
TERAGRID 2007 CONFERENCE, MADISON, WI 1

GridFTP Pipelining
John Bresnahan,1,2,3 Michael Link,1,2 Rajkumar Kettimuthu,1,2 Dan Fraser,1,2 Ian Foster1,2,3

1Mathematics and Computer Science Division

Argonne National Laboratory, Argonne, IL 60439
2Computation Institute

The University of Chicago, Chicago, IL 60637
3Department of Computer Science

The University of Chicago, Chicago, IL 60637

{bresnaha, mlink, kettimut, fraser, foster}@mcs.anl.gov

Abstract—GridFTP is an exceptionally fast transfer protocol for large volumes of data. Implementations of it are widely deployed and
used on well-connected Grid environments such as those of the TeraGrid because of its ability to scale to network speeds. However,
when the data is partitioned into many small files instead of few large files, it suffers from lower transfer rates. The latency between the
serialized transfer requests of each file directly detracts from the amount of time data pathways are active, thus lowering achieved
throughput. Further, when a data pathway is inactive, the TCP window closes, and TCP must go through the slow-start algorithm. The
performance penalty can be severe. This situation is known as the “lots of small files” problem. In this paper we introduce a solution to
this problem. This solution, called pipelining, allows many transfer requests to be sent to the server before any one completes. Thus,
pipelining hides the latency of each transfer request by sending the requests while a data transfer is in progress. We present an imple-
mentation and performance study of the pipelining solution.

Index Terms— data transfer, small files, GridFTP

—————————— ——————————

1 INTRODUCTION
GridFTP [1] is a well-known and robust protocol for

fast data transfer on the Grid. Given resources, the
GridFTP implementation provided by the Globus
Toolkit [2] can scale to network speeds and has been
shown to deliver 27 Gb/s on 30 Gb/s links [3]. The pro-
tocol is optimized to transfer large volumes of data
commonly found in Grid applications [4][5][6][7].
Datasets of sizes from hundreds of megabytes to tera-
bytes and beyond can be transferred at close to network
speeds by using GridFTP.

Given the high-speed networks commonly found in
modern Grid environments, datasets less than 100 MB
are too small for the underlying protocols like TCP to
utilize the maximum capacity of the network. There-
fore, GridFTP – and most bulk data transfer protocols –
experiences the highest levels of throughput when
transferring large volumes of data.

Unfortunately, conventional implementations of
GridFTP have a limitation as to how the data must be
partitioned to reach these high-throughput levels. Not
only must the amount of data to transfer be large
enough to allow TCP to reach full throttle, but the data
must also be in large files, ideally in one single file. If
the dataset is large but partitioned into many small files
(on gigabit networks we consider any file smaller than
100 MB as a small file), the performance of GridFTP
servers suffers drastically

This problem is known as the “lots of small files”
(LOSF) problem. In this paper we study the LOSF prob-
lem and present a solution known as pipelining. We
have implemented pipelining in the Globus Toolkit,

and we present here a performance evaluation of that
implementation.

The rest of this paper is as follows. After discussing
related work in Section 2, we provide details in Section
3 about the LOSF problem. In Section 4, we describe our
pipelining solution, and in Section 5 we discuss the im-
plementation of the proposed solution. In Section 6, we
present experimental results. We conclude in Section 7
with a brief discussion of future work.

2 RELATED WORK
To work around the LOSF problem, users often tar

[8] into a single file all of the files they plan to send and
then transfer that single file. This process requires addi-
tional CPU time and disk space. A similar but better
approach is to tar all of the small files on the fly. This
approach, which is taken by [9], does require additional
network overhead and processing time, but very little.
The main problem with this approach is the awkward-
ness of specifying which files will be part of the transfer
set. If not all of the files are in the same subdirectory,
the expression can be complicated.

Mode X is part of the GridFTP version 2 protocol
[10]. It adds a notion of transfer IDs to data channel
messages. This allows for many file transfers to occur at
the same time. With this approach we could perform
many transfers concurrently, giving the appearance of a
single large file transfer. Although this is significantly
more complicated than the solution we present here,
the approach has potential. Unfortunately, to our
knowledge, there is no existing or widespread imple-
mentation of GridFTP version 2, and we are looking for

2 TERAGRID 2007 CONFERENCE, MADISON, WI

an immediately usable solution.

3 LOSF PROBLEM
The GridFTP protocol is a backward-compatible ex-

tension of the legacy RFC959 FTP protocol [11]. It main-
tains the same command/response semantics intro-
duced by RFC959. It also maintains the two-channel
protocol semantics. One channel is for control messag-
ing (the control channel) such as requesting what files
to transfer, and the other is for streaming the data pay-
load (the data channel). These protocol details have
interesting effects on the LOSF problem.

3.1 Channel Establishment
GridFTP servers listen on a well-known and pub-

lished port for client control channel connections. Once
a client successfully forms a control channel with a
server (this often involves authentication and authori-
zation), it can begin sending commands to the server.

In order to transfer a file, the client must first estab-
lish a data channel. This involves sending the server a
series of commands on the control channel describing
attributes of the desired data channel such as: what pro-
tocol to use, binary or ASCII data, passive or active
connection, and various protocol specific attributes.
Once these commands are successfully sent, a client can
request a file transfer. At this point a separate data
channel connection is formed using all of the agreed-
upon attributes, and the requested file is sent across it.

In standard FTP the data channel can be used only to
transfer one file. Future transfers must again go
through the process of setting up a new data channel.
GridFTP modified this part of the protocol to allow
many files to be transferred across a single data chan-
nel. With GridFTP all of the messaging to establish a
data channel is done once; the data channel connection
is formed just once, and the client can request several
file transfers using that same data channel. This en-
hancement is known as data channel caching.

3.2 File Transfers

Figure 1: GridFTP file transfers with no pipelining

File transfer requests are done with the RETR (send)
or STOR (receive) command. A client sends one of these
commands to the server across the control channel.
Data then begins to flow between the client and server
over the data channel. Once all of the data has been
transferred, a “226 Transfer Complete” acknowledg-
ment message is sent from the server to the client on the
control channel. Only when this acknowledgment is
received can the client request another transfer. This
interaction is illustrated in Figure 1.
 As the figure shows, there is an entire round-trip
time on the control channel between transfers where
the data channel must be idle. Before issuing the next
transfer command the client must first receive the trans-
fer completion acknowledgment, which is one trip
across the network. After receiving the acknowledg-
ment, the client sends the transfer command immedi-
ately. However, the server does not immediately re-
ceive it. The message must cross the network before the
server will begin sending data. This process involves
another trip across the network. Assuming we have the
GridFTP data channel caching enabled, we do not have
to worry about the latencies involved with establishing
the data channel. If we do not have it enabled, the delay
is significantly longer.

During this time the data channel is idle. The latency
between transfers adds to the overall transfer time and
thus detracts from the overall throughput. The problem
is even exacerbated when communicating over high-
latency networks where the RTT is very high. While the
idle data channel time is a problem, there is a far
greater problem that it causes. TCP is a window-based
protocol. For it to achieve maximum efficiency, the win-
dow size of allowed unacknowledged bytes must grow
to the bandwidth delay product [12]. Various al-
gorithms in the TCP protocol decide to increase or de-
crease the window size based on observed events [13].
If a connection is idle for longer than one RTT, the win-
dow size gets reduced to zero; and once it is used again,
it must go through TCP slow start [14]. When transfer-
ring a series of files, the data channel is idle for a con-
trol channel RTT in between transfers. If the control
channel RTT and the data channel RTT are similar, it is
likely that data channel TCP connections will have en-
tire closed windows by the time the next transfer be-
gins.

When the amount of data sent in each file is small,
the ratio of idle data channel time to transfer time be-
comes higher and affects the throughput. Additionally,
small files may not be transferred long enough to trav-
erse the slow-start algorithm and bring TCP to full
throttle. Thus, even when data is being transferred, it is
not moving at full speed.

TERAGRID 2007 CONFERENCE, MADISON, WI 3

4 PIPELINING
Pipelining approaches the LOSF problem by trying

to minimize the amount of time between transfers.
Pipelining allows the client to have many outstanding,
unacknowledged transfer commands at once. Instead of
being forced to wait for the “226 Transfer Successful”
message; the client is free to send transfer commands at
any time. The server processes these requests in the
order they are sent. Acknowledgments are returned to
the client in the same order. The process is shown in
Figure 2.

This process hides the latency of transfer requests by
overlapping them with data transfers. The first transfer
request is sent, and data begins to flow across the data
channel. While the file transfer is in progress, the client
sends the next n file transfer requests. The server
queues the requests. When the server completes the file
transfer, it sends the acknowledgment to the client and
checks the queue for the next transfer request. If the
queue is not empty, the next file transfer begins imme-
diately. There is some inevitable processing latency
between transfers, but it is very small compared to the
entire RTT of network latency that has been eliminated.

