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Abstract 
 

An important type of communication in grid and 
distributed computing environments is bulk data 
transfer. GridFTP has emerged as a de facto standard 
for secure, reliable, high-performance data transfer 
across resources on the Grid. GridCopy provides a 
simple GridFTP client interface to users and extensible 
configuration that can be changed dynamically by 
administrators to make efficient data movement in the 
Grid easier for users.  
 
1. Introduction 
 

Because of the various specializations of each site in 
Grid [1,2] environments and because some applications 
require use of more than one site, application users 
commonly have to move data between sites. For 
example, the output of a large simulation computed at 
one site may need to be archived at another site and 
visualized for end users at a third site. This data is often 
large, ranging from several hundred gigabytes to tens of 
terabytes. The data may be stored in a small number of 
large files or a large number of smaller files. 

Data movement is not a productive activity, so the 
time spent on it should be minimized. Above all, the 
“hands-on” time spent by scientists or application users 
to accomplish data movement must be minimized. 
GridFTP [3–7] has been commonly used as data transfer 
protocol in the Grid. The GridFTP protocol extends the 
standard FTP protocol to provide a superset of the 
features offered by the various Grid storage systems 
currently in use. The protocol includes the following: 

• Public-key-based Grid Security Infrastructure 
(GSI) [8] and Kerberos support (both accessible 

via GSS-API). 
• Third-party control of data transfer. 
• Parallel data transfer (one host to one host, 

using multiple TCP [9] streams). 
• Striped data transfer (m hosts to n hosts, 

possibly using multiple TCP streams if also 
parallel). 

• Manual setting of the TCP buffer size. 
• Partial file transfer. 
• Reliable and restartable data transfer. 
• Data channel caching. 
• Integrated instrumentation, for monitoring 

ongoing transfer performance. 
The Globus implementation of GridFTP [7] provides a 

software suite optimized for the gamut of data access 
issues—from bulk file transfer to the details of getting 
the data out of complex storage systems within sites on 
the Grid, and almost every data requirement in between. 
To get the maximum performance from the GridFTP 
server, users need to do some client-side optimizations. 
Often, however, the users are unaware of these 
optimizations or find it difficult to do them.  

GridCopy, or GCP, provides a simple user interface to 
this sophisticated functionality, and takes care of all 
tuning required to get optimal performance for data 
transfers. The primary contributions of GCP are 
threefold: 

1. Provide a SCP-style interface for high-
performance, reliable, secure data transfers  

2. Transparently calculate the optimal TCP buffer 
size and optimal number of parallel TCP 
streams to maximize throughput 

3. Support configurable URL translations to 
optimize throughput 

This paper is organized as follows. Section 2 describes 
some limitations in TCP for transfers over long, fat 
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pipes. Section 3 discusses the motivation for developing 
GridCopy. Section 4 gives an overview of GridCopy, 
and Section 5 delves into design details. Section 6 
contains experimental results. Section 7 briefly 
summarizes the advantages of this new interface. 
 
2. Background 
 

By default, GridFTP uses TCP as its transport-level 
communication protocol. In order to get maximal data 
transfer throughput, it is critical to use optimal TCP send 
and receive socket buffer sizes for the link being used. If 
the buffers are too small, the TCP congestion window 
never fully opens. If the receiver buffers are too large, 
TCP flow control breaks, and the sender can overrun the 
receiver, thereby causing the TCP window to shut. This 
situation is likely to happen if the sending host is faster 
than the receiving host. Overly large windows on the 
sending side are not a big problem as long as excess 
memory is available. The optimal buffer size is twice the 
bandwidth-delay product (BDP) of the link. 

 buffer size = 2 * bandwidth * delay 
The drawback of TCP for the high-bandwidth and 

high-latency networks, inherent in its AIMD-based 
congestion control mechanism [10–12] is well known 
[13–17]. The problem is that the number of packets in 
flight can be large, and the time taken to recover from a 
congestion event is directly proportional to the BDP. 
Hence, TCP is not scale-invariant with respect to 
bandwidth. For example, if we have a 200 ms path with 
a capacity of 1 Gbit/s, it will take at least 28 minutes to 
recover from a single congestion event (based on a 
standard packet size of 1,500 bytes).  
 
