
Globus Timers: Scheduling Periodic Data Management Actions on
Distributed Research Infrastructure

Rachana Ananthakrishnan
rachana@globus.org
University of Chicago
Chicago, Illinois, USA

Josh Bryan
josh@globus.org

University of Chicago
Chicago, Illinois, USA

Kyle Chard
chard@uchicago.edu
University of Chicago
Chicago, Illinois, USA

Argonne National Laboratory
Lemont, Illinois, USA

Ryan Chard
rchard@anl.gov

Argonne National Laboratory
Lemont, Illinois, USA

Kurt McKee
kurt@globus.org

University of Chicago
Chicago, Illinois, USA

Ada Nikolaidis
ada@globus.org

University of Chicago
Chicago, Illinois, USA

Jim Pruyne
pruyne@globus.org
University of Chicago
Chicago, Illinois, USA

Stephen Rosen
sirosen@globus.org
University of Chicago
Chicago, Illinois, USA

Ian Foster
foster@anl.gov

Argonne National Laboratory
Lemont, Illinois, USA
University of Chicago
Chicago, Illinois, USA

ABSTRACT
The increasing complexity and scale of scientific problems presents
new challenges to manage, analyze, and manipulate large volumes
of data. Automation is critical to reducing the time spent on mun-
dane and error-prone tasks, such as backing up data, purging old
records, and even performing routine analysis. Globus provides
a broad range of research automation services to empower users
to outsource and automate data-oriented tasks, such as transfer,
publication, and analysis. Here we present the newest addition
to the Globus platform, the Globus Timers service. Timers is a
cron-like service designed to simplify scheduling repeated actions.
It leverages the Globus Auth service to engage securely any ser-
vice exposing a compatible interface. Since its release in late 2021,
Timers has been used by over 1300 users to perform more than
2.2 million tasks. We explain how Timers can be used, describe its
implementation, and discuss its adoption.

ACM Reference Format:
Rachana Ananthakrishnan, Josh Bryan, Kyle Chard, Ryan Chard, Kurt Mc-
Kee, Ada Nikolaidis, Jim Pruyne, Stephen Rosen, and Ian Foster. 2023. Globus
Timers: Scheduling Periodic Data Management Actions on Distributed Re-
search Infrastructure. In Practice and Experience in Advanced Research Com-
puting (PEARC ’23), July 23–27, 2023, Portland, OR, USA. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3569951.3597571

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
PEARC ’23, July 23–27, 2023, Portland, OR, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9985-2/23/07. . . $15.00
https://doi.org/10.1145/3569951.3597571

1 INTRODUCTION
The growing volume and complexity of data produced by advanced
research methods necessitates the use of automated systems for effi-
cient management and use of data. Automation can both reduce the
risk of human error and reduce the time spent on labor-intensive
tasks, allowing scientists to focus on generating insights from their
data. Further, automation can foster reproducibility, which is essen-
tial for effective collaboration and the validation of findings.

Globus [3] provides a suite of services for research data man-
agement, including data transfer, sharing, and publication. These
cloud-hosted services enable researchers to manage data across
institutions and computational and storage resources. For exam-
ple, Globus Transfer allows users to transfer data between various
storage systems, automating movement while handling potential
errors or interruptions.

As Globus becomes an ever more critical tool for researchers,
there is a growing need perform tasks without requiring human
intervention: e.g., to backup datasets to tape storage; replicate and
synchronize data across geographically distributed computers used
for analysis tasks; and remove unused data after some period of time.
Thus, there is a need for cron-like behavior via which users can
schedule tasks to be performed at predefined intervals or specific
times.

Recently, we introduced Globus Automation Services [1] to em-
power researchers to define and run data management flows that
span resources and time scales. Here we present the newest addi-
tion to the suite of Globus Automation Services: the Globus Timers
service. Timers is a cloud-hosted platform that offers the ability
to schedule and automate various data management tasks. For ex-
ample, users can define timers that periodically synchronize data
movement between across storage systems or schedule flows to
analyze data at specific times. This scheduling capability is designed

https://doi.org/10.1145/3569951.3597571
https://doi.org/10.1145/3569951.3597571

PEARC ’23, July 23–27, 2023, Portland, OR, USA Ananthakrishnan, et al.

to help researchers reliably outsource and automate routine data
management tasks.