Figure 2: GridFTP file transfers with pipelining

According to the proposed pipelining protocol, the

client is allowed to send an unlimited number of out-
standing commands. In practice, the number of out-
standing commands will be limited by the GridFTP
server implementation and TCP flow control. The client
is free to send as many commands as it wishes on the
TCP control channel. However, the GridFTP server will
read a limited number of these commands out of the
TCP buffer and into its process space. All other out-
standing commands will remain in the operating sys-
tems TCP buffers. As the server side buffers get full, the
TCP window will close. Ultimately, the sending side
TCP buffers will fill up, and the client’s attempt to send
future commands will be stalled. In most cases there is
little performance benefit for a client to have more than
three outstanding commands; however, allowing an
unlimited number makes client implementation sim-
pler.

5 IMPLEMENTATION
We implemented the pipelining solution in the

Globus Toolkit GridFTP libraries and jglobus cog lava
libraries. The GridFTP server was modified to read
commands off of the control channel and into a queue.
The maximum number of commands allowed in the
queue is configurable, but the default is 20. The main
reasons for setting a maximum number are to preserve
main memory and to prevent potential denial of service
attacks. When the server is ready to process a com-
mand, it pulls out a command from the queue and
processes it. The server’s thread of execution was left
entirely untouched in this implementation. This fact
illustrates the minimal additional processing required
for our implementation.

The majority of the modifications are on the client
side of the protocol exchanged. We used the jglobus
[16] Java libraries as our client. We modified the API to
allow a user request many transfers at one time. All of
the transfer requests are immediately sent to the server,
and the client waits for the same number of
acknowledgments from the server.

6 RESULTS
To show the effectiveness of pipelining, we ran a

series of experiments. All of our experiments were
performed on TeraGrid [15] machines. For local-area
tests we ran entirely on the University of Chicago
TeraGrid. Our wide-area tests ran between the San
Diego Supercomputer Center TeraGrid site and the
University of Chicago TeraGrid site. The nodes at these
sites are Dual Itanium 1.5 GHz machines with 4 MB of
RAM and 1 Gb/s network interface cards. We used the
Globus GridFTP server with the modifications
described above and a custom client written by using
the jglobus libraries described above. To avoid
anomalies and bottlenecks in the filesystem, we used
the standard UNIX devices /dev/zero and /dev/null
as our source and desitation files, respectively. The
devices appear as files to the GridFTP server; however,
they do no disk or block I/O.

Figures 3 through 6 show the results of an experi-
ment that transfers 1 GB of data partitioned into an in-
creasing number of files. As the number of files in-
creases, the size of each file decreases, but the total
number of bytes transferred remains constant at 1 GB.
The top x-axis shows the number of files, and the bot-
tom x-axis shows the size of each file. The y-axis shows
the achieved throughput in Mb/s.

The LAN results in Figures 3 and 4 show how the
legacy transfer request techniques quickly suffer when
the data is partitioned into multiple files. There is a sig-
nificant dropoff before just 10 files of 100 MB each, and
almost all of the throughput is lost at 1,000 1 MB files.
However, the pipelining solution is unaffected by file
partitioning until the point where the file sizes are less
than 100 KB. The wide-area tests in Figures 5 and 6

4 TERAGRID 2007 CONFERENCE, MADISON, WI

show how significantly latency affects the legacy trans-
fers. Sine the round-trip times are greater on wide area
networks, the delay between transfers is also greater,
and thus the overall transfer time is longer. However,
the pipelining case is again unaffected.

Figure 3: Comparison of the performance of
pipelined GridFTP transfers with standard (non-
pipelined) GridFTP transfers in a LAN with no
security

Figure 4: Comparison of the performance of

pipelined GridFTP transfers with standard
(nonpipelined) GridFTP transfers in a LAN with
security

Security affects the results in a way we did not ex-

pect. Since we are caching data channel connections in
both the cached and the pipelining cases, we did not ex-
pect the throughput levels to drop any sooner with se-
curity than without security. However, as shown in
Figures 4 and 6, this is not the case. As the number of
files increases, the throughput drops off sooner when
sending with GSI authentication. After extensive inves-
tigation we have determined that this result is due not
to any data channel handling but rather to message-

processing latencies on the control channel.

Figure 5: Comparison of the performance of
pipelined GridFTP transfers with standard
(nonpipelined) GridFTP transfers in a WAN with
no security

Figure 6: Comparison of the performance of
pipelined GridFTP transfers with standard
(nonpipelined) GridFTP transfers in a WAN with
security

Between transfers the server sends a reply to the cli-
ent. In our implementation the data channel must be
idle while the reply is formatted and passed to the TCP
stack for sending. With nonsecure transfers this time is
extremely short. With GSI, however, the reply must be
encrypted, and therefore it takes much longer to for-
mat. As more transfers are requested, more of these
replies must be sent. Thus, this idle time becomes great
enough to affect the transfer rate.