3. Motivation 
 

To overcome existing TCP problems, we have 
designed GridFTP to include features such as 
establishing multiple TCP connections in parallel to 
accelerate startup in the TCP slow start phase and to 
accelerate the linear increase in the congestion avoidance 
phase, and negotiating the TCP socket buffer size 
between the GridFTP server and client according to the 
bandwidth-delay product of a network. With existing 
GridFTP clients such as globus-url-copy [18], uberftp 
[19], and RFT [20], the user has to specify the 
appropriate socket buffer size and the number of parallel 
connections to get optimal performance with GridFTP. 
This is not an easy task for many users. 

Also, these clients require the user to know details 
about how local and remote file systems are organized 
and where local and remote GridFTP servers are 
installed. Typically, users are familiar with the “secure 
copy” command (scp) and prefer its simpler style of 

specifying source and destination files, but this 
command cannot attain the performance required by 
Grid users.  

These factors motivated the development of 
GridCopy, which provides an SCP-style interface and 
takes care of all required tuning.  
 
4. Overview of GridCopy  
 

GCP accepts SCP-style source and destination 
specifications. Local paths can be relative or absolute; 
remote paths look the same but have the hostname and a 
colon as a prefix. If well-connected GridFTP servers can 
access the source file and/or the destination file, GCP 
translates the filenames into the corresponding names on 
the GridFTP servers. (This procedure is explained in 
Section 5.) In addition to translating the filenames/URLs 
into GridFTP URLs, GCP adds appropriate protocol 
parameters such as TCP buffer size and number of 
parallel streams, in order to attain the optimal network 
performance for the specific source and destination. GCP 
initiates the data transfer using a GridFTP client such as 
globus-url-copy or RFT.  

If both the source and the destination are remote to the 
client, then, in contrast to SCP, GCP performs the 
transfer directly from the remote source to the remote 
destination (a “third party transfer”) without any data 
passing through the client system. The GCP command 
also allows the source to be a directory, in which case 
the entire contents of the directory are transferred to the 
destination (which must also be a directory). 

GCP offers a small number of command line options 
in addition to the source and destination specifications. 
The “-rft” option instructs GCP to use the Reliable File 
Transfer (RFT) service to manage the transfer, which 
allows the transfer to restart and continue to completion 
in the event of failure in the client, the source or 
destination GridFTP servers, or the RFT service itself. 
The “-big” option instructs GCP to use a striped 
GridFTP transfer, which uses multiple nodes at the 
source and destination to consume more network 
bandwidth for the transfer than a single system could use 
by itself. 

In addition to these two options, GCP accepts and 
passes through any globus-url-copy or RFT options that 
the user specifies. Most GCP users may not know what 
these options are, but sophisticated users may customize 
their transfers further by using these additional features. 
 
5. GCP Design 
 

Tools such as ping [21] and synack [22] can be used to 
estimate end-to-end delay; and tools such as IGI [23], 
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pathChirp [24], STAB [25], abing [26], pathrate [27], 
Iperf [28], pipechar [29], pchar [30], and Spruce [31] can 
be used to estimate end-to-end bandwidth. Latency 
estimation tools need to be run on one of the two nodes 
between which the latency needs to be estimated. 
Bandwidth estimation tools have two components. One 
component needs to be run at one end, and the second 
component needs to be run at the other end. Thus, these 
tools cannot be used to estimate available bandwidth or 
bottleneck capacity and delay between arbitrary hosts on 
the Internet.  

For data transfers between a client and server, the 
tools mentioned above can be used to estimate the 
bandwidth-delay product. However, in Grid 
environments, users often perform third-party data 
transfers, in which the client initiates transfers between 
two servers. Sometimes third-party transfers are needed 
to get optimal performance; furthermore, GridFTP’s 
striping features can be used only in server-to-server 
transfers. The end-to-end delay and bandwidth 
estimation tools cited above are not useful for third-party 
transfers. King [32], developed at the University of 
Washington at Seattle, makes it possible to calculate the 
round-trip time (RTT) between arbitrary hosts on the 
Internet. GCP uses King to estimate the RTT between 
source and destination nodes in a transfer. Estimating the 
bandwidth between any two arbitrary hosts on the 
Internet (without installing any tools on those hosts) is 
difficult. Thus, GCP assumes a fixed one Gbit/s 
bandwidth for all source and destination pairs. 

