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Abstract 
Grid computing gives users access to widely distributed 
networks of computing resources to solve large-scale tasks 
such as scientific computation. These tasks are defined as 
standalone components that can be combined to process the 
data in various ways. We have implemented a planning 
system to generate task workflows for the Grid 
automatically, allowing the user to specify the desired data 
products in simple terms. The planner uses heuristic control 
rules and searches a number of alternative complete plans in 
order to find a high-quality solution. We describe an 
implemented test case in gravitational wave interferometry 
and show how the planner is integrated in the Grid 
environment. We discuss promising future directions of this 
work. We believe AI planning will play a crucial role in 
developing complex application workflows for the Grid.  

Introduction   
Grid computing (Foster & Kesselman 99, Foster et al. 01) 
promises users the ability to harness the power of large 
numbers of heterogeneous, distributed resources: 
computing resources, data storage systems, instruments 
etc. The vision is to enable users and applications to 
seamlessly access these resources to solve complex large-
scale problems. Scientific communities ranging from high-
energy physics (GriPhyN 02), gravitational-wave physics 
(Deelman et al. 02), geophysics (SCEC 02), astronomy 
(Annis et al. 02), to bioinformatics (NPACI 02) are 
embracing Grid computing to manage and process large 
data sets, execute scientific simulations and share both data 
and computing resources. Scientific, data intensive 
applications, such as those outlined above are no longer 
being developed as monolithic codes. Instead, standalone 
application components are combined to process the data 
in various ways. The applications can now be viewed as 
complex workflows, which consist of various 
transformations performed on the data. For example, in 
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astronomy, workflows with thousands of tasks need to be 
executed during the identification of galaxy clusters within 
the Sloan Digital Sky Survey (Annis et al. 02). Because of 
the large amounts of computation and data involved, these 
workflows require the power of the Grid to execute 
efficiently. 
Up to now, much of the focus of Grid computing has been 
on developing middleware, which provides basic 
functionality such as the ability to query for information 
about the resources and the ability to schedule jobs onto 
the resources. With few exceptions, little work has been 
done in the area of automating job execution. Users still 
need to discover resources manually and schedule the jobs 
directly onto the Grid, essentially composing detailed 
workflow descriptions by hand. This leaves users 
struggling with the complexity of the Grid and weighing 
which resources to use, where to run the computations, 
where to access the data etc.   
The goal of our work is to automate this workflow 
generation process as much as possible. Ideally, a user 
should be able to request data by simply submitting an 
application-level description of the desired data product. 
The Grid infrastructure should then be able to generate a 
workflow by selecting appropriate application components, 
assigning the required computing resources and overseeing 
the successful execution. This mapping should be 
optimized based on criteria such as performance, reliability 
and resource use. 
In this paper, we cast workflow generation as a planning 
problem, where the goals are the desired data products and 
the operators are the application components. The 
declarative representation of actions and search control in 
domain-independent planners is convenient for 
representing constraints such as machine characteristics 
needed for some task or policies on user access to 
computing resources as well as heuristics such as 
preferring a high-bandwidth connection between hosts 
performing related tasks. In addition, our planning-based 
approach can provide high-quality solutions, in part 
because it compares a number of alternative solutions and 
uses heuristics to find good solutions more quickly.  
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The next section describes the workflow generation 
problem in a Grid computing infrastructure.  We then 
describe an initial system, not based on planning 
techniques, that addresses some aspects of the problem. 
The following section describes our approach using a 
domain-independent planning system. The output from the 
planner is a partially-ordered set of tasks assigned to 
specific computational resources, which is automatically 
executed on a distributed network through a Grid 
infrastructure.  We also describe our experiences to date in 
the domain of a gravitational-wave observatory. The 
following section presents some of the issues for future 
work, including modeling solution quality, using richer 
representations of planning knowledge in ontologies, plan 
monitoring and replanning, and planning under 
uncertainty.  

Workflow Generation 
We briefly describe the Grid environment where the jobs 
are being executed. In the Grid (Foster et al. 01), resources 
(computational, data and instruments) are distributed in the 
wide area. To manage the information and interactions 
with these resources, the Globus toolkit (Globus 02) is 
deployed on the resources. Globus consists of services, 
which allow for the discovery of the resources and the 
scheduling of jobs onto the resources.  Globus provides 
information about locating replicas of files and the means 
of high-performance data transfer.  

