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Abstract 
 

For realizing the Open Grid Services Architecture (OGSA) vision of a broadly-applicable and 
adopted framework for distributed system integration, a wide variety of Grid use case scenarios of 
both e-science and e-business applications are required. Such use cases, described in this 
document cover infrastructure and application scenarios for both commercial and scientific areas, 
essential Grid technologies and ‘GGF working group’ use cases. They include use cases such as 
Commercial  Data Center, Online Media and Entertainment, Inter Grid, National Fusion 
Collaboratory, Severe Storm Modeling, Virtual Organization Grid Portal, Grid Resource Reseller, 
Service-Based Distributed Query Processing, Grid Workflow, Grid lite, Interactive Grids, Mutual 
authorization, Persistent  archives, and Resource usage service. The list of Grid use cases 
presented here is necessarily incomplete. Also use cases are by design not described at the 
detail required for formal requirements to avoid making them overly complex. 
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1. Introduction 
One component of the OGSA-WG charter is  

“To produce and document the use cases that drive the definition and prioritization of 
OGSA components, as well as document the rationale for our choices.”  

This document is a collection of the use case scenarios contributed by OGSA-WG participants or 
solicited from others. It is to be used as an input to “The Open Grid Services Architecture” 
document. This document contains fully reviewed use cases in the specified OGSA template. 
There is a companion use case document along with this, namely ‘Open Grid Services 
Architecture: Second Tier Use Cases’ (GWD-I: draft-ggf-ogsa-tier2-usecase-2). That document 
contains all the incomplete and non-reviewed use cases to date. The terminology used in these 
two use case documents are currently compatible with the terminology used in the early versions 
of the OGSA architecture document (specifically Open Grid Service Platform document, 
Version1, draft 14). However when the first complete version of the architecture document is 
published, it is expected that the terminology used in the use case documents might need to be 
updated.  Further more each use case will be slightly different from others in terms of level of 
detail and style of authoring, since each use case is contributed by a different author/entity and 
the OGSA body only enforces structural compliance. 

Based on the use case documents the OGSA-WG will (a) specify, in broad but somewhat 
detailed terms, the scope of important services required, (b) identify a core set of such services 
that are viewed as essential for many Grid systems and applications, and (c) specify at a high-
level the functionalities required for these core services and the interrelationships among those 
core services. 

Each use case is structured for analysis towards separating the architectural requirements for 
creating an OGSA architecture specification. Hence the structure of a use case is as follows.  
Each use case starts with a ‘Summary’ description that outlines the content and scope of the use 
case. This is followed by a ‘Customers’ section where the customers of the use case and their 
needs are described. This section also contains things like where and how the use case occurs 
"in nature" and for whom it occurs. It provides an abstract scenario description to explain 
customers’ needs. Specifics on scale are important too. For example: How many users are 
expected for this use case?  The next section is called ‘scenarios,” and explains the primary 
scenarios of this use case. If there are more than one, all the major scenarios are listed in this 
section. Figures are included as appropriate. 

Following this is the section ‘Involved resources.’ This explains the resources, their scale and 
geographical distribution that are managed and provided by the Grid system in this use case.  
Following this is the section ‘Functional Requirements for OGSA.’ The information in here goes 
into creating the master list for requirements of the OGSA architecture.  When in doubt whether a 
requirement is functional or not, such non-functional requirements of OGSA can also be identified 
here.  Following this is the section ‘OGSA capabilities and services utilization.’  While this 
might look in practice to be very similar to the earlier section on Functional requirements, they are 
different.  The functional requirements section is linked to Chapter 2 (Requirements) of the 
architecture document. On the other hand, the capabilities and services section is inherently 
linked to Chapter 3 (Taxonomy) and Chapter 6 (Services) of the OGSA architecture document.    
Terminology similarity is only because some requirements directly translate to services or other 
such constructs in the architecture document. 

The next sections are called ‘Security considerations’ and ‘Performance considerations,’ and 
they call out these two non-functional requirements that are important for most use cases.  They 
give a better idea of the use case environment of execution.  Following this is the ‘Use case 
situation analysis’ section. This section includes a discussion of services relevant to the use 
case which are already there.  Explanations as to what extent they are satisfactory or 
unsatisfactory, and an articulation of what extensions are needed, are also included.   Finally a 
‘References’ section is included for the reader seeking more details and references.  
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While these use cases have certainly not been defined with a view to expressing formal 
requirements (and do not contain the level of detail that would be required for formal 
requirements), they have provided useful input to the definition process. We expect to expand the 
number of use cases in future revisions of this document.  

Table 1 lists all of the use cases presented in this document. 

Table 1: Use cases and contributors in this document 

Chapter Title Contributors 

2 Commercial Data Center Hiro Kishimoto, Andreas Savva, 
David Snelling 

3 Severe Storm Modeling Dennis Gannon 

4 Online Media and Entertainment Tan Lu, Boas Betzler 

5 National Fusion Collaboratory Kate Keahey 

6 Service-Based Distributed Query Processing Nedim Alpdemir, Norman Paton 

7 Grid Workflow Takuya Araki 

8 Grid Resource Reseller Jon MacLaren, William Lee 

9 Inter Grid Jeffrin J. Von Reich  

10 Interactive Grids Jeffrin J. Von Reich 

11 Grid Lite Jeffrin J. Von Reich 

12 Virtual Organization Grid Portal Charles Severance 

13 Persistent Archive PA Working Group of GGF 

14 Mutual Authorization Shawn Mullen 

15 Resource Usage Service (RUS)  Bill Horn 
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2. Commercial Data Center  

2.1 Summary 
Many enterprises have been consolidating IT resources such as servers and storage into data 
centers in order to reduce the total cost of ownership. In addition, many enterprises are 
outsourcing or planning to outsource their IT resources and/or their management, which allows 
them to focus on their core businesses. Consequently, data centers need to manage several 
thousands of IT resources, which include servers, storage, and networks. Decreasing the 
management complexity and increasing utilization of these resources require an innovative 
GRID-based resource management software, which we call a “Commercial GRID System” 
(CGS). All references to Grid technologies or simply to “Grids” in this use case refer to the CGS. 
Finally, we call a data center that implements the CGS a “Commercial Data Center” (CDC). 

During the time that mainframes dominated IT, an IT system integrator could develop a 
controllable IT system on top of this single, solid, and homogeneous platform. The current IT 
system integrators, however, must use tens of different APIs on different operating systems and 
middleware platforms, which have no consistent way to detect and respond to faults (to improve 
availability) or identify underlying performance bottlenecks (to meet performance targets), and 
thus have no consistent way to guarantee QoS. Grid-based meta-OS functionalities provided by 
the CGS can ease the burden of IT system integrators by enabling end-to-end QoS. 

2.2 Customers 
The “Grid administrator” is an important actor of the CDC. Strictly speaking, the Grid 
administrator is not a customer but a provider. However, the Grid administrator benefits from the 
increased manageability of the IT infrastructure provided by the Grid in the CDC. This is one of 
the key motivations of the CGS. Since the management of the hardware and software on the 
CDC is difficult and costly, the administrator demands the automation of key functionalities such 
as provisioning, monitoring, tuning, maintenance, error diagnosis and fault recovery on the IT 
infrastructure. 

One requirement placed on the Grid administrator is to increase the utilization of the IT 
infrastructure. According to several analysts’ reports, actual utilization ratio is often less than 20% 
for scattered resources, increasing to 70% or more when they are consolidated. Also some 
resources are reserved for failover and provisioning; in other words, they are not put to productive 
use. It should be possible to share such resources among multiple systems, with physical location 
not being the single determining factor whether sharing is possible or not. 

The Grid increases IT infrastructure manageability, thereby minimizing the number of 
administrators – e.g. from a few dozens to less than ten. 

The “IT System Integrator” is a customer of the Commercial Data Center. The IT System 
Integrator has the difficult task of constructing heterogeneous systems. Problems include making 
end-to-end performance predictions and guarantees, ensuring the required level of availability is 
achieved (e.g., 99.99%), provisioning of additional resources to respond to unpredictable service 
demands (e.g., the internet spike problem), while at all time responding to frequent changes 
(discounts and resulting access load changes, number of products, new services, etc.). 

The IT System Integrator expects to reduce the complexity of building distributed and 
heterogeneous systems by means of an OGSA-based Grid, which provides standard and QoS-
enabled meta-OS functionalities. 

The IT system integrator can also use the Grid to easily create test systems (through the creation 
of virtual organizations). 

The “IT business activity manager” is another customer of the Commercial Data Center. The IT 
business activity manager, for example, runs a ticketing service which sells tickets to “End 
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Users.” The end users are actors of the CDC but not its direct customers – they are customers of 
the ticketing service. 

At the moment only a few IT business activity managers use the CDCs. We expect that in the 
future hundreds of these managers would be using each data center. 

The following figure depicts some of the actors described above. The data centers correspond to 
Real Organizations (ROs) and the IT business activities correspond to Virtual Organizations 
(VOs). The IT business activity managers create VOs and run their services in them, expecting 
that the VOs are reliable, scalable, secure, and deliver the required QoS. On the other hand, the 
Grid administrators manage ROs and the Grid alleviates their work. 

 
Fig 1: ROs, VOs, and customers of the Commercial Data Center 

2.3 Scenarios 
There are four scenarios for the Commercial Data Center. 

2.3.1 Multiple in-house systems 
Current in-house systems, e.g. for personnel management system, finance and accounting, 
order-receiving and customer relationship management (CRM), are mostly isolated. Each in-
house system runs on its own IT resources and also keeps extra IT resources for high availability 
or in preparation for increased workload. Since the workloads are all different and peaks do not 
necessarily occur at the same time, there are a lot of idle IT resources. 

If the Grid could manage a large part of the IT resources in the enterprise and could provide 
necessary resources to each in-house system on demand, extra resources needed by each 
system could be shared among several systems, leading to better IT resource utilization. Also, 
more in-house systems could run on less IT resources. 

For each in-house system, the Grid makes reservations in advance, allocates hardware, deploys 
necessary software and data, and starts the needed applications. All these procedures are 
automated. 
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The Grid also provides autonomous management, including failover and provisioning. The Grid 
handles many failures autonomously. 

Additionally, multiple remote data centers could work together to improve scalability and 
availability. Undisrupted operation must be ensured even in the event of disasters such as 
earthquakes, