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Abstract 
 

In many scientific disciplines – especially long running, data-intensive collaborations – it is important to 
track all aspects of data capture, production, transformation, and analysis. In principle, one can then audit, 
validate, reproduce, and/or re-run with corrections various data transformations. We have recently proposed 
and prototyped the Chimera virtual data system, a new database-driven approach to this problem. We 
present here a major application study in which we apply Chimera to a challenging data analysis problem: 
the identification of galaxy clusters within the Sloan Digital Sky Survey. We describe the problem, its 
computational procedures, and the use of Chimera to plan and orchestrate the workflow of thousands of 
tasks on a data grid comprising hundreds of computers. This experience suggests that a general set of tools 
can indeed enhance the accuracy and productivity of scientific data reduction and that further development 
and application of this paradigm will offer great value. 

1 Introduction 
The GriPhyN project [1] is one of several major efforts [2-4] working to enable large-scale data-intensive 
computation as a routine scientific tool. GriPhyN focuses in particular on virtual data  technologies that 
allow computational procedures and results to be exploited as community resources so that, for example, 
scientists can not only run their own computations on raw data, but also discover computational procedures 
developed by others and data produced by these procedures [5]. A request to retrieve data on a particular 
cluster might thus either lead to the retrieval of the requested data from a local or remote database or the 
scheduling of a computation to produce the data. 

One of GriPhyN’s scientific collaboration partners is the Sloan Digital Sky Survey (SDSS) [6, 7, 25], a 
digital imaging survey that will, by the end of 2005, have mapped a quarter of the sky in five colors with a 
sensitivity two orders of magnitudes greater than previous large sky surveys. The data of the SDSS is being 
made available online as both a large collection (~ 10 TB) of images and a smaller set of catalogs (~ 2 TB), 
containing measurements on each of 250,000,000 detected objects.  

The availability of this data online is particularly useful if astronomers can apply computationally intensive 
analyses to it. We consider here the example of identifying clusters of galaxies, which are the largest 
gravitationally dominated structures in the universe. Such analyses involve sophisticated algorithms and 
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large amounts of computation and thus can, in principle, benefit from the use of distributed computing and 
storage resources, as provided by Data Grids [8, 9]. 

We describe here an early exploration of applying virtua l data and Data Grid concepts to the cluster 
identification problem. In this work, we treat cluster catalogs as derived data that are constructed from base 
data (galaxy catalogs), with the contents of a particular cluster catalog depending on the cluster location 
algorithm used and on the parameter choice for the algorithm. We use GriPhyN technologies, in particular 
the Chimera virtual data system [5], to generate cluster catalog data. We demonstrate our ability to encode 
interesting algorithms and to track the materialization of both final cluster catalog data and useful 
intermediate products. These early successes suggest that we have been successful both in developing a 
useful tool for Sloan astronomers and in obtaining important data that will allow us to address critical 
questions that define our larger research program, namely: 

Can we represent the transformations of the problem in a virtual data catalog (VDC)? 

Will the overhead of managing the VDC be easier than doing this work in an ad hoc fashion? 

Will the derived data be traceable in the manner expected? 

Will the computations map onto effective workflow graphs for efficient Grid execution? 

When code or data changes, can we identify and rebuild their dependent objects?  

Will the virtual data paradigm enhance overall productivity? 

More specifically, we demonstrate for the first time—albeit only in prototype form—a general, discipline-
independent mechanism that allows scientists in any field to use an off-the-shelf toolkit to track their data 
production and, with relative ease, to harness the power of large-scale Grid resources. 

The work reported here complements and extends other work by the GriPhyN collaboration [10-12]. Also 
related is work on data lineage in database systems [13-17]. Our work leverages these techniques, but differs 
in two respects: first, data is not necessarily stored in databases and the operations used to derive data items 
may be arbitrary computations; second, we address issues relating to the automated generation and 
scheduling of the computations required to instantiate data products. 

 

2 GriPhyN Tools for the Virtual Data Grid 
The current GriPhyN toolkit (VDT V1.0)  includes the Globus ToolkitTM [18], Condor and Condor-G [19, 
20], and the Grid Data Mirroring Package [21,22]. 