The problem 
Scientists often seek specific data products, which can be 
obtained by configuring available application components 
(programs) and executing them on the Grid.  As an 
example, suppose that the user’s goal is to obtain a 
frequency spectrum of a signal for a given instrument and 
time frame, placing the results at a given location.  In 
addition, the user would like the results of any intermediate 
filtering steps performed to be available at another 
location, perhaps to check the filter results for unusual 
phenomena or to extract some salient features to the 
metadata of the final results.  The process of mapping this 
type of user request into jobs to be executed in a Grid 
environment can be decomposed into two steps, as shown 
in Figure 1.  
Generate an abstract workflow: selecting and 
configuring application components to form an abstract 
workflow. Application components are selected based on 
their specified capabilities and whether they can generate 
the desired data products.  They may require inputs that 
either exist or need to be planned for in the same way.  The 
resulting abstract workflow specifies the order in which 
the components must be executed.  At this level the 
components and files are referred to by their logical names. 
A logical name uniquely identifies a component in terms of 
its functionality or a data file in terms of its content, but a 

single logical name can correspond to many actual 
executables or physical data files in different locations. 
Generate a concrete workflow: selecting specific 
resources, files, and additional jobs required to form a 
concrete workflow that can be executed in the Grid 
environment.  Each component in the abstract workflow is 
associated with an executable job by specifying the 
locations of the physical files of the component and data as 
well as the resources assigned to it in the execution 
environment.  The chosen resources must meet the 
computational requirements of the component. Additional 
jobs may be included in the concrete workflow, for 
example, to transfer files to the appropriate locations.    
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 Figure 1:  The Process of Developing Data Intensive 
Applications for Grid Environments. 

 
Although Grid middleware allows for discovery of the 
available resources and of the locations of the replicated 
data, Grid users today must carry out these steps manually. 
There are several reasons why automating this process is 
not only desirable but necessary:  
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Usability: Users are currently required to have extensive 
knowledge of the Grid computing environment and its 
middleware functions.  For example, the user needs to 
understand how to query an information service such as 
the Monitoring and Directory Service (MDS) (Czajkowski 
et al. 01), to find the available and appropriate 
computational resources for the computational 
requirements of a component.  The user also needs to 
query the Replica Location Service (RLS) (Chervenak et 
al. 02) to find the physical locations of the data.  
Complexity: In addition to requiring scientists to become 
Grid-enabled users, the process may be complex and time 
consuming.  At each step, the user must make choices 
between alternative application components, files, or 
locations. The user may reach a dead end where no 
solution can be found, which would require backtracking 
to undo some previous choice.  Many different 
interdependencies may occur among components, and as a 
result it may be hard to determine which choice should be 
changed and which option will lead to a feasible solution. 
Solution cost:  Lower cost solutions are highly desirable in 
light of the high cost of some of the computations and 
users’ resource access limitations.  Because finding any 
feasible solution is already time consuming, users are 
unlikely to explore alternative workflows that may reduce 
execution cost.   
Global cost:  Because many users are competing for 
resources, minimizing cost within a community or a virtual 
organization (VO) is desirable (Foster et al. 01).  This 
requires reasoning about individual user’s choices in light 
of other user’s choices, such as possible common jobs that 
could be included across user’s workflows and executed 
only once. 
Reliability of execution: In today’s Grid framework, when 
the execution of a job fails the recovery consists of 
resubmitting that job for execution (In Figure 1 this is 
shown as the “retry”). However, it is also desirable to be 
able to choose a different set of resources when tasks fail. 
This process needs to be performed at the abstract 
workflow level and may require choosing a new abstract 
workflow. Currently there is no mechanism for 
opportunistically redoing the remaining tasks in the 
workflow to adapt to the dynamic environment. Moreover, 
if any job fails repeatedly the system should assign an 
alternative component to achieve the same overall user 
goals. This would need to be performed at the application 
level, where there is an understanding of how different 
application components relate to each other. 
While addressing the first three points would enable wider 
accessibility of the Grid to users, the last two simply 
cannot be handled by individual users and will probably 
need to be addressed at the architecture level.  In addition, 
there are many access control policies that limit user’s 
access to resources, and these must be taken into account 
in order to accommodate as many users as possible while 
they are contending for limited resources. 