King estimates RTT between any two hosts in the 
Internet by estimating the RTT between their domain 
name servers. To do this, King depends on the fact that 
most domain name servers in the current Internet 
(~75%–80%) support recursive queries from any host. 
The accuracy of King depends crucially on another fact 
about the domain name servers in the Internet. In many 
cases the name servers are located close (in network 
latency terms) to their hosts. While the first fact is the 
result of a default choice by many name server 
administrators, the second fact arises more out of 
administrative convenience than anything else.  

For example, if King estimates the RTT between the 
source and the destination to be 50 ms, GCP sets the 
TCP buffer size to 0.05 s * (1 Gbit / 8 bits) = 6.25 MB. 
GCP caches the source, destination, and buffer size in 
$HOME/.gcp/opts.conf. $HOME is the home directory 
of the user running GCP. By default, GCP uses four 
parallel streams for the first transfer between two sites 
by a user. This value is configurable. GCP calculates the 
TCP buffer size for each stream as follows: 

BDP / max(1, streams / loss_factor), 
where loss_factor is set to two, by default, to 
accommodate for the fact that the streams that are hit by 
congestion would go slower and the streams that are not 

hit by congestion would go faster. Let us assume a 
packet gets dropped on one stream. TCP backoff causes 
the stream that dropped the packet to halve its 
bandwidth. But as there are four streams, instead of 
losing 1/2 the total bandwidth, we lose only 1/8. The 
other streams will consume that now-free 1/8 if they 
have sufficient buffer space. The loss_factor in the above 
equation is used to provide the extra buffer space for the 
streams to consume any additional bandwidth made 
available as a result of some streams dropping a packet.  

GCP caches the source, destination, number of 
streams used, TCP buffer size for each stream, and 
throughput obtained along with a “decrease streams” 
flag set to one in $HOME/.gcp/opts.conf. This flag is 
used to determine whether to decrease the number of 
streams for the next transfer between the same 
endpoints. For the subsequent transfer from the same 
user between the same two endpoints, if “decrease flag” 
is set, GCP reduces the number of parallel TCP streams 
to one less than the value used previously. If the 
throughput obtained is not less than 97% of the stored 
throughput value, GCP overwrites the number of streams 
used, updates TCP buffer size value and throughput 
obtained for that source and destination pair, and leaves 
the “decrease streams” flag on, if the number of streams 
used is greater than one. Otherwise (if the throughput 
obtained with three streams is less than 97% of the 
throughput obtained with four streams), GCP just turns 
the “decrease streams” flag off. If the “decrease streams” 
flag is not set, GCP just uses the number of streams and 
the TCP buffer size corresponding to the source, 
destination pair in $HOME/.gcp/opts.conf. 

GCP uses a configuration file to translate the user's 
simple specification of source and destination into a 
potentially complicated data movement request. The 
configuration file provides a set of translation rules that 
translate the source and destination specifications into 
service instances and paths that are known to those 
services. During this translation, the hostname may be 
changed to use a “designated transfer service” for the 
host that was originally specified (or the local system). A 
port number may also be substituted. The system 
administrators at each resource site in a virtual 
organization, using their knowledge of the local system 
configuration, must fill this configuration file uniquely. 
A shared section provides translation rules to be applied 
when using remote sites. This solution has scalability 
issues. We plan to provide more scalable solutions using 
MDS [33] and/or PubSub [34] models. System 
administrators at individual sites can publish the 
translation information to one or more of these services 
and GCP can obtain the translation information from one 
such service. The translation information has to be 
replicated and/or distributed across multiple services 
and/or locations to eliminate bottlenecks and single point 
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of failures. The translation information needs to be 
cached locally, and the cache has to be kept as consistent 
as possible.  

If there is no translation corresponding to the source 
and/or destination provided by the user, GCP will 
attempt the transfer with the source and destination 
URLs provided by the user. Also, if the user knows that 
the source and/or destination URL(s) provided by him 
are/is appropriate, he can turn off the translation of 
source and/or destination URL(s).  
 
6. Experimental Results  
 

We compared the performance of GCP with globus-
url-copy (GUC) for both memory-to-memory transfers 
and disk-to-disk transfers over three different network 
links on the TeraGrid [35]: 

1. A 4 ms RTT link between the University of 
Chicago/Argonne National Laboratory and the 
National Center for Supercomputing 
Applications (NCSA) 

2. A 15 ms RTT link between NCSA and the 
Pittsburgh Supercomputing Center (PSC) 

3. A 75 ms RTT link between PSC and the San 
Diego Supercomputer Center 

 
Figure 1: Comparison of performance of 
memory-to-memory transfers in GCP with GUC 
over a network with 4 ms RTT. 

