
TERAGRID 2007 CONFERENCE, MADISON, WI (SUBMITTED) 1 

 

GT4 GRAM: A Functionality and Performance Study 
Martin Feller1, Ian Foster1,2,3, and Stuart Martin1,2 

Abstract— The Globus Toolkit’s pre-Web Services GRAM service (“GRAM2”) has been widely deployed on grids around the world for many 
years. Recent work has produced a new, Web Services-based GRAM service (“GRAM4”). We describe and compare the functionality and per-
formance of the GRAM2 and GRAM4 job execution services included in Globus Toolkit version 4 (GT4). GRAM4 provides significant improve-
ments in functionality and scalability over GRAM2 in many areas. GRAM4 is faster in the case of many concurrent submissions, but slower for 
sequential submissions and when file staging is involved. (Optimizations to address the latter cases are in progress.) This information should be 
useful when considering an upgrade from GRAM2 to GRAM4, and when comparing GRAM against other job execution services.  
 
Index Terms— Globus, Grid, Job Execution Service, GRAM, GRAM2, GRAM4, Audit 

——————————      ——————————

1 INTRODUCTION 
Grid applications frequently require mechanisms for executing 
remote jobs. While this requirement might appear straightfor-
ward, its practical realization can be challenging due to the 
need to (for example) address security, reliability, and per-
formance concerns; enable both client and server management 
of resources consumed by remote jobs; propagate error mes-
sages and failure notifications; and move data to/from remote 
computations. Thus, in practice, the creation of secure, reli-
able, and performant job execution services is difficult. 

In Globus Toolkit version 4 (GT4) [1], remote job execution is 
supported by the Grid Resource Allocation and Management 
(GRAM) service, which defines mechanisms for submitting 
requests to execute jobs (defined in a job description lan-
guage) and for monitoring and controlling the resulting job 
executions. More precisely, GT4 includes two different 
GRAM services: the “pre-WS GRAM,” or GRAM2 [2], first 
introduced in GT2, and the newer Web Services-based  
“WS GRAM,” or GRAM4, first included in GT4. 

We describe and compare first the functionality (Section 2) 
and then the performance (Section 3) of GRAM2 and 
GRAM4: specifically, the code to be distributed as the “pre-
WS GRAM” and “WS GRAM” services in the GT4.0.5 re-
lease. We see that GRAM4 provides significant improvements 
in functionality and scalability over GRAM2. GRAM4 per-
forms well for concurrent submissions, but is slower than 
GRAM2 for sequential submissions and when file staging is 
involved—areas in which optimizations are planned, along 
with further functionality improvements, in forthcoming 4.0.x 
and 4.2.x releases (see Section 4). 

Other systems providing functionality similar to GRAM in-
clude GridSAM [3], CREAM [4], and WSRF.NET [5]. The 
functionality and performance data provided here should pro-
vide a basis for detailed qualitative and quantitative compari-
sons with and between those and other systems. 

2 FUNCTIONALITY 
We present a point-by-point comparison of GRAM2 and 
GRAM4 functionality, both in summary form (Table 1) and in 
more detail in the following. We divide functionality into 
three parts: security, file staging, and general. In each case, the 
short description is shaded (in the table) or underlined (in the 
text) to indicate where GRAM4 offers significantly better 
functionality than GRAM2. No shading or underline indicates 
that the two versions offer similar functionality. 

We emphasize that this long list of GRAM features does not 
translate into a complex service for the user. The GRAM2 and 
GRAM4 client interfaces are simple; the rich functionality 
described here ensures that remote job execution, monitoring, 
and management are secure, reliable, and efficient. 

2.1 Security Features 
Privilege limiting model. 2: Gatekeeper as root; 4: Service 
with sudo privileges. In a typical deployment, the GRAM 
server must be able to start jobs submitted by remote users 
under different user ids, and thus must be able to execute some 
code as “root.” It is generally viewed as preferable to limit the 
amount of such “privileged” code. In GRAM2, the entire 
“gatekeeper” service runs as root. In GRAM4, the GRAM 
service does not itself require privileges. Instead, it uses 
“sudo” to invoke operations for which privileges are required. 

Authentication. 2: TLS; 4: TLS, Message-level security. A 
client can authenticate with a GRAM service using a variety 
of protocols. In GRAM2, only SSL/TLS is supported; in 
GRAM4, the standard message-level WS-Security and chan-
nel-level WS-SecureConversation are also supported, with the 
choice of protocol supported by a particular GRAM4 deploy-
ment specified in the service configuration. 