The remainder of this paper is organized as follows. §2 discusses
how Globus Timers can be used. §3 describes the architecture and
implementation of the Timers service. §4 reviews the adoption and
usage of Timers, and §5 and §6 present related work and conclu-
sions, respectively.

2 USING TIMERS
The Timers service enables users to schedule, either as a one-off or
recurring, arbitrary “tasks” (often via other Globus services). User’s
can securely delegate permission to a timer to perform actions on
their behalf, such as performing a transfer or initiating analysis
jobs. Here we describe how users work with the Timers service.

Timers exposes three primary interfaces: the SDK, CLI, and Web
App. To use a timer one must first register the timer with the
service. When registering a timer, the user specifies a schedule
and the action to be performed. Currently the Globus Web App
only supports registration of timers for Globus Transfers. Timers
that invoke other actions must be specified via the SDK or CLI.

The following schema is supported when defining a new timer:

{
"name": "string",
"stop_after": { "date": "2023 -08 -24 T14 :15:22Z",

"n_runs": int },
"interval": int ,
"scope": "string",
"refresh_token": "string",
"callback_url": ["string"],
"callback_body": { "request_id": "uuid",

"body": {} },
"start": "20123 -08 -24 T14 :15:22Z"

}

The submission schema requires several pieces of information,
including the action, interval, token, and stopping condition. The
action is defined by the callback_url and callback_body. These fields
specify which service the timer will invoke when “triggered” and
the payload to pass to the action. For example, the above listing
specifies a Transfer action and would be accompanied by a payload
with the source and destination endpoint for which to perform a
transfer. A refresh_token is used to grant the timer permission to
perform the action on the user’s behalf. The start and interval fields
specify when the timer will begin operating and the rate at which it
will be triggered. The stop_after field specifies the exit condition for
the timer. This may either be a specific time after which the timer
will be invalidated, or a number of runs (n_runs) to be performed
by the timer. A timer can also be created via the Globus CLI, for
example:
globus timer create transfer --interval 1d -r $e1:/ $e2:/

Once a timer is deployed it can be listed and managed through
any of the available interfaces. The listing provides information
relating to the timer’s status and configuration, as well as details
and results regarding previous runs, most recent run, and when
the next run is scheduled to occur. Management operations include
pause, resume, and delete. When a timer is in the deployed state,
the Timers service manages the reliable invocation of the timer’s
specified action at the appropriate time and continues to schedule
the timer until the completion criteria is met.

In addition to registering a timerwith the Timers service through
the SDK or CLI, we support use of timerswith the Transfer service
through the Globus Web App. The web interface to deploy a timer
is shown in Fig. 1. This interface provides a simple mechanism to
schedule transfers using a graphical interface to select the rate and
completion criteria.

Timers can be managed through theWeb App, as shown in Fig. 2.
This interface allows users to monitor timers and quickly inspect
their progress. Users can also use this interface to pause, resume,
or delete timers at their discretion.

3 GLOBUS TIMERS SERVICE
As shown in Fig. 3, the Globus Timers architecture comprises three
key components: a scheduler, task queue, and workers. We describe
the design of these components and their interactions and then
present implementation details.

The scheduler is responsible for evaluating timers and routing
actions for execution as needed. The scheduler operates in a loop,
continuously surveying the set of deployed timers to determine
whether any have triggered (i.e., met their scheduled time for exe-
cution). Once a timer is identified as needing to be executed, the
scheduler places the timer onto the task queue. Once placed on the
task queue, the scheduler then computes the next scheduled time
for the timer to trigger and updates the job status. Task queues
separate the scheduling and management of timers from their
execution. A pool of workers monitor the task queue and, when
a task is available, remove it from the queue for execution. The
worker then invokes the action specified in the callback address
with the associated action payload.

