*12)

bcgCoalesce 1 1
(7*12)

1
(12)

getCatalog 1 1
(12)

1

Table 2: Numbers of files produced and consumed for
galactic cluster finding on entire sky survey

Transform # derivations #files in #files out
fieldPrep (45x600x12)/10 45x600x12 45x600x12
brgSearch (45x600x12)/10 45x600x12 45x600x12
bcgSearch (45x600x12)/10 2x45x600x12 45x600x12
bcgCoalesce (45x600x12)/10 45x600x12 45x600x12
getCatalog (45x600)/10 45x600x12 45x600
Totals 132,300 1,944,000 1,323,000

The amount of computation and data access required to
perform a complete analysis of all SDSS data is
substantial. Table 2 summarizes the number of files that
would be produced and consumed. At the time of writing,
just over 2% of this data (one of the 45 eventual stripes of
the sky) has been entered into the virtual data catalog as
part of our experiments. The largest DAG executed to
date for this application contained over 700 nodes. We
have just started the larger computations required to
complete the process, but it is already clear that the virtual
data system simplifies the task tremendously. Without
Chimera, the bookkeeping required to track a production
effort of this magnitude would be considerable, and would
involve a large amount of custom programming.

The virtual data mechanism can be thought of as a
paradigm for the management of batch job production
scripts. The Chimera system and its underlying Grid
mechanisms automate all resource scheduling,
synchronization, data movement, bookkeeping, and retry
needed to manage the this large amount of work on a
loosely coupled set of distributed resources.

The mechanism can also be thought of as a “makefile”
for data production. For example, if the program
bcgCoalesce is changed, a data administrator can request
the re-creation of the final catalogs and Chimera will
determine that 35,100 out of the total of 132,300 jobs
need to be re-executed.

Similarly, if a few hundred of the 45x600x12 raw input
files need to be revised (due to, say, errors discovered in
the input capture system), then it is easy to determine what
must be recomputed to update the entire output set.

It is also interesting to note that data production can be
performed in parallel with interactive use by users who are
requesting final output data products. In this mode, the
virtual data grid acts much like a large-scale cache. If data
products are produced through the batch process before
they are needed interactively, then the system knows, at
the time of the interactive request, that a data product is
already available and no computations need be scheduled
to produce it. If on the other hand a data product is
requested before the batch process has produced it, the
required derivations will be executed on demand to
support the interactive need and will then be skipped
when the batch process encounters a similar need at a later
point in time.



7 Future Directions

We briefly discuss concepts that we plan to explore in
future versions of the Chimera system.

Three data representation modes are dominant within
GriPhyN experiments: files, relational tables (in
RDBMSs) and persistent object structures (in ODBMSs).
In addition, XML is proliferating as a universal and
perhaps unifying underlying data representation. We
believe that the mechanisms we have developed for file-
based transformations and derivations extend naturally to
encompass these other data modalities. If we can identify
encapsulated data units, name these units, and specify a
name and a pointer to transformations on the data, then
our system can catalog both transformations and
derivations in these data representation modes.

We define a unit of granularity that represents the
entity that can be tracked: a file; an entire SQL table; or
an entire object structure or “closure” that can be
identified within the OODB and extracted, deleted, or
regenerated as an atomic unit. Transformations described
by Chimera can be executable programs, SQL command-
level queries (including stored procedure invocations),
ODBMS command-level queries or method invocations,
or applications that access a SQL or OO database directly.

We believe that within this model it should be feasible
to represent code transformations that freely exchange and
transform data (within certain restrictive and well-defined
limits) between these three modes of data storage. We
plan to test this hypothesis on various challenge problems
from the GriPhyN experiments.

We plan to augment the transformation description
with information about the nature and state of the software
and hardware environment in which a transformation
executes [16]. This information can extend into the realm
of configuration management systems.

We will also assess the utility of providing data type-
based transformation templates—for example, to specify a
transformation that translates “raw event data” files to
“reconstructed event data” files, much as a makefile
specifies a rule for translating a “.c” file into a “.o” file.

We will continue to explore the range of operations
supported by the Chimera VDL, with the goal of
validating our ability to realize the full spectrum of
scenarios presented in the introduction.

Another significant research goal is to develop and test
higher-level knowledge-based representations of domain-
specific data, and to create databases and tools for
representing and manipulating this knowledge. The
question of how to support discovery of data, derivations,
and transformations in a uniform fashion raises many
challenging problems.

8 Conclusions

We have described Chimera, a virtual data tracking and
generation system that can be used to audit and trace the
lineage of derived data produced by computation and also
to manage the automatic, on-demand (re)derivation of
such data. This system comprises a relational database
schema used to represent the various entities involved in
data derivation, a virtual data language used to represent
derivations and to manage the virtual data database, and a
virtual data system used to manage the virtual data
derivation process in large distributed data grid systems.

While the value of on-demand data derivation remains
to be demonstrated in the general case, the value of
auditing and tracing the lineage of scientific data in a large
collaboration appears clear, as evidenced by the
commitment of the four groundbreaking science
experiments that comprise the Grid Physics Network. In
general, we believe that virtual data techniques can
significantly increase the usability of scientific data
management systems by permitting science users to search
for data based on application-level characteristics and
automatically request the derivation of the data from pre-
stored algorithm descriptions and derivation “recipes.”

We have achieved positive results in our first tests of
the Chimera system. These tests involved the automatic
derivation of collider event simulation data in an
application relating to the CMS high energy physics
experiment, and automatic invocation of galactic cluster
finding algorithms on SDSS data. We have also used
various artificial problems to demonstrate our ability to
manage more complex data derivation relationships.

These initial results encourage us that the Chimera
design is viable and that it is feasible not only to represent
complex data derivation relationships but also to integrate
virtual data concepts into the operational procedures of
large scientific collaborations. Further studies will provide
additional insights into the utility of our techniques. We
also plan to investigate the derivation of relational and
object data, and the integration of higher-level techniques
for representing ontologies.
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