Credential delegation. 2: Yes (required); 4: Yes (optional). A 
job submitted to a GRAM service may require a delegated 
credential [6] if it is to stage files or perform other remote op-
erations for which authentication is required. In GRAM2, a 
delegated credential is passed with every request. In GRAM4, 
a separate delegation interface is provided, allowing a client to 
delegate a credential only when required, and to share a dele-
gated credential among multiple jobs. The GRAM4 approach 
is more efficient and allows for the use of authentication pro-
tocols that don’t inherently allow delegation.

———————————————— 
1 Computation Institute, University of Chicago & Argonne National 
Laboratory, USA 

2 Math & Computer Science Division, Argonne National Laboratory, 
Argonne IL, USA 

3 Department of Computer Science, University of Chicago, IL, USA 

 



2 TERAGRID 2007 CONFERENCE, MADISON, WI 

 

Table 1: Functionality comparison of GRAM2 and GRAM4 (see text for details, a shaded box means better) 

Feature GRAM2 GRAM4 
1) SECURITY 
Privilege limiting model Gatekeeper as root Service with sudo privileges 
Authentication options TLS TLS, Secure Message, WS-Security 
Credential delegation Yes (required) Yes (optional) 
Credential refresh Yes Yes 
Share credential delegation among jobs No Yes 
Authorization callouts Yes (single PDP callout) Yes (PDP callout chain) 
2) FILE MANAGEMENT 
File staging Yes Yes 
File staging retry policy None RFT supported 
Incremental output staging  (“streaming”) Stdout, stderr only stdout, stderr, &  any output files 
Standard input access Yes (from file) Yes (from file) 
Throttle staging work No Yes 
Load balance staging work No Yes 
3) GENERAL 
Access protocol GRAM-specific HTTP Web Services, SOAP 
Job description language RSL JDD 
Extensible job description language Yes Yes 
Local resource manager interface PERL scripts PERL scripts + SEG 
Local resource managers Fork, Condor, PBS, LSF, ... Fork, Condor, PBS, LSF, … 
Fault tolerance Yes (client initiated) Yes (service initiated) 
State access: pull Yes Yes 
State access: push (subscription) Yes: callbacks Yes: WS-Notification 
Audit logging Yes (experimental) Yes (experimental) 
At most once job submission Yes (2 phase commit) Yes (UUID on create) 
Job cancellation Yes Yes 
Job lifetime management Yes Yes 
Maximum active jobs ~250 32,000 
Parallel job support Yes Yes 
MPICH-G support Yes Yes 
Basic Execution Service (BES) interface No Prototyped 

 
Credential refresh. 2: Yes; 4: Yes. Credentials have a life-
time, which may expire before a job has completed execution. 
Thus, we may want to supply a new credential. Both GRAM2 
and GRAM4 provide this capability. In GRAM4, the refresh is 
performed via the same delegation service used to supply the 
credential in the first place. A client can both request notifica-
tion of imminent expiration and refresh the credential. 

Share credential delegation among jobs. 2: No; 4: Yes. See 
“credential delegation” (above) for explanation. 

Authorization callouts. 2: Yes—single PDP callout; 4: Yes— 
PDP callout chain. Following authentication, GRAM checks 
to see whether the request should be authorized. In GRAM2, a 
single (pluggable) policy decision point (PDP) or authoriza-
tion function can be called, to check (for example) a “grid-
map” file acting as an access control list. In GRAM4, multiple 
PDPs can be combined together, allowing for richer policies. 
GRAM4 also allows Policy Information Points to be included 
in the chain for attribute-based authorization. Thus, for exam-
ple, a GRAM deployment can be configured to use a PIP that 
parses VOMs attributes and a PDP that uses those attributes as 
a part of policy evaluation. Since chain of PDPs can be con-
figured, policies at various levels, such as site-level blacklist 
policies, can be evaluated in addition to service level policies. 

2.2 File Management 
File staging. 2: Yes; 4: Yes. Both GRAM2 and GRAM4 allow 
job descriptions to specify that files are to be staged prior to 
job execution and/or during or after job completion. 

File staging retry policy. 2: None; 4: RFT supported. In 
GRAM2, if a file staging operation fails, the job is aborted. In 
GRAM4, a failed file staging operation can be retried by the 
GRAM file staging service—the reliable file transfer (RFT) 
service [7]. RFT’s retry policy can be set as a service default 
for all transfers and also be overridden by a client for a spe-
cific transfer. For example, the Condor-G client sets the num-
ber of retries to five. 