These three components provide a reliable and scalable means to
abstract the processes monitoring timers from those that perform
their associated actions. The Timers service design is inherently
scalable, allowing both schedulers and workers to be horizontally
scaled to meet demand. This approach provides both the robustness
necessary to fulfill millions of timers, as well as the reliability
necessitated by a cron-like system.

Implementation: The Timer service is implemented using FastAPI
to provide an asynchronous and performant REST interface. The
Timer API is described below.

• POST <timer_url>/jobs/: Register a new timer.
• GET <timer_url>/jobs/: List your timers.
• GET <timer_url>/jobs/<job_id>/: Get the information and
status of a timer.

• DELETE <timer_url>/jobs/<job_id>/: Delete a timer.
• PATCH <timer_url>/jobs/<job_id>/: Update a timer.
• POST <timer_url>/jobs/<job_id>/pause/: Pause a timer.
• POST <timer_url>/jobs/<job_id>/resume/: Resume a paused
timer.

timers are stored in a Amazon Relational Database Service
(RDS). Triggered timers are placed in the task queue for execution.
The task queue is implemented as a managed AWS ElastiCache
Redis cluster. The timer includes the action callback address, au-
thentication token to communicate with the action provider, and
the payload to pass when executing the action. Tasks are processed
in first in, first out (FIFO) order.

Globus Timers: Scheduling Periodic Data Management Actions PEARC ’23, July 23–27, 2023, Portland, OR, USA

Figure 1: The Web App interface to configure and deploy a timer to schedule the use of Globus Transfer. In addition to source
and destination information, users can specify the rate and duration of the timer.

Figure 2: The Timer activity pane of the Globus Web App. This page allows users to inspect and manage their deployed timers.
Instances of the timer’s execution are visible in the Tasks tab.

The Timers service uses a pool of workers to process tasks from
the task queue. Workers are implemented as processes running
in containers. Once a worker retrieves a task from the queue it
invokes the specified action, via the Globus Action Provider inter-
face [1], using the authentication token to act on the user’s behalf.
The Action Provider interface [1] provides a common way of asyn-
chronously invoking external actions and is used in Globus flows
to create workflows that orchestrate arbitrary actions. timers can
be used to invoke any service exposing an action provider interface,
including more than one dozen Globus services.

Deployment: The Timers service is deployed as a set of containers
on the Amazon Elastic Container Service (ECS) alongside a man-
aged ElastiCache Redis cluster and RDS database. AWS provides
numerous benefits to hosting the Timers service, such as increased
efficiency, scalability, reliability, and monitoring. ECS, as a managed
container orchestration service, simplifies the deployment, manage-
ment, and scaling of Timers containers and enables the service to
leverage elasticity, high availability, and robust infrastructure. This
combination simplifies the scaling of the Timers service by allowing
the horizontal deployment of additional containers as needed.

Authentication and Authorization: The Timers service uses
Globus Auth [5] for identity and access management. Thus users

PEARC ’23, July 23–27, 2023, Portland, OR, USA Ananthakrishnan, et al.

Scheduler

Globus Timers

Worker

Worker

WorkerTask Queue

Figure 3: Architecture of the Globus Timers service. Users can register new timers which are stored and then processed by the
scheduler. When ready to execute, the scheduler places the timer on the task queue for a worker to process and invoke the
specified action.

can log in to Timers using any one of thousands of supported
identity providers, such as their university or research institution,
and then use those credentials to access resources and services
without having to log in again.

GlobusAuth exposes industry-standard protocols such asOpenID
Connect and OAuth2 to interoperate with a wide range of appli-
cations and services. Timers leverages these protocols to enable
secure invocation of external actions. Thus, users can consent to al-
low a timer to invoke an external action (e.g., Transfer) as the user.
Each timer is registered with a refresh token with the appropriate
scopes to perform the specified action.