We apply here a new tool to be included in VDT: the Chimera virtual data system [5]. Chimera supports the 
capture and reuse of information on how data is generated by computations. It comprises a virtual data 
catalog, used to record virtual data information, and a virtual data language interpreter that translates data 
definition and query operations expressed in a virtual data language (VDL) into virtual data catalog 
operations (Figure 1). 
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Figure 1: Schematic of the Chimera architecture 

The VDC tracks how data is derived, with sufficient precision that one can create and re-create the data from 
this knowledge. One can then definitively determine how the data was created – something that is often not 
feasible today in the massive data collections maintained by large collaborations. One can also implement a 
new class of “virtual data management” operations that, for example, “rematerialize” data products that 
were deleted, generate data products that were defined but never created, regenerate data when data 
dependencies or transformation programs change, and/or create replicas of data products at remote locations 
when re-creation is more efficient than data transfer. This brings the power and discipline that we have so 
effectively harnessed for producing application codes (through mechanisms like “makefiles”) to the realm of 
scientific data production. 

VDL captures and formalizes descriptions of a how a program can be invoked and records its potential 
and/or actual invocations. The abstract description of how a program is to be invoked, which parameters it 
needs, which files it reads as input, what environment is required, and so forth, is called a transformation. 
Each invocation of a transformation with a specific set of input values and/or files is called a derivation. As 
data production proceeds, the execution of all transformations are recorded (either before or after the fact) in 
the Chimera database, which in effect becomes a central automated archivist of a large scientific 
collaboration. 

VDL query functions allow a user or application to search the VDC for derivation or transformation 
definitions. The search can be made by search criteria such as input filename(s), output filename(s), 
transformation name, and/or application name. 

Given a request for a “virtual” data object, the Chimera “request planner” can generate a directed acyclic 
graph (DAG) for use by DAGman [20] to manage the computation of the object and its dependencies. The 
algorithm for creating the DAG is to first find which derivation contains this file as output, then for each 
input of the associated transformation find the derivation that contains it as output, iterating until all the 
dependencies are resolved. Once the DAG is generated, DAGman dynamically schedules distributed 
computations, submitting them into the Grid via Condor-G, to create the requested file(s). 

One can also request the execution of a specific derivation, which proceeds in an identical manner. This 
becomes the dominant paradigm for running programs in a virtual-data-enabled collaboration: instead of 
building large, unmanaged libraries of job execution scripts, all scripts are instead described as derivations, 
and hence their data and code dependencies and outputs are precisely tracked by the Chimera virtual data 
system. Our main goal in the work we describe here is to test the effectiveness of this new mode of 
collaboration on a scientific problem of significant but still manageable scope. 
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3 Finding Clusters of Galaxies in SDSS Data 
The cluster detection algorithm on which we tested the virtual data paradigm is “MAXimum likelihood 
Brightest Cluster Galaxy” (MaxBCG) [25], which features sensitivity to a large dynamic range of cluster 
masses and very good redshift estimation. Abstractly, the MaxBCG algorithm moves a cylinder around in a 
five-dimensional space, calculating the cluster likelihood at each point. The 5-space is defined by two spatial 
dimensions, right ascension (RA) and Declination (Dec); two color dimensions, g-r and r-I; and one 
brightness dimension, i. 

In practice, we perform calculations at the location of a galaxy. Figure 2 illustrates the approach, which is 
explained in detail in [25] and briefly summarized here. For each galaxy, we calculate whether it is likely to 
be a luminous red galaxy (BRG). If this likelihood is above a threshold, we compute the likelihood that it is 
a brightest cluster galaxy by weighting the BRG likelihood by the number of galaxies in the neighborhood. 
Finally, we ask whether this galaxy is the most likely in the area; if so there is a cluster present centered here 
and otherwise there is not.  In Figure 2, the encircled region shows a spatial acceptance window, which gets 
smaller with increasing distance. 

Table 1 shows the scale of the problem. The problem is reduced to SIMD parallelism by setting an upper 
limit on the angular size of a cluster: in effect, setting a lower limit on the distance to the cluster. We then 
work on a central region, with a buffer zone around that region of angular size of the upper limit. We only 
locate clusters in the central region, but use information from the entire buffer zone for the calculation.  