Incremental output staging (“streaming”). 2: Stdout, stderr 
only; 4: Stdout, stderr, and any output files. It can be useful to 
obtain access to data produced by a program as it executes. In, 
GRAM2, a job’s standard output and standard error streams 
can be accessed in this way. In GRAM4, any output file can 
also be specified as “streaming.” 

Standard input access. 2: Yes—from a file; 4: Yes—from a 
file. In both GRAM2 and GRAM4, the contents of a specified 
file can be passed to a job’s standard input. 



FELLER ET AL.:  GT4 GRAM 3 

 

Throttle staging work. 2: No; 4: Yes. A GRAM submission 
that specifies file staging operations imposes load on the “ser-
vice node” executing the GRAM service. In GRAM2, this 
load was not managed, and so many simultaneous submissions 
could result in a large number of concurrent transfers and thus 
excessive load on the “service node.” GRAM4 can be config-
ured to limit the number of “worker” threads that process 
GRAM4 work and thus the maximum number of concurrent 
staging operations. In 4.0.5, the default value for this configu-
ration parameter is 30. 

Load balance staging work. 2: No; 4: Yes. In GRAM2, stag-
ing work must be performed on the same “service node” as the 
GRAM2 service. In GRAM4, staging work can be distributed 
over several “service nodes.” A “GRAM and GridFTP file 
system mapping” configuration file allows a system adminis-
trator to specify one or more GridFTP servers, each associated 
with a local resource manager (LRM) type and one or more 
file system mappings. Based on a job’s LRM type and file 
paths in the staging directives, GRAM then chooses the 
matching GridFTP server(s). 

2.3 General 
Access protocol. 2: GRAM-specific HTTP; 4: Web Service, 
SOAP. GRAM2 uses a custom HTTP-based protocol to trans-
fer requests and replies. GRAM4 uses Web Services, thus 
providing for a convenient standard representation of protocol 
messages (WSDL) and enabling the use of standard tooling to 
develop clients. 

Job description language. 2: RSL; 4: JDD. GRAM2 uses a 
custom, string-based Resource Specification Language (RSL). 
GRAM4 supports an XML-based version of RSL, the Job De-
scription Document (JDD). A prototype implementation of the 
Job Submission Description Language (JSDL) has also been 
developed for GRAM4: see Section 5. 

Extensible job description language. 2: Yes; 4: Yes. Both 
RSL and JDD support user-defined extensibility elements. 

Local resource manager interface. 2: Perl scripts; 4: Perl 
scripts + SEG. A GRAM service that receives a job submis-
sion request passes that request (assuming successful authenti-
cation and authorization) to a local resource manager (LRM). 
Both GRAM2 and GRAM4 can interface to many LRMs.  
GRAM4 monitors the LRM jobs more efficiently by using the 
scheduler event generator (SEG) instead of polling.  Each 
GRAM4 LRM type requires a SEG implementation    

Local resource managers. 2: Fork, Condor, PBS, LSF; 4: 
Fork, Condor, PBS, LSF. Both GRAM2 and GRAM4 support 
a simple “fork” LRM (that simply starts jobs on the same 
computer as the GRAM server) and a range of other com-
monly used LRMs, including Portable Batch System (PBS), 
Load Sharing Facility (LSF), and Condor.  Many others are 
available from third parties such as: LoadLeveler, Sun Grid 
Engine (SGE), GridWay, etc. 

Fault tolerance. 2: Yes—client initiated; 4: Yes—service initi-
ated. It is important that a GRAM service be fault tolerant, by 
which we mean that if it fails (e.g., because the computer on 
which it is running crashes) and is then restarted, it and its 
clients can reconnect with any running jobs [8]. GRAM2 pro-

vides a limited form of fault tolerance, requiring a client to 
supply a “job contact” that the GRAM service then uses to 
reconnect with the job. GRAM4 provides a more general solu-
tion: it persists the job contact information itself, and thus can 
monitor and control all jobs that it created, without the in-
volvement of clients. 

State access: push (subscription). 2: Yes—callbacks; 4: 
Yes—WS-Notification. Both GRAM2 and GRAM4 allow a 
client to request notifications of changes in job state. In 
GRAM2, the client registers a call back. In GRAM4, standard 
WS-Notification operations are applied to the “job status” 
resource property. 