There are three different levels of abstraction that a user 
can use to specify a workflow. At the lowest level 
(concrete workflow) the user needs to specify explicit data 
movements and the exact executables and resources to be 
used. At the abstract workflow level the user needs only 
specify the workflow using logical files and logical 
component names. Finally at the application level, the user 
needs to specify only the metadata describing the desired 
data products.  

Level Specification 
example 

Specification 
detail 

Application Frequency spectrum 
of a signal for a 
given instrument 
and time frame 

Application-
specific metadata 

Abstract 
workflow  

FFT file1 Logical file 
names, logical 
component names 

Concrete 
workflow  

Gridftp 
host1://home/file1 
host2://home/file1   
/bin/fft –i file1 

Resource-level 
physical files and 
executables 

Table 1: Levels of abstraction used to describe 
workflows 

Original Workflow Generators 
In the first approach taken by the group, the work is 
divided between two separate programs, an Abstract 
Workflow Generator (AWG) and a Concrete Workflow 
Generator (CWG). AWG uses rewrite rules to choose 
executable programs that can be used to produce required 
files, using Chimera’s Virtual Data Language (Foster et al. 
02). The program requires the rules to be specified in terms 
of logical file names, so rules must typically be specified 
for each request for a file. AWG takes does not check 
whether a file already exists, and so its resulting abstract 
workflow can be larger than necessary. 
CWG performs the mapping from an abstract workflow to 
a concrete workflow.  It finds physical locations for both 
components and data, finds appropriate computer 
resources to execute the components and generates an 
executable workflow of jobs that can be submitted to the 
Grid.  It determines whether files in the abstract workflow 
already exist and, if so, removes unnecessary jobs to 
produce them. However, CWG performs no search, and 
makes a random choice whenever several alternatives are 
possible (e.g., alternative physical files, alternative 
resources). Therefore the final result is a feasible solution 
and not necessarily a low-cost one. 
As an example, Figure 2 shows a simple abstract workflow 
that might be produced by AWG, in which the logical 
component Extract is applied to an input file with a logical 
filename F.a. The resulting files, with logical filenames 
F.b1 and F.b2, are used as inputs to the components 
identified by logical filenames Resample and Decimate 
respectively.  Finally, the results are Concatenated. CWG 
locates existing files by querying a Grid service and 
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removes the Decimate step, since F.c2 has been created 
previously. It assigns computer resources to the nodes and 
adds appropriate nodes for file transfer to yield the 
concrete workflow shown in Figure 3. This is submitted to 
Grid workflow programs for execution. 
This solution produces a feasible workflow, querying the 
existing services for existing files. CWG has been 
successfully used in mapping and executing workflows for 
the Compact Muon Solenoid detector (Wulz 98), executing 
678 jobs over 7 days. During that time a total of 350 
CPU/days of computing power was used and a total of 
200GB of data was produced. For more details on the 
approach and its application, see (Deelman et al. 03a). 
However, these workflow generators require specifying 
explicit files, while a user should be able to directly 
request the information that the files contain, for example a 
Fourier transform of data from a particular location and 
time. We refer to this information as the file metadata. 
Moreover the generators do not attempt to optimize the 
workflow for time or reliability, and the split between 
abstract and concrete workflow generation introduces a 
barrier for optimization. Nor do they consider network 
bandwidth, scheduler queue size, resource reliability, 
speed or available memory, or check for access control 
policies. A more powerful approach is warranted to 
address aspects such as these. We next describe a solution 
using AI planning techniques that uses metadata, integrates 
abstract and concrete workflow creation and searches for a 
globally optimal solution. The declarative nature of the 
planning domain makes it easier to represent criteria based 
on bandwidth and resource characteristics, some of which 
are represented in the current version. 
 

 

 

 

 

 

Figure 2: abstract workflow 

 
Planning Solution 

 
In this section we describe how we have framed workflow 
generation (WG) as a planning problem. Later we describe 
further work that is needed in planning to improve the task 
modeling and the generated solution. 

Formulating workflow generation as a planning 
problem 
WG models the application components along with data 
transfer and data registration as operators. Each operator’s 

parameters include the host where the component is to be 
run, so a ground plan corresponds to a concrete workflow. 
In addition, some of the effects and preconditions of the 
operators capture the data produced by components and 
their input data dependencies. As a result the planner can 
also create an abstract workflow. The state information 
used by the planner includes a description of the available 
resources and the relevant files that have already been 
created. The input goal description can include (1) a 
metadata specification of the information the user requires 
and the desired location for the output file, (2) specific 
components to be run or (3) intermediate data products. 
Several issues make this application domain challenging, 
we touch upon them as we describe the domain model in 
more detail.  

Figure 3: Concrete w
described and nodes for 

are

In our initial work, we 
(Veloso et al. 95), beca
important role in WG a
language for search contro
domain with the more 
(Hoffman & Nebel 01)
competitive for our purpos
of Aler & Borrajo (02). 

State information 
The planner’s world sta
resources. Some state infor
such as the operating syst
on a resource, and some o
seconds or minutes, such a
length. In the long run th
about how the information
our initial implementation

a

F.a

F.b2F.b1

F.c2F.c1

F.d

Extract

DecimateResample

Concat
 

 

Gridftp host://f.a 
lumpy.isi.edu://nfs/temp/f.
 lumpy.isi.edu://bin/extract
 

data transfer 
nodes 

 
 

 jet.caltech.edu://home/ma/
resample –l /home/ma/F.b1
 

 

 

 

registration 
nodes 

F.c2 

concat 

Register F.c1 at  
/home/ma/X
 

orkflow. Specific hosts are 
data transfer and registration 
 added. 

are using the Prodigy planner 
use search heuristics play an 
nd Prodigy has an expressive 
l. We also tested versions of the 

recent planner FastForward 
 and found Prodigy to be 
es, similarly to the experiences 

te includes information about 
mation changes slowly if at all, 
em or total disk space installed 
f the information can change in 
s the available memory or queue 
e planner may need to reason 
 can change over time, but in 

 we only model the type of a 

ICAPS 2003    157  



host, network bandwidths and file information. This 
information is captured once at the planner’s startup. In 
general, thousands or millions of files may be available, 
while only a relatively small number are relevant to the 
current plan. The planner can handle this by requesting the 
relevant information while planning, but currently we filter 
the set of files before planning begins. 
It is useful for the planning state to include metadata about 
the files for several reasons. As mentioned, the planner can 
assume the task of creating both the abstract and concrete 
workflows. It is also more appropriate to reason at the 
level of the metadata than at the level of the files that 
represent that data content. Instead of searching for a file 
with appropriate characteristics, the components are linked 
to the characteristics themselves. This also avoids 
quantifying over the set of existing files, which may 
change during planning as objects are created and 
destroyed. 

Goal statements 
In most planning applications, goals refer to properties that 
should be true after the plan has been executed. For WG, 
such goals include having a file described by the desired 
metadata information on some host. However, it is also 
sometimes useful to specify goals that refer to intermediate 
components or data products, or for registering certain 
files. Thus the goal statement can, in effect, specify a 
partial plan.  
In principle, the goals given to the planning system may be 
those of a single user or the aggregated goals of a group of 
users, although we have not explored the latter case. In that 
case, the planner may be able to create a more efficient 
plan for the overall computations required by exploiting 
any synergy in the users’ goals. 

Operator descriptions 
The operators represent the concrete execution of a 
component on a particular host to generate a particular file 
or move a file across the network. Their preconditions 
represent both the data dependencies of the component, in 
terms of the input information required, and the feasible 
resources for running the component, including the type of 
resource. These operators capture information similar to 
that represented in Chimera’s Virtual Data Language 
(Foster et al. 02), such as the name of the component and 
its parameters. However, the operators also contain the 
additional information about the preconditions necessary 
for the use of the component, and describe the effect of 
executing the component on the state of the system, such 
as the consumption of resources. We are currently adding 
further information about resource requirements, such as 
minimal physical memory or hard disk space. 
Plans generated in response to user requests may often 
involve hundreds or thousands of files and it is important 
to manage the process of searching for plans efficiently. If 
a component needs to be run many times on different input 
files, it is not useful for the planner to explicitly consider 

different orderings of those files. Instead the planner 
reasons about groups of files that will be treated 
identically. An auxiliary routine allocates the files to 
different groups, looking for a locally optimal allocation. 
Since the number of input files or groups may vary by 
component and even by invocation, the preconditions are 
modeled using quantification over possible files. 
Below is an example of an operator representing a 
frequency extraction component, translated to PDDL from 
Prodigy’s action language. The operator is defined for a set 
of input files and describes these files as well as the 
resulting file in terms of metadata, such as start-time and 
end-time, which define the interval of time of the signal 
over which the extraction is taken. The predicates that are 
negated in the preconditions are function calls used as 
generative filters in Prodigy. The operator also captures the 
notion of the availability of the component on a resource 
(host).  The effects show the creation of the output file on 
the chosen host. 
 
