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Abstract 
In network protocol research a common goal is optimal bandwidth utilization, 

while still being network friendly. The drawback of TCP in networks with large 
bandwidth-delay products due to its AIMD based congestion control mechanism is well 
known. The congestion control algorithm of TCP has two phases namely slow-start phase 
and congestion-avoidance phase. Many researchers have focused on modifying the 
congestion avoidance phase of the algorithm. In this work, we propose a modification to 
the slow-start phase of the algorithm to achieve better performance. Restricted slow-start 
algorithm is a simple sender side alteration to the TCP congestion window update 
algorithm.  
 
1. Introduction 

TCP was originally defined in RFC 793 [1], and several enhancements have been 
proposed to TCP since then [2-4]. The congestion control algorithm of TCP has two 
phases namely slow-start phase and congestion-avoidance phase. With slow start, the 
sender window begins at one segment and is incremented by one segment every time an 
acknowledgment is received. This opens the window exponentially: send one segment, 
then two, then four, and so on. With congestion avoidance, the sender window is 
incremented at most one segment each round-trip time, regardless of how many 
acknowledgments are received in that round-trip time. The congestion control algorithm 
starts with the slow-start phase. Whenever congestion is detected, it reduces the sender 
window to half of its value and enters congestion avoidance. This multiplicative decrease 
per congestion event is too drastic and linear increase by one packet per round-trip time 
in the congestion avoidance phase is too slow for networks with large bandwidth-delay 
products. Recently, researchers have formulated numerous approaches to address the 
limitations of the AIMD (Additive Increase Multiplicative Decrease) based TCP’s 
congestion control algorithm [5] in long-fat networks (networks with large bandwidth 
and long delay). These include both loss-based solutions [6,7] and delay-based solutions 
[8-16].  

The current slow-start procedure can result in increasing the sender window by 
thousands of segments in a single round-trip time for networks with large bandwidth-
delay products. Such an increase can easily result in thousands of packets being dropped 
in one round-trip time.  This is often counter-productive for the TCP flow itself, and is 



also hard on the rest of the traffic sharing the congested link. In this work, we propose a 
modification to the slow-start procedure to solve this problem and improve the network 
utilization.  
 
2. Background and motivation 

Congestion occurs when the traffic offered to a communication network exceeds 
its available transmission capacity. But congestion events are not just pertained to 
congestion in the network. In some operating systems (for example: Linux), congestion 
events (send-stalls) are generated due to the saturation of several soft network 
components such as buffers and queues in the host. Though these are resource constraints 
at the sending host and are not in any way indicate of congestion in the network, Linux 
TCP treats these events in the same way as it would treat the network congestion. The 
impact of these send-stall events was reflected in the demo that we conducted at 
IGrid2002 [17]. Further analysis revealed that these congestion events (send-stalls) are 
generated in the slow-start phase rather in the congestion avoidance phase. Motivated by 
the previous works [18-20], we propose a control theory approach that appropriately 
paces the TCP sender during the slow-start phase to avoid the saturation of soft 
component such as device queue. Even though there have been proposals to increase the 
size of these soft components to overcome the problem, deployment of these solutions 
revealed that still a considerable amount of available bandwidth goes unutilized. Also, 
increasing the size of the soft components increases the memory usage. We aim at 
improving the end-to-end bandwidth utilization without increasing the memory usage at 
the host.  

 
3. Approach 

We use a PID control algorithm [21] to determine the rate of increase during the 
slow-start phase. In the PID control approach, the gain is calculated using a first order 
differential equation. The controller gains are configurable. The 90% of the maximum 
value of the interface queue (IFQ) size is used as the set point and the current value of the 
IFQ is used as the process variable in the controller. The controller compares the process 
variable (current IFQ) to its set point (max IFQ) and calculates the error. Based on the 
error (E), a few adjustable settings and its internal structure, the controller calculates an 
output that determines the new value of the sender window. The PID transfer function 
used is  

Kp * (E) +  1/Τi ∫0
t
 (E) dt + Td * d(E)/ dt ) 

We use Ziegler Nichols Tuning Method [22] to calculate the PID parameters (Kp, 
Τi and Td).  A brief description of the method is as follows: 

1. Select proportional control alone  
2. Increase the value of the proportional gain until the point of instability is reached 

(sustained oscillations), the critical value of gain, Kc, is reached.  
3. Measure the period of oscillation to obtain the critical time constant, Tc.  

Once the values for Kc and Tc are obtained, the PID parameters are calculated as follows: 
Kp = 0.33 Kc; Ti = 0.5 Tc; and Td = 0.33 Tc. 



4. Experimental Results 
Our scheme is implemented in a 2.4.19 linux kernel and the performance is evaluated 
through experiments conducted over a 100 mbps link between Argonne National 
Laboratory and Lawrence Berkeley National Laboratory, a round-trip time of 60 ms. We 
use web100 [23] to get detailed statistics of the TCP state information. Preliminary 
results show that our scheme is able to achieve 40% improvement in throughput 
compared to the standard TCP.  Figure 1 compares the cumulative send-stall signals over 
time in modified TCP with that of the standard Linux TCP. 

Figure 1: Comparison of send-stall signals in the standard Linux TCP and the modified 
TCP 
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