State access: pull. 2: Yes; 4: Yes. In GRAM4, the service de-
fines a WSRF Resource Property that contains the value of the 
job state.  A client can then use the standard WSRF getRe-
sourceProperty operation.  In GRAM2, it is a proprietary op-
eration. 

Audit logging. 2: Yes; 4: Yes. This recent enhancement to 
both GRAM2 and GRAM4 allows an audit record to be in-
serted into an audit database when a job completes. This 
mechanisms is used, for example, by TeraGrid to obtain both a 
unique grid ID for a job and job resource usage data from 
TeraGrid’s accounting. Extensions have already been contrib-
uted (for GRAM4 only) by Gerson Galang (APAC Grid) to 
insert the job’s audit record at the beginning of the job and to 
update the record after submission and again at job end. 

At most once job submission. 2: Yes—two-phase commit; 4: 
Yes—UUID on create. A simple request-reply job submission 
protocol has the problem that if the reply message is lost, a 
client cannot know whether a job has been started. Thus, both 
GRAM2 and GRAM4 provide protocol features that a client 
can use to ensure that the same job is not submitted twice. 
GRAM2 uses a 2-phase commit protocol: the client submits a 
request, obtains a job contact, and then starts the job. GRAM4 
adopts an alternative approach: the client supplies a client-
created unique identifier (UUID) and the GRAM service guar-
antees not to start a job with a duplicate identifier. The 
GRAM4 approach allows a job submission to proceed with 
one rather than two roundtrips and is thus more efficient. 

Job cancellation. 2: Yes; 4: Yes. In GRAM4, a client calls the 
standard WSRF “Destroy” operation to terminate a job.  In 
GRAM2, it is a proprietary operation. 

Job lifetime management. 2: Yes; 4: Yes. Both GRAM2 and 
GRAM4 provide similar functionality for job state lifetime 
management, in order for a client to control when a job’s state 
is cleaned up. GRAM2 implements a set of job directives and 
operations that control this functionality. GRAM4 leverages 
standard WS-ResourceLifetime operations. 

Maximum active jobs. 2: ~250; 4: 32,000. GRAM2 creates a 
“job manager” process for each submitted job, a strategy that 
both creates excessive load on the “service node” where the 
GRAM2 service runs and limits the number of jobs that a 
GRAM2 service can support concurrently. In contrast, 
GRAM4 runs as a single process that maintains information 
about each active job in a structure file. In the current imple-
mentation, the number of concurrent jobs that can be sup-



4 TERAGRID 2007 CONFERENCE, MADISON, WI 

 

ported is limited by the number of files that can be created in a 
directory; this limit can easily be increased, if desired. 

Parallel job support. 2: Yes; 4: Yes. Both GRAM2 and 
GRAM4 support jobs of type MPI.  

MPICH-G [9] support. 2: Yes; 4: Yes. GRAM2 supports 
multi-jobs (i.e., jobs that span multiple computers) via the 
client-side DUROC library [10], which performs interprocess 
“bootstrapping” for id, rank, and barrier via a custom jobman-
ager protocol. GRAM4 uses a multi-job service, which per-
forms “bootstrapping” via a Rendezvous Web Service. 

BES interface. 2: No; 4: Prototyped. The (soon-to-be-
standard) Basic Execution Service (BES) specification [11] 
can easily be implemented in GRAM4 (and has been proto-
typed), but not in GRAM2 due to the lack of support for Web 
Services in the latter system. 

3 PERFORMANCE COMPARISON 
We present, in Tables 2 and 3, GRAM2 and GRAM4 per-
formance data for a variety of scenarios. In each row, shading 
indicates where one version offers significantly better per-
formance than the other; a lack of shading indicates that the 
two versions offer similar performance. 

We conducted all experiments in an environment comprising 
two computers connected by Gigabit/s Ethernet. Both the cli-
ent and server are a 4-CPU Dual Core AMD Opteron™ Proc-
essor 275 (2.2GHz). The client computer has 3.4 GB memory 
and runs Scientific Linux CERN Rel 3.0.8; the server has 4 
GB memory and runs RHEL 4.x. The server is also connected 
by Gigabit/s Ethernet to a 240-node Condor pool running 
Condor v.6.8.1. We used the GRAM2 and GRAM4 code sup-
plied to the Virtual Data Toolkit (VDT) to build version 1.6.0; 
this code does not correspond to any released GT version, but 
will soon be available (with additional improvements) as 
GT4.0.5.  