(:action frequency-extract 
  :parameters (?host - Host 
      ?file-group - File-Group 
      ?start-time - Number 
      ?end-time - Number 
      ?channel - Channel 
      ?instrument - Instrument 
      ?format - File-Format 
      ?f0 - Number 
      ?fN - Number 
      ?sample-rate - Number) 
  :precondition 
    (forall  
      (?sft-file-group - File-Group 
      ?file-start-time - Number 
      ?file-end-time - Number) 
      (or  
     (not (sft-range-for-sub-sft  
        ?start-time ?end-time  
         ?channel ?instrument)) 
        (not (start-time-for-sft-range  
         ?sft-file-group ..)) 
        (not (end-time-for-sft-range  
        ?sft-file-group ..)) 
        (and  
         (sft-group  
      ?file-start-time ?file-end-time 
         ?channel ?instrument FRAME 
         ?sample-rate ?sft-file-group) 
        (at ?sft-file-group ?host)))) 
  :effect  
    (and (sub-sft-group  
           ?start-time ?end-time                       
           ?channel ?instrument ?format 
          ?f0 ?fN ?sample-rate 
           ?file-group) 
         (created ?file-group) 
         (at ?file-group ?host))) 
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Solution space and plan generation strategy 
Most planning systems are designed to produce a feasible 
plan given constraints on the possible actions, but do not 
attempt to optimize any measure of plan quality. In WG 
there may be many feasible plans and it is important to find 
a high-quality solution. The measure of a plan’s quality 
may include several dimensions, including the 
performance in terms of the overall expected time to 
satisfy the user request, the reliability in terms of 
probability of failures and their impact on performance, 
and issues of policy, for example not expending too much 
of a user’s allowance on some precious resource if cheaper 
resources would be adequate. Helping users manage the 
tradeoff between these dimensions is a topic of future 
work. Our current system attempts to minimize the overall 
runtime of the plan. We can estimate the run-time of the 
plan based both on the expected run-time of individual 
components on the allocated resources and on the expected 
transfer time for files around the network. 
In our initial approach, we seek high-quality plans with a 
combination of local search heuristics, aimed at preferring 
good choices for individual component assignments, and 
an exhaustive search for a plan that minimizes the global 
estimated run-time. Both aspects are necessary: without the 
global measure, several locally optimal choices can 
combine to make a poor overall plan because of conflicts 
between them. Without the local heuristics, the planner 
may have to generate many alternatives before finding a 
high quality plan. 
These local heuristics are represented explicitly in the 
planner using search control rules (Veloso et al. 95). As 
the planner searches for a solution, it repeatedly chooses a 
goal to address, an operator to achieve the goal and 
parameter assignments for the operator. For each choice, 
the planner may need to backtrack and examine several 
alternatives in order to find a feasible plan, and search 
further to find the best plan. Search control rules specify 
options that should be exclusively considered at any choice 
point in the search algorithm. They can also change the 
order in which options are considered. The rules can refer 
to information about the current state when the choice is 
made, or to other goals in the planner. For example, a rule 
can be used to prefer to allocate a component to a location 
with a higher-bandwidth connection to the location at 
which the component’s output is needed. This rule is 
applicable in almost any WG problem. Application-
specific rules can also be defined. For example, the 
following control rule would force the planner to choose a 
host to perform the pulsar search that is in the same 
location as a host that can execute the FFT component, if 
possible. 
 