For all experiments we measured performance for a 
range of transfer sizes from 1 Kbytes to 10 Gbytes. For 
memory-to-memory experiments, we used /dev/zero as 
source and /dev/null as destination. Each point in the 
graphs represents an average throughput value of 50 
transfers run a different times in a day. The “Globus-url-
copy” legend in Figures 1–6 refers to transfers done with 
the default TCP buffer size (usually 64 KBytes). “GCP – 
No Cache” refers to transfers done with GCP using the 
bandwidth-delay product (BDP) as the TCP buffer size 
and the BDP calculated using the delay computed with 

King for each transfer. “GCP” refers to transfers done 
with GCP using BDP as the TCP buffer size and the 
BDP picked up from a local cache (as explained in 
Section 5). In Figure 6, we also show “GUC – Non 
Dedicated” results, corresponding to transfers between 
login (rather than dedicated) nodes on both ends. 

 
Figure 2: Comparison of performance of 
memory-to-memory transfers in GCP with GUC 
over a network with 15 ms RTT. 

 
Figure 3: Comparison of performance of 
memory-to-memory transfers in GCP with GUC 
over a network with 75 ms RTT. 

The “Globus-url-copy” values in Figure 3 and 
“Globus-url-copy” and “GUC – Non Dedicated” values 
in Figure 6 should be read on the secondary y-axis on the 
right side. All experiments used just one TCP stream. 
(GCP runs did not use its feature for tuning the number 
of TCP streams used.) Furthermore, all experiments 
except those labeled “GUC – Non Dedicated” legend in 
Figure 6 transferred data between dedicated servers 
(nodes that run GridFTP servers and are used only for 
transferring data) on both ends. From Figures 1–6, we 
see that GCP improves performance dramatically—by a 
factor ranging from a low of three to more than two 
orders of magnitude compared to GUC, with no 
additional inputs other than just the source and 
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destination URLs from the user. The longer the RTT, the 
higher is the improvement factor. 

 
Figure 4: Comparison of performance of disk-
to-disk transfers in GCP with GUC over a 
network with 4 ms RTT. 

 
Figure 5: Comparison of performance of disk-
to-disk transfers in GCP with GUC over a 
network with 15 ms RTT. 

 
Figure 6: Comparison of performance of disk-
to-disk transfers in GCP with GUC over a 
network with 75 ms RTT. 
 

    As observed from Figures 1-6, throughput achieved 
with ‘GCP - No Cache’ is slightly less than ‘GCP’ with 
caching enabled. The reason for this is that ‘GCP - No 
Cache’, for each transfer, runs ‘King’ to estimate the 
latency between source and destination, whereas ‘GCP’ 
runs ‘King’ only once for each source, destination pair 
(and caches the calculated value in the local file system) 
and picks up the latency value stored in the local file 
system for subsequent transfers between the same source 
and destination. 

The performance difference for smaller files (≤1 MB) 
is not clearly visible in Figures 1–6. Thus, we show in 
Table 1 the performance of GCP and GUC for smaller 
files over a wide-area network with 15 ms RTT. For files 
of size greater than or equal to 100 KB, GCP performs 
better than GUC. For file sizes less than or equal to 10 
KB, GUC is slightly better than GCP. The crossover 
happens somewhere between 10 KB and 100 KB. 
Similar performance trends are seen for small file 
transfers over other networks. Because of space 
constraints, we do not show performance data for small 
files over other networks. 

Table 1: Comparison of performance of small 
files (files of size ≤1 MB) in GCP with GUC over 
a network with 15 ms RTT. 

XFER  
SIZE 

GCP 
(B/s) 

GCP-NC 
(B/s) 

GUC 
(B/s) 

1KB 283 200 304 
10KB 2833 2427 3391 

100KB 29596 26929 24489 
1M 295819 259634 228358 

 
7. Summary 
 

GridCopy (GCP) provides a simple SCP-style 
interface that enables users to transfer data efficiently 
over wide area networks without manual configuration. 
It allows system administrators to provide appropriate 
translations so that well-connected nodes can be used to 
perform fast data transfers. GCP can provide as much as 
two orders of magnitude improvement in data transfer 
performance relative to tools that do not perform such 
automated configuration.  
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