
Restricted Slow-Start for TCP

William Allcock1, Sanjay Hegde2 and Rajkumar Kettimuthu1

1Argonne National Laboratory
Argonne, IL 60439, USA

{allcock, kettimut}@mcs.anl.gov

2California Institute of Technology
Pasadena, CA 91125, USA

hegdesan@caltech.edu

Abstract
In network protocol research a common goal is optimal bandwidth utilization,

while still being network friendly. The drawback of TCP in networks with large
bandwidth-delay products due to its AIMD based congestion control mechanism is well
known. The congestion control algorithm of TCP has two phases namely slow-start phase
and congestion-avoidance phase. Many researchers have focused on modifying the
congestion avoidance phase of the algorithm. In this work, we propose a modification to
the slow-start phase of the algorithm to achieve better performance. Restricted slow-start
algorithm is a simple sender side alteration to the TCP congestion window update
algorithm.

1. Introduction

TCP was originally defined in RFC 793 [1], and several enhancements have been
proposed to TCP since then [2-4]. The congestion control algorithm of TCP has two
phases namely slow-start phase and congestion-avoidance phase. With slow start, the
sender window begins at one segment and is incremented by one segment every time an
acknowledgment is received. This opens the window exponentially: send one segment,
then two, then four, and so on. With congestion avoidance, the sender window is
incremented at most one segment each round-trip time, regardless of how many
acknowledgments are received in that round-trip time. The congestion control algorithm
starts with the slow-start phase. Whenever congestion is detected, it reduces the sender
window to half of its value and enters congestion avoidance. This multiplicative decrease
per congestion event is too drastic and linear increase by one packet per round-trip time
in the congestion avoidance phase is too slow for networks with large bandwidth-delay
products. Recently, researchers have formulated numerous approaches to address the
limitations of the AIMD (Additive Increase Multiplicative Decrease) based TCP’s
congestion control algorithm [5] in long-fat networks (networks with large bandwidth
and long delay). These include both loss-based solutions [6,7] and delay-based solutions
[8-16].

The current slow-start procedure can result in increasing the sender window by
thousands of segments in a single round-trip time for networks with large bandwidth-
delay products. Such an increase can easily result in thousands of packets being dropped
in one round-trip time. This is often counter-productive for the TCP flow itself, and is

also hard on the rest of the traffic sharing the congested link. In this work, we propose a
modification to the slow-start procedure to solve this problem and improve the network
utilization.

2. Background and motivation

Congestion occurs when the traffic offered to a communication network exceeds
its available transmission capacity. But congestion events are not just pertained to
congestion in the network. In some operating systems (for example: Linux), congestion
events (send-stalls) are generated due to the saturation of several soft network
components such as buffers and queues in the host. Though these are resource constraints
at the sending host and are not in any way indicate of congestion in the network, Linux
TCP treats these events in the same way as it would treat the network congestion. The
impact of these send-stall events was reflected in the demo that we conducted at
IGrid2002 [17]. Further analysis revealed that these congestion events (send-stalls) are
generated in the slow-start phase rather in the congestion avoidance phase. Motivated by
the previous works [18-20], we propose a control theory approach that appropriately
paces the TCP sender during the slow-start phase to avoid the saturation of soft
component such as device queue. Even though there have been proposals to increase the
size of these soft components to overcome the problem, deployment of these solutions
revealed that still a considerable amount of available bandwidth goes unutilized. Also,
increasing the size of the soft components increases the memory usage. We aim at
improving the end-to-end bandwidth utilization without increasing the memory usage at
the host.

3. Approach

We use a PID control algorithm [21] to determine the rate of increase during the
slow-start phase. In the PID control approach, the gain is calculated using a first order
differential equation. The controller gains are configurable. The 90% of the maximum
value of the interface queue (IFQ) size is used as the set point and the current value of the
IFQ is used as the process variable in the controller. The controller compares the process
variable (current IFQ) to its set point (max IFQ) and calculates the error. Based on the
error (E), a few adjustable settings and its internal structure, the controller calculates an
output that determines the new value of the sender window. The PID transfer function
used is

Kp * (E) + 1/Τi ∫0
t
 (E) dt + Td * d(E)/ dt)

We use Ziegler Nichols Tuning Method [22] to calculate the PID parameters (Kp,
Τi and Td). A brief description of the method is as follows:

1. Select proportional control alone
2. Increase the value of the proportional gain until the point of instability is reached

(sustained oscillations), the critical value of gain, Kc, is reached.
3. Measure the period of oscillation to obtain the critical time constant, Tc.

Once the values for Kc and Tc are obtained, the PID parameters are calculated as follows:
Kp = 0.33 Kc; Ti = 0.5 Tc; and Td = 0.33 Tc.