 
 
 
 
 

 
(control-rule  
  select-nearby-mpi-for-pulsar-search 
  (if (and (current-operator pulsar-search) 
           (true-in-state  
             (available fft ?fft-host)) 
           (true-in-state  
             (physically-at ?fft-host ?loc)) 
           (true-in-state  
             (physically-at ?mpi ?loc)) 
           (type-of-object ?mpi Mpi))) 
  (then select bindings ((?host ?mpi))))   
 ;;; (?host is a parameter of the pulsar-search operator) 
 
The planner is able to produce results similar to CWG in 
several test scenarios using only 3 operators and 2 control 
rules, although it currently supports a broader range of 
problems using 9 operators and 17 control rules. It takes 
around a tenth of a second to find its first solution in a 
problem with around 400 files and 10 locations, requiring 
800 separate components, and around 30 seconds to 
exhaustively search the solutions for this problem. In this 
domain the time to find the first plan will scale linearly in 
the number of files and resources, although of course this 
cannot be guaranteed in other domains. 

Case study: LIGO 
The LIGO, or Laser Interferometer Gravitational-Wave 
Observatory project aims to detect gravitational waves 
predicted by Einstein. Theoretically, these can be used to 
detect astronomical objects and events such as binary 
pulsars, mergers of black holes or ‘starquakes’ in neutron 
stars. Searching for these objects requires, among other 
things, a Fourier analysis of a particular set of frequencies 
over some time frame. To conduct a pulsar search, for 
example, the user must find a number of files of raw data 
output corresponding to this time frame, extract the 
required channel, concatenate the files and make a series of 
Fourier transforms (FT) on the result. The desired 
frequencies must then be extracted from the set of FT 
output files, and processed by a separate program that 
performs the pulsar search. 
In a typical pulsar search, the user may require thousands 
of Fourier transforms, some of which may have already 
been performed and stored at some location in the Grid. 
For good performance, this work must be divided among 
the suitable hosts that are available on the Grid, taking into 
account their different speeds and currently queued tasks. 
The results must be marshaled to one host for frequency 
extraction, and the final search must be executed on a 
different host because of the program requirements. In all, 
many gigabytes of data files may be generated, so a fast-
running solution must take the bandwidth between hosts 
into account. 
We have implemented a workflow generator called 
Pegasus that uses the planning approach described in the 
last section, and applied it to the LIGO domain. The 
system is operational and has generated workflows that 
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have been executed on the Grid. Figure 4 shows a 
simplified version of the Pegasus architecture, abstracting 
from the actual Grid services and schedulers that are used. 
More details can be found in (Deelman et al. 03b). In a run 
conducted at the Supercomputer conference in November 
2002, for example, the compute and storage resources 
were at five locations distributed across the USA. Over 58 
pulsar searches were performed resulting in a total of 330 
tasks, 469 data transfers and 330 output files. The total 
runtime for scheduled tasks was over 11 hours. We briefly 
describe some of the issues that arose in integrating the 
planner into this environment. 

Figure 4: Simplified Pegasus architecture. The Request 
Manager oversees creation of the current state, calling 
the Planner and submitting the workflow for execution 

on the Grid. 

The initial state is divided into two components, based on 
how rapidly the information changes. Relatively stable 
information such as the available hosts on the Grid, their 
computational resources and operating systems, is stored in 
a persistent file, while more transient state information, 
such as data files that have already been created, is 
gathered from Grid services by the Current State Generator 
and sent as part of each planning request to the Planner. 
We intend the Planner to query Grid services directly for 
existing files, available resources, host idle times and 
network bandwidth conditions as the information is found 
to be relevant during planning, but currently information 
about files is sent with the request and no other state 
information is used. 
There are typically many FT tasks required in a plan and 
relatively few hosts that are suitable to run these tasks.  
Rather than search the possible assignments of tasks to 
machines, the planner uses an auxiliary routine to allocate 
the tasks that attempts to balance the workload of the hosts 
according to their different capabilities. It is not 
uncommon for planners to make use of auxiliary routines 
such as this to solve real-world problems, for example 

(Nau et al 95) describes a similar partnership for planning 
and scheduling in manufacturing domains. 
The planner models the expected run-time of each step in 
order to estimate the expected runtime of the plan, based 
on a critical path through the partial order of components.  
(Although Prodigy generates totally-ordered plans, the 
partial order can be recovered from the causal structure.) 
Multiple plans are produced and the best according to the 
runtime estimate is returned. The final plan is converted 
into a detailed task specification that can be executed by a 
Grid service that monitors the hosts and ensures that all 
necessary tasks are completed prior to starting a new task. 