4 ADOPTION
Timers has been used by 1396 users since late 2021 to register 6618
timers that have collectively triggered over 2.2 million times. 616
timers are currently deployed, 2497 have completed after perform-
ing their function and 3505 have been deleted. Fig. 4 shows the
total number of timer tasks and failures per month since the be-
ginning of 2022. There have been a total of 2 215 022 timer tasks,
with 2 202 038 successes and 12 984 failures. Failures are typically
a result of either invalid input or insufficient permissions for the
timer to execute the targeted action. Failures are reported by the
worker and can be viewed and inspected through the Web App or
by querying the status of a timer’s activities.

Fig. 5 shows the distribution of registered intervals for both all
(top) and currently deployed (bottom) timers. A None interval de-
notes timers that were scheduled to perform a one-off execution,
of which there have been 2449. The figure shows that, of repeating
timers, 1329 (and 272 currently deployed timers) have a sched-
uled interval between one day and one week. This is due to many
use cases performing either daily or weekly synchronization and
backup tasks. 101 timers were scheduled with an interval greater
than 30 days. We suspect these tasks are intended to be performed
once each month, but require additional analysis to understand the
use cases in which longer intervals are being used.

5 RELATEDWORK
Cron, a time-based job scheduler available on Unix-like systems, is
widely used to automate tasks that need to be executed at specific
times or intervals. Users schedule tasks, such as running scripts or
commands, by specifying, in a configuration file called the crontab,
fields that define the task’s timing requirements and the command
to invoke when triggered. These concepts have also been applied
to distributed systems, where a cron system is established and
synchronized to perform time-based job scheduling globally [2].

CloudWatch Events [4], part of Amazon EventBridge, supports
cron and rate expressions to schedule operations. Users can define
cron rules in Events to trigger actions at a specified time on a certain
day of each week or month. Rate expressions allow users to define
rules that trigger at a regular rate, such as once every hour or once
every day. These rules can be applied to engage other Amazon
services, such as invoking a Lambda function or processing logs.

Like these systems, Globus Timers enables users to define time-
based schedules for jobs; it differs by being tightly integrated with
the Globus fabric, which allows users to automate use of Globus
services to orchestrate and perform data management tasks.

6 CONCLUSIONS
We described the latest addition to the Globus platform: the Globus
Timers service. Timers is a cron-like system designed to allow users
to schedule time-based workloads and configure recurring actions,
such as performing regular data backups. Timers can securely in-
teract with any service that exposes an Action Provider interface,
which includes most Globus services. Since its launch in late 2021,
1396 users have used the Timers service to carry out more than
2.2 million tasks. In future work we aim to investigate common
usage patterns for Timers and develop additional integration’s that
simplify the deployment and configuration of complex schedules.

ACKNOWLEDGMENTS
This work was supported in part by NSF grant OAC-1835890 and
by U.S. DOE contract DE-AC02-06CH11357. We thank Rudyard
Richter for his work to pilot the service.

Globus Timers: Scheduling Periodic Data Management Actions PEARC ’23, July 23–27, 2023, Portland, OR, USA

Figure 4: Total timer tasks and failures. The blue bars show the
total number of timer tasks each month since Jan 2021. The
number of failures each month are shown as red crosses.

Figure 5: Number of timers per repeat interval (or None, mean-
ing no repeated schedule): all registered timers (top) and cur-
rently deployed timers as of April, 2023 (bottom).

REFERENCES
[1] R Chard et al. 2023. Globus automation services: Research process automation

across the space–time continuum. Future Gen. Computer Sys. (2023).
[2] S Davidovi and K Guliani. 2015. Reliable Cron across the Planet: ... or How I

stopped worrying and learned to love time. Queue 13, 3 (2015), 30–39.
[3] I Foster. 2011. Globus Online: Accelerating and democratizing science through

cloud-based services. IEEE Internet Computing 15, 3 (2011), 70.
[4] Amazon Web Services. 2023. CloudWatch Events. Retrieved April 2023 from

https://bit.ly/3N283M3
[5] S Tuecke et al. 2016. Globus Auth: A research identity and access management

platform. In IEEE 12th International Conference on e-Science. 203–212.

https://bit.ly/3N283M3

	Abstract
	1 Introduction
	2 Using Timers
	3 Globus Timers Service
	4 Adoption
	5 Related Work
	6 Conclusions
	Acknowledgments
	References