Table 2 presents results for sequential job submissions, in 
which jobs are submitted in sequence on the client using 
command line client programs (globusrun for GRAM2 and 
globusrun-ws for GRAM4), and executed on the server side 
using the simplest GRAM LRM, “fork,” which simply forks a 
process to execute the application. We do not stage executa-
bles, and we execute a simple job that does not involve com-
putation but can be requested to stage in and/or stage out a 
single file. We also vary the use of delegation. In each run, 
100 jobs are submitted, and the time from first submission to 
last completion is measured at the client, then divided by 100 
to get the average per-job time. We see that GRAM4 is some-
what slower than GRAM2 for simple sequential jobs and con-
siderably slower when file operations are involved. The latter 
slowdown is due to the use of Web Services calls from the 
GRAM server to a local RFT service. We have plans to im-
prove this situation and expect to match or exceed GRAM2 
performance in the near future. 

 
 

Table 2: Average seconds/job; sequential scenario. 

Delegation StageIn StageOut GRAM2 GRAM4 
None None None N/A 1.70 
Per job None None 1.07 1.71 
Per job 1x10KB None 1.78 5.57 
Shared 1x10KB None N/A 5.41 
Per job 1x10KB 1x10KB 2.44 9.08 
Shared 1x10KB 1x10KB N/A 7.91 

Table 3 presents results for concurrent jobs. In these experi-
ments, a single Condor-G [12] client submits 1000 jobs to the 
server, which uses the GRAM Condor LRM interface to exe-
cute the jobs on a Condor pool. There is no client-side throt-
tling of jobs; thus, Condor-G submits the jobs as fast as it can. 
Again, we do not stage the executable, and execute a simple 
job that does not involve computation but can be instructed to 
perform simple file operations. 

The times given in Table 3 are from first submission to last 
completion, as measured by the client. We do not divide by 
1000 to obtain a per-job time, as there is presumably some 
“ramp up” and “ramp down” time at the start and end of the 
experiment, and thus the resulting numbers would perhaps not 
be accurate “per-job” times. We note that Condor-G automati-
cally shares delegated credentials for GRAM4 jobs, but cannot 
do so for GRAM2 jobs. We see again that GRAM4 currently 
performs somewhat less well than GRAM2 when file opera-
tions are involved; however, we are encouraged to see that it 
performs better than GRAM2 in the absence of staging. As 
noted in the discussion of the sequential results, we plan op-
timizations to improve staging performance. 

Table 3: Average seconds/1000 jobs; concurrent scenario. 

4 RELEVANT GT 4.0.X DEVELOPMENT PLANS 
We outline some of the enhancements to GRAM4 functional-
ity and performance that we plan for imminent 4.0.x releases. 

Make audit data available during job execution. Currently, 
GRAM4 audit records are inserted into the audit database at 
the end of a job. A patch contributed by Gerson Galang of the 
Australian Partnership for Advanced Computing inserts each 
audit record at the beginning of the job, update the record after 
the LRM job submission, and then again at the end of the job.  

Improve performance of staging jobs. We have determined 
that the performance of file operations (e.g., staging and 
cleanup) can be improved significantly in the case that the 
GRAM4 and the RFT service that performs those operations 
are collocated: we simply replace the Web Services calls to 
the RFT service with local Java object calls.  

Stage 
In 

Stage 
Out 

File 
Clean 

Up 

Unique 
Job 
Dir 

GRAM2 GRAM4 

None None No No 2552 2100 
1x10KB 1x10KB No No 2608 3779 
1x10KB 1x10KB Yes Yes 2698 5695 



FELLER ET AL.:  GT4 GRAM 5 

 

5 RELEVANT GT 4.2.X DEVELOPMENT PLANS 
We outline some of the enhancements to GRAM4 functional-
ity and performance that we plan for future 4.2.x releases. 

Support JSDL. We plan an alpha-quality version of the Job 
Submission Description Language (JSDL) [13] for Q1 07. 
This work will leverage the current GRAM4 internals that are 
used with the current custom XML job description language. 

Connection caching. The Java Web Services Core performs 
connection caching for communication between clients and 
services. This optimization should allow a single client sub-
mitting many jobs to the same service to realize a performance 
improvement without making any code modifications. This 
improvement has been committed to the Globus software re-
pository and will be included in 4.2.x. 