 

 

Figure 2: The MaxBCG cluster finding algorithm 
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Area (square-degrees) 7000 

Storage (gigabytes) 1540 

Compute (CPU-hours on 500 MHz PIII with 1 
gigabyte RAM) 

7000 

Table 1: Storage and computati onal requirements for a cluster search covering the full SDSS survey. 

4 The GriPhyN Chimera Formulation of Cluster Finding 
We describe here our representation of the MaxBCG transformations and then our system design for cluster 
finding using the virtual data catalog and toolkit components. Our experiences with its use are presented in 
the next section. 

4.1 Representing the Transformations 
The MaxBCG algorithm consists of five file -based transformations. The input and output files of each stage 
form a natural dependency graph, as shown in Figure 3, where the nodes represent data files and the arrows 
the transformations listed below. The first stage and second stage are straightforward in that each output file 
corresponds to one input file. The third and fourth stages operate on a “buffer zone” around the target field, 
and the bcgSearch stage (transformation 3) needs to take both field files and brg files as inputs. The 
transformations are as follows:  

1 - fieldPrep extracts from the full data set required measurements on the galaxies of interest and produces 
new files containing this data. The new files are about 40 times smaller than the full data sets.  

2 - brgSearch calculates the unweighted BCG likelihood for each galaxy (the BRG likelihood, unweighted 
by galaxy count, is used to filter out unlikely candidates for the next stage) 

3 - bcgSearch calculates the weighted BCG likelihood for each galaxy. This is the heart of the algorithm, 
and the most expensive step.  

4 - bcgCoalesce determines whether a galaxy is the most likely galaxy in the neighborhood. 

5 - getCatalog removes extraneous data and stores the result in a compact format. 

For illustrative purposes, the VDL specification for the brgSearch program, the simplest of the 
transformations that implement the MaxBCG algorithm, is shown here and is more fully explained in [25]. 
 
Begin v @@vdldemo@@/bin/astro.sh 
 Arg brgSearch 
 Arg   -f “ 
 Arg $run 
 Arg $startField 
 Arg $endField 
 Arg  “ 
 Arg %runList 
 Arg %camcolList  
 File i parameters.par 
  
 File i field-%run-%camcol-%field.par 
 File o brg-%run-%camcol-%field.par 
End 
rc parameters.par $root/parameters.par 
rc brg-%run-%camcol-%field.par $brgDir/brg-%run-%camcol-%field.par 
rc    field-%run-%camcol-%field.par $fieldDir/field-%run-%camcol-%field.par 



Applying Virtual Data   6 

  

CatalogCluster

Core

Core
BRGFieldtsObj

FieldtsObj

FieldtsObj

FieldtsObj

BRG

BRG

BRG

3

21

1

1

1

2

2

2
3

5
4

 
Figure 3: SDSS cluster identification workflow. 

Because the MaxBCG algorithm walks through a spatial region around a target galaxy to find neighboring 
galaxies, the input filenames needed for this region depend on various runtime factors including the buffer 
size and the run offset between two runs in a stripe. As part of this application, the initial VDL mechanism 
was enhanced to allow the dynamic generation of file names for derivations during program execution (as 
opposed to cataloging them before execution). We compute the list of input filenames using an application 
function that maps a (RA, Dec) pair to a list of filenames. These filenames are then dynamically added to the 
virtual data catalog as input dependencies to the actual computation step that follows.  

4.2 System Architecture 
The SDSS software environment, in which MaxBcg is implemented, was integrated with Chimera and a test 
grid was constructed, as shown in Figure 4. In this integrated system, bulk background data production can 
be readily performed in parallel with interactive use. In this mode, the virtual data grid acts much like a 
large-scale cache. If a data product is produced through the batch process before it is needed interactively, 
then at the time of the interactive request no computations need be scheduled to produce it. If a data product 
is requested before the batch process has produced it, the required derivations will be executed on demand, 
and the results stored, eliminating the data item from the batch process work list. 

An important aspect of Chimera is the management of input files which contain the critical input parameters 
to the cluster finding application. Instead of retaining full copies of all needed parameter files and tracking 
these files in the Chimera database as inputs to derivations, we adopted the following system which was 
more usable and which placed more salient information into the virtual data catalog. We created “front-end” 
transformations for each transformation that required an input file of parameters. This front-end 
transformation took the salient parameters (i.e., the ones that typically varied from derivation to derivation) 
as arguments, inserted those parameters into the  parameter file  templates that contained the numerous 
seldom-changing parameters, and generated complete parameter files as output. These transformations were 
then incorporated into the user application DAG to generate the parameter file used by the main application 
transformation. Thus we needed to maintain only a few template parameter files, from which any number of 
actual parameter files could be generated. Using this technique, the Chimera database always contained (in 
the “front-end” derivation records) all parameters required to rerun the main application derivations.  
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Figure 4: Architecture for integration of Chimera into SDSS environment for cluster finding. 
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5 Experimentation and Results 
Our experimentation with the cluster finding challenge problem to date has involved the analysis of 1350 
square degrees of SDSS data (some 42,000 fields) using Chimera and the GriPhyN virtual data toolkit. This 
represents approximately 20% of the ultimate survey coverage as summarized in Table 2, below: 
 

Metric         # stripes # fields 

Expected coverage of survey (by 2005)    45 210,000 

Total data available today                   14 50,400 

Total data suitable for cluster finding    13 42,000 

Total cluster finding workflow generated 13 42,000 

Total cluster finding workflow processed 7 14,280 

Table 2: Summary of experimental scope 

We constructed workflow DAGs using Chimera for all processable data in the current SDSS survey, and 
executed and validated approximately one third of that workload, as summarized in Table 3, below. 

 

Stripe # of fields # DAG 
nodes 

Grid Site Nodes used Run time 
(secs) 

9 2,400 305 UW 106 2105 

12 2,400 217 UW 120 3547 

32 2,400 309 UW 89 2708 

34 1,320 123 UW 41 2332 

37 3,000 347 UFL 20 2601 

76 2,040 235 UW 93 3286 

82 720 97 UC 58 3768 

Totals  14,280 1633  75 (avg) 2907 (avg) 

Table 3: Summary of validated cluster finding results 

5.1 Test Grid 
Our experimental grid consisted of four large Condor pools, as shown in Figure 5. We used the University 
of Chicago pool as the master, for job submission and persistent data storage, and we used all the pools for 
the large amount of computations involved in the cluster finding algorithm. 

5.2 Chimera DAG Creation 
A “virtual data generator” script was employed to enter the large number of VDL descriptions for each of 
the five stages of the MaxBCG computation into the Chimera database. (Over 5000 derivation descriptions 
were created). These scripts read control parameters both from pretuned parameter files and from user input. 
The resulting Chimera-computed DAGs showed a variety of complex shapes. A DAG for a modest amount 
of data, 12 fields, is shown in Figure 6, where stage 1, on the bottom, is brgSearch, stage 2 is bcgSearch, 
stage 3 is bcgCoalesce, and stage4, on the top, is getCatalog. 
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Figure 5: Configurations of Grid resources (Condor pools, storage, and networks) used in our experiments 

 

 
Figure 6: A basic DAG for cluster identification workflow. 

The graph shown below is for one specific stripe of the survey (stripe 34). It uses 123 nodes to process 
110x12 fields, and illustrates how larger workflows can be composed of many overlapping invocations of 
the workflow of the basic DAG pattern shown above. 

 
Figure 7: DAG for stripe 34 showing composition from a basic pattern. 
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Figure 8 and Figure 9 show the execution trace of the basic DAG of Figure 6, both by IP of the host 
processor of each job step (left) and by job ID (right). The job ID plot clearly shows how each of the four 
stages of the DAG progressed within the computing Grid. The execution pattern of a larger DAG for 1,200 
fields is illustrated in Figure 10 and Figure 11. 

5.3 Performance Analysis 
We found that the processing time for MaxBCG DAGs depends on how survey fields are grouped in the 
DAG nodes. (Recall that a DAG node corresponds to a job run on a single machine). For a 600 field area, 
grouped into 84 fields per brgSearch node, 48 fields per bcgSearch node, and 60 fields per bcgCoalesce 
node, time to completion was 2402 seconds using 62 hosts and 2480 seconds using 49 hosts. These times 
include all overheads except initial data transfer. For comparison, the Fermilab machines, essentially 
optimal for this computation and performing without the Chimera system, take 3360 seconds over 10 hosts 
for the same area. This illustrates one of the obvious strengths of the Grid: though special purpose machines 
and stripped down code (i.e., without the problem partitioning encouraged by the virtual data approach) may 
be much faster on a per-node basis, the larger number of available Grid compute resources enables faster 
overall problem solution. 

5.4 Results of the Computation 
The primary result of the computation is the cluster catalog. Figure 12 shows a histogram of the number of 
galaxies per cluster in the final cluster catalog for survey stripe 10. The power-law relationship is of great 
interest, because it allows one to constrain various features of the power spectrum of matter in the universe 
[23, 24]. Equally important for our purpose is the Chimera database containing the transformations that 
create cluster catalogs given galaxy catalogs, and the derivations that show exactly with which parameters 
and for what region of the sky each catalog was created. 

 
Figure 8 Queuing and execution trace for each stage (by job ID) 
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Figure 9: Queuing and execution trace, by compute host 

 
Figure 10 Computation of DAG for 1,200 Fields, by Job ID 
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Figure 11: Computation of DAG for 1,200 Fields, by compute host 
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6 Conclusion 
We have described a large-scale experiment into the applicability of virtual data concepts to real science 
problems. This effort has been successful, both convincing us of the merits of the approach and uncovering 
much ground for future work. 

The experiment involved both a “social” test of whether virtual data could be accepted and embraced by 
scientists, and a technical experiment into the nuances of data representation, request planning, and Grid 
performance. Our target community of astrophysicists had previously addressed the same challenge problem 
on a local cluster without virtual data tracking or grid technology. They felt that: 

• The complex astrophysics application codes could be readily captured and replayed through the 
Chimera VDL 

• Having the VDL “compile” directly to Grid execution jobs was a powerful and highly productive 
way to leverage significant compute resources 

• The VDL was relatively easy to use, essentially proving a highly structured manner in which to 
create job execution scripts that gave the enormous benefit of input, output, and executable 
tracking—something previously done in SDSS (as is typical in science today) by hand, with 
logbooks. 

The process of “wrapping” complex parameter files as a virtual data derivation has proven to be a 
productive and effective structuring paradigm for storing and tracking these complex control parameters. 
Moreover we have prototyped a solution to the difficult problem of dynamic determination of filenames; we 
feel that the approach taken here will be useful in similar cases but that a more dynamic “trace-based” 
approach will be necessary for cases where the file determination algorithm is not so readily extracted or 
executed a-priori, in isolation. 

The paradigm of “creating” virtual data en masse through generating scripts proved effective, in essence 
mapping out a large experimental data space that can then be populated by both interactive and batch-
oriented processes. Future work will explore the use of automated triggers to produce data as experiments 
generate new data. 

The possibility of regenerating data when code or dependent data objects change, which is enabled by the 
Chimera data dependence tracking model, is seen as a huge potential benefit—as significant as the 
application of “makefiles” to the process of compiling executable applications. 

In future work we will expand the size of our Grid and complete analysis of the currently available SDSS 
data. We plan to also address further astrophysics problems that explore other parts of the SDSS 
computation space, including the search for near-earth asteroids, a problem that demands analysis of the 
images themselves and hence is dominated by data transfer, and computation of the angular power spectrum 
of clusters, which demands large matrix inversions and hence calls for MPI-enabled Grids. We have 
outlined other extensions of the virtual data paradigm elsewhere [5]. 

In summary, this effort was an important first step in what we expect to be a lengthy engagement with many 
scientific disciplines. We expect that each new application, and certainly each new scientific domain, will 
bring new challenges to the application of virtual data. As we endeavor to expand on these results, we are 
eager to determine how far we can go toward improving the productivity of other data-intensive areas of 
scientific  practice. 
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