Benefits of AI planning 
Any workflow generation tool is a significant benefit to the 
scientist, who no longer need compose the required tasks 
and allocate them to hosts on the Grid by hand. We focus 
on the benefits of planning over the existing workflow 
generation approach, described earlier. First, the planner 
allows the user to express goals in terms of metadata, or 
information about the data required, rather than the logical 
file names. For example, the planner’s top-level goal might 
be a pulsar search specifying the location, time, channel, 
instrument and settings to use. Second, the planner uses an 
explicit, declarative representation for workflow 
constraints such as program data dependencies and host 
constraints, and user access constraints. This makes it 
easier to add and modify these constraints, and to construct 
applications out of reusable information about the Grid and 
the hosts available, as we describe in the next section. 
Third, the planner creates a number of alternative plans 
and either returns the best according to some quality 
criterion, or returns a set of alternatives for the user to 
consider. This is possible because the planner is quite 
efficient in this domain: a feasible plan involving hundreds 
of FTs can be found in under a second on a 2 GHz 
Pentium 4 PC. We currently use the estimated expected 
runtime as the quality criterion as mentioned above. 

The Grid as a Test bed for Planning Research 
Finding good abstract and concrete workflows involves a 
wide range of issues that have been investigated by the 
planning community, including hierarchical planning, 
temporal reasoning and scheduling, reasoning about 
resources, planning under uncertainty and interleaving 
planning and execution. Although we have already shown 
several advantages from using planning techniques for 
workflow generation, we anticipate more as we begin to 
incorporate some of the existing techniques we mention 
here. In addition, this list, by no means exhaustive, 
highlights the potential of the workflow generation 
problem as a test application for planning research. In the 
near future we plan to evaluate approaches such as plan 
reuse and planning under uncertainty to increase the level 
of WG’s performance and sophistication. We also plan to 
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investigate the applicability of our approach to service-
level composition. 

Plan Quality 
The workflow produced by the AI planner must be of 
sufficiently high quality, where the quality metric is likely 
to include a number of dimensions whose relative 
importance may vary with the application area, the user 
and even the specific application. These dimensions will 
include the overall expected runtime of the workflow, a 
probability of successful execution and a distribution of 
possible runtimes, the use of computer or data resources 
that are costly or restricted for the user, and application-
dependent preferences on data sources and component 
programs. The tradeoffs between these different 
dimensions will be hard to predict in general for a partial 
plan, which is why our approach is to generate a number of 
alternative complete plans and test them against a global 
quality measure as well as using local search control. In 
the future, we would like to handle the requests of several 
users simultaneously, increasing the benefits of 
optimization and also making tradeoffs more complex.  
Most of the work in plan quality focuses on plan length, or 
a sum of operator costs as the metric (Estlin & Mooney 97) 
although others have used more general approaches, e.g. 
(Perez 95). Some recent approaches in scheduling have 
had success using iterative refinement techniques (Smith & 
Lassila 94) in which a feasible assignment is gradually 
improved through successive modifications. The same 
approach has been applied in planning (Ambite & 
Knoblock 97) and is well suited to seeking high-quality 
plans in WG. Some work has been done on integrating 
planning and scheduling techniques to solve the joint task 
(Myers et al. 01). 
A research area that is likely to be effective for this 
problem is the reuse of previously computed plans. Case-
based planning is a powerful technique to retrieve and 
modify existing plans that need slight changes to work in a 
new situation (Veloso 94, Kambhampati 89).  These 
approaches have potential for workflow generation 
because the network topology and resource characteristics 
are likely to be fairly stable and therefore high-quality 
solutions, which may take time to generate from first 
principles, will be good starting points for similar 
problems in the future.  

Ontologies and Reuse of Planning Knowledge 
Although much work needs to be done in the area of 
workflow generation, we believe that the current 
framework is a good foundation for developing more 
sophisticated techniques, which will make use of an 
increasing amount of information about the applications 
and the execution environment. Figure 5 shows additional 
sources of information that we would like to integrate 
within the workflow generation process in our future work.  
At the application level, we can describe the application 
components as services, which can be composed into new 

more sophisticated services. We plan to augment service-
based component descriptions by developing ontologies of 
application components and data, which will describe the 
service behavior and add semantic meaning to the service 
interactions. Ontologies will allow us to generate abstract 
workflows more flexibly from user requirements that may 
be partially complete or specified at higher levels of 
abstraction than the current service descriptions. 
Additional information provided by performance models 
of the services can guide the initial composition. 