Flexible authorization framework. The attribute processing 
framework now has richer attribute processing, including a 
normalized attribute representation to combine attributes about 
entities from disparate sources. The enhanced authorization 
framework now allows custom combining algorithms, sup-
ports distinct access and administrative rights, and provides a 
default combining algorithm that uses permit override with 
delegation of rights to ascertain decision. These improvements 
have been committed and will be included in GT 4.2.x. 

6 CONCLUSIONS 
Grids around the world have used GRAM2 for remote job 
submission for years. The implementation of a Web Services-
based GRAM has taken time due to the concurrent evolution 
of Web Services standards. However, those developments are 
now behind us, and the resulting product is superior. We have 
finally reached a point at which GRAM4 is to be preferred to 
GRAM2, for the following reasons: 

• GRAM4 provides vastly better functionality than 
GRAM2, in numerous respects. 

• GRAM4 provides better scalability than GRAM2, in 
terms of the number of concurrent jobs that can be sup-
ported. It also greatly reduces load on service nodes, and 
permits management of that load.  

• GRAM4 performance is roughly comparable to that of 
GRAM2. (We still need to improve sequential submission 
and file staging performance, and we have plans for doing 
that, and also for other performance optimizations.) 

We encourage those deploying applications and developing 
tools that require remote job submission services to adopt 
GRAM4, and to provide feedback on their experiences. 

7 ACKNOWLEDGMENTS 
The authors wish to thank those that contributed in various 
ways to the work reported in this paper, in particular, Rachana 
Ananthakrishnan, Joe Bester, Lisa Childers, Jarek Gawor, Carl 
Kesselman, and Peter Lane. This work was supported in part 
by the National Science Foundation under contract OCI-
0534113 and by the Office of Advanced Scientific Computing 

Research, Office of Science, U.S. Dept. of Energy, under Con-
tract DE-AC02-06CH11357.  

8 REFERENCES 
[1] I. Foster, "Globus Toolkit Version 4: Software for Ser-

vice-Oriented Systems," in IFIP International Confer-
ence on Network and Parallel Computing, 2005, pp. 2-
13. 

[2] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. 
Martin, W. Smith, and S. Tuecke, "A Resource Manage-
ment Architecture for Metacomputing Systems," in 4th 
Workshop on Job Scheduling Strategies for Parallel 
Processing, 1998, pp. 62-82. 

[3] W. Lee, A. S. McGough, and J. Darlington, "Performance 
Evaluation of the GridSAM Job Submission and Moni-
toring System," in UK eScience Program All Hands 
Meeting, 2005. 

[4] P. Andreetto, S. Borgia, A. Dorigo, and others, "CREAM: 
A Simple, GRID-Accessible, Job Management System 
for Local Computational Resources;," in Computing in 
High Energy and Nuclear Physics Mumbai, India, 2006. 

[5] G. Wasson and M. Humphrey, "Exploiting WSRF and 
WSRF.NET for Remote Job Execution in Grid Environ-
ments," in International Parallel and Distributed Proc-
essing Symposium Denver CO, 2005. 

[6] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, "A 
Security Architecture for Computational Grids," in 5th 
ACM Conference on Computer and Communications Se-
curity, 1998, pp. 83-91. 

[7] W. E. Allcock, I. Foster, and R. Madduri, "Reliable Data 
Transport: A Critical Service for the Grid," in Building 
Service Based Grids Workshop, Global Grid Forum 11, 
2004. 

[8] D. Thain and M. Livny, "Building Reliable Clients and 
Services," in The Grid: Blueprint for a New Computing 
Infrastructure (2nd Edition): Morgan Kaufmann, 2004. 

[9] N. Karonis, B. Toonen, and I. Foster, "MPICH-G2: A 
Grid-Enabled Implementation of the Message Passing In-
terface," Journal of Parallel and Distributed Computing, 
vol. 63, pp. 551-563, 2003 2003. 

[10] K. Czajkowski, I. Foster, and C. Kesselman, "Co-
allocation Services for Computational Grids," in 8th 
IEEE International Symposium on High Performance 
Distributed Computing, 1999. 

[11] A. Grimshaw and others, "Basic Execution Services 
(BES) Specification," 2007. 

[12] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. 
Tuecke, "Condor-G: A Computation Management Agent 
for Multi-Institutional Grids," Cluster Computing, vol. 5, 
pp. 237-246, 2002. 

[13] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. 
Ly, S. McGough, D. Pulsipher, and A. Savva, "Job Sub-
mission Description Language (JSDL) Specification 
V1.0," Open Grid Forum, GFD 56 2005. 

 