7 CONCLUSIONS AND FUTURE WORK
We have presented a solution to the LOSF problem

that is immediately available and implemented in a

TERAGRID 2007 CONFERENCE, MADISON, WI 5

widely deployed GridFTP server. No additional com-
putational or data transmission work is added as part
of the pipelining solution. The solution changes only
the order in which the work is done.

 Our results show that the pipeline approach is effec-
tive up to the point where the files are so small that the
overhead for processing file opens takes effect. We plan
to address this problem by adding an “open ahead”
feature to the GridFTP server and by applying tech-
niques to make better use of multicore processors for
secure messaging.

Another problem we observed during this work is
that a race condition exists in the Mode E [1] data chan-
nel protocol. When cached data connections are used
with many parallel TCP connections, data can arrive
out of order in an undetectable way. The problem oc-
curs if the level of parallelism is adjusted between file
transfers on a cached connection. Prior to the pipelining
implementation it was extraordinarily unlikely that this
would happen because of the high latency between
transfers. With pipelining, however, the likelihood in-
creases. We have modified the Globus implementation
of mode E to avoid this problem in a safe way; how-
ever, the protocol description should be modified to
eliminate this race possibility.

ACKNOWLEDGMENTS
This work was supported in part by the Mathemati-

cal, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Com-
puting Research, Office of Science, U.S. Dept. of Energy,
under Contract DE-AC02-06CH11357 and in part by
SciDAC-2 CEDPS. We are grateful for having access to
the TeraGrid: Without a multisite wide-area test bed we
could not have run these experiments, and we would
not have gained the insights that we now have for fu-
ture work.

6 TERAGRID 2007 CONFERENCE, MADISON, WI

8 REFERENCES

[1] W. Allcock, “GridFTP: Protocol extensions to FTP for the

Grid,” Global Grid ForumGFD-R-P.020, 2003.
[2] Foster, I. and Kesselman, C. Globus: A Metacomputing Infra-

structure Toolkit. International Journal of Supercomputer
Applications, 11 (2). 115-128. 1997.

[3] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumi-
trescu, I. Raicu, and I. Foster, “The Globus striped GridFTP
framework and server,” in SC'05, ACM Press, 2005.

[4] W. Allcock, A. Chervenak, I. Foster, L. Pearlman, V. Welch,
and M. Wilde, “presented at International Conference on
Computing in High Energy and Nuclear Physics, Beijing,
China, September 2001.

[5] N. Karonis, M. E. Papka, J. Binns, J. Bresnahan, J. A. Insley,
D. Jones, and J. Link, "High-Resolution Remote Rendering of
Large Datasets in a Collaborative Environ-ment," Future
Generation of Computer Systems, pp. 909-917, 2003.

[6] A. Chervenak, R. Schuler, C. Kessel-man, S. Koranda, B. Moe,

“Wide Area Data Replication for Scientific Collaborations,”
Proceedings of 6th IEEE/ACM International Workshop on
Grid Computing (Grid2005), November 2005.

[7] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C.
Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S.
Tuecke, “Data management and transfer in high perform-
ance computational grid environments,” Parallel Comput-
ing Journal, vol. 28, no. 5, pp. 749~771, 2002.

[8] http://www.gnu.org/software/tar/
[9] K. Bayer. “GNU Tar Streaming within GridFTP and the

Globus Toolkit,“ Master’s Thesis, Harvard University, March
2006.

[10] Mandrichenko, I. GridFTP Protocol Improvements. Global
Grid Forum, GWD-E-21, 2003.

[11] Postel, J. and Reynolds, J. File Transfer Protocol. Internet
Engineering Task Force, RFC 959, 1985.

[12] S. Floyd, “HighSpeed TCP for large congestion windows,”
RFC 3649, Experimental, December 2003.

[13] M., Paxson, V. and Stevens, W. TCP Congestion Control.
IETF, RFC-2581, 1999.

[14] V. Jacobson. Congestion avoidance and control. In Pro-
ceedings of SIGCOMM '88: Communications, Architec-tures,
and Protocols, pages 314--329. ACM SIGCOMM, August
1988

[15] http://www.teragrid.org/
[16] http://dev.globus.org/wiki/CoG_jglobus

License
The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne Na-
tional Laboratory ("Argonne"). Argonne, a U.S. De-
partment of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevo-
cable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the
public, and perform publicly and display publicly,
by or on behalf of the Government.