Figure 5 The workflow mapping process and the 
information and models required. 

Ontologies will also play a very important role in 
generating concrete workflows. Ontologies of Grid 
resources will allow the system to evaluate the suitability 
of given resources to provide a particular application 
service instance. The resources that are to be allocated to 
various tasks can often be characterized in a domain-
independent way by how they are used. For example, a 
computer system becomes available again once a task has 
been completed but a user’s allocation of time on a 
particular machine is permanently depleted. Ontologies of 
resources capture these qualities e.g. (Smith & Becker 97, 
Gil & Blythe 00). Such ontologies, along with others that 
can capture computer system capabilities and job 
requirements, are key in building planning domains 
quickly and reliably from generic components. However, 
there has been little work in this area of engineering 
planning domains, although an example is (Long & Fox 
00). 

Fault-tolerant planning 
In the simplest case, the planner creates a plan that is 
subsequently executed without a hitch. Often, however, 
run-time failures may result in the need to repair the plan 
during its execution. Planning systems can also design 
plans that either reduce the risk of execution failure or are 
more likely to be salvageable when failures take place, by 
reasoning explicitly about the risks during planning and 
searching for reliable plans, possibly including conditional 
branches in their execution (Boutilier, Dean et al. 1999), 
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(Blythe 1999). Some planners delay building parts of the 
plan until execution, in order to maintain a lower 
commitment to certain actions until key information 
becomes available. These approaches are likely to have 
high impact in the Grid computing domain, since its 
decentralized nature means many factors are beyond the 
control of the planning agent. Some resources may fail to 
complete tasks that are assigned to them, or may suffer 
long delays. In addition, network bandwidth may change 
greatly in a short period of time. However current 
techniques for handling uncertainty have high complexity, 
and are not useable when more than a few potential failure 
points need to be considered. 

Multi-agent planning 
When several users make workflow requests, each is likely 
to use a personal planning agent because of the distributed 
nature of the Grid. Improvements both to individual 
solutions and to global resource usage will be made if 
planners with overlapping goals can locate each other and 
agree to pool some of their users’ resources. Issues in how 
such planners could locate one another, communicate 
shared goals and formulate, agree and commit to a shared 
plan have been studied in work on multi-agent planning 
(Tambe et al. 99) which we expect to be highly relevant to 
this domain. 
 

Discussion 
We have described an application of planning techniques 
to workflow generation on the computational grid. Key 
features in our approach are the use of application meta-
data to describe user goals and component inputs and 
outputs, explicit representation of constraints both in 
operators and control rules, and searching a number of 
plans to find a high-quality solution. The planning 
representation also allows access policies and user 
preferences to be represented. The planner-based approach 
allows users to specify goals in terms of required metadata 
and finds a solution that can be executed on the Grid in 
time comparable to the existing tools, and with 
significantly better performance. A contribution of this 
work is the full integration of the planner in an end-to-end 
system, Pegasus, that constructs workflows that are 
executed on the Grid. 
Other work in task scheduling on the Grid has focused on 
individual tasks, while we believe it is necessary to 
consider the entire workflow to optimize performance. 
AppLeS (Berman and Wolski 96) uses a performance 
metric which is tuned to each application, while the 
Workflow Management Package (Giacomini and Prelz 01) 
uses a resource broker that integrates several Grid services. 
A number of AI planning techniques have been used for 
composing software components, for example in image 
processing (Lansky et al. 95, Chien and Mortensen 96; 
Golden and Frank 02). These systems face similar issues in 

modeling components for planners, but do not handle 
distributed resources on the network or attempt to improve 
plan runtime. McDermott (02) and McIlraith and Son (02) 
apply planning to the problem of web service composition, 
which shares with this domain the problem of composing 
software components in a distributed environment where 
many components are not directly under the planner’s 
control. Many of the issues that we have described here are 
also very important for web services composition. We 
believe the family of Grid application domains can inform 
a wide range of research interests in AI planning and Grid-
related ontologies. 
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