4. Experimental Results
Our scheme is implemented in a 2.4.19 linux kernel and the performance is evaluated
through experiments conducted over a 100 mbps link between Argonne National
Laboratory and Lawrence Berkeley National Laboratory, a round-trip time of 60 ms. We
use web100 [23] to get detailed statistics of the TCP state information. Preliminary
results show that our scheme is able to achieve 40% improvement in throughput
compared to the standard TCP. Figure 1 compares the cumulative send-stall signals over
time in modified TCP with that of the standard Linux TCP.

Figure 1: Comparison of send-stall signals in the standard Linux TCP and the modified
TCP

References
[1] J. Postel, "Transmission Control Protocol," RFC-793, September 1981
[2] V. Jacobson, R. Braden, and D. Borman. RFC 1323: TCP Extensions for High
Performance, 1992.
[3] S. Floyd and T. Henderson. RFC 2582: The NewReno Modification to TCP’s Fast
Recovery Algorithm, 1999.
[4] M. Allman, V. Paxson, W. Stevens, “TCP Congestion Control,” RFC-2581, April
1999
[5] Dina Katabi, Mark Handley, and Charles Rohrs, "Internet Congestion Control for
High Bandwidth-Delay Product Networks," ACM Sigcomm 2002, Pittsburgh, August,
2002

[6] Sally Floyd, “HighSpeed TCP for Large Congestion Windows”, Internet-draft draft-
floyd-tcp-highspeed-02.txt, Work in progress, February 2003.
[7] Tom Kelly, “Scalable TCP: Improving Performance in HighSpeed Wide Area
Networks,” First International Workshop on Protocols for Fast Long Distance Networks,
Geneva, February 2003.
[8] Lawrence S. Brakmo and Larry L. Peterson, “TCP Vegas: end-to-end congestion
avoidance on a global Internet,” IEEE Journal on Selected Areas in Communications,
vol. 13, no. 8, pp. 1465–80, October 1995.
[9] E. Weigle and W. Feng, “A case for TCP Vegas in high-performance computational
grids,” in Proceedings of the 9th International Symposium on High Performance
Distributed Computing (HPDC’01), August 2001.
 [10] C. Casetti, M. Gerla, S. Mascolo, M. Sansadidi, and R. Wang, “TCP Westwood:
end-to-end congestion control for wired/wireless networks,” Wireless Networks Journal,
vol. 8, pp. 467–479, 2002.
[11] R. Wang, M. Valla, M. Sanadidi, B. Ng, and M. Gerla, “Using adaptive rate
estimation to provide enhanced and robust transport over heterogeneous networks,” in
Proc. of IEEE ICNP, 2002.
[12] Dina Katabi, Mark Handley and Charlie Rohrs, “Congestion Control for High
Bandwidth-Delay Product Networks“, Proceedings on ACM Sigcomm 2002.
[13] Shudong Jin, Liang Guo, Ibrahim Matta, and Azer Bestavros, “A spectrum of TCP-
friendly window-based congestion control algorithms,” IEEE/ACM Transactions on
Networking, vol. 11, no. 3, June 2003.
[14] R. Shorten, D. Leith, J. Foy, and R. Kilduff, “Analysis and design of congestion
control in synchronised communication networks,” in Proc. of 12th Yale Workshop on
Adaptive and Learning Systems, May 2003.
[15] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control for fast long-
distance networks,” in Proc. of IEEE Infocom, 2004.
[16] A. Kuzmanovic and E. Knightly, “TCP-LP: a distributed algorithm for low priority
data transfer,” in Proc. of IEEE Infocom, 2003.
[17] William E. Allcock, John Bresnahan, Julian J. Bunn, S. Hegde, Joseph A. Insley,
Rajkumar Kettimuthu, Harvey B. Newman, S. Ravot, T. Rimovsky, Conrad Steenberg, L.
Winkler, “Grid-enabled particle physics event analysis: experiences using a 10 Gb, high-
latency network for a high-energy physics application,” Future Generation Comp. Syst.
19(6): 983-997 (2003).
[18] C. Hollot, V. Misra, D. Towsley, and W. Gong, “On designing improved controllers
for AQM routers supporting TCP flows,” In Proceedings of IEEE INFOCOM, Apr. 2001.
[19] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual queue,” In
Proceedings of ACM SIGCOMM, 2001.
[20] S. H. Low, F. Paganini, J. Wang, S. Adlakha and J.C. Doyle, “Dynamics of
TCP/AQM and a scalable control,” In Proceedings of IEEE INFOCOM, June 2002.
[21] Gerry, J.P, "A Comparison of PID Control Algorithms,” Control Engineering, pp
102-105, March 1987.
[22] Ziegler J.G. and Nichols N.B, “Optimum settings for automatic controllers,” Trans.
ASME, pp. 759-768, 1942.
[23] http://www.web100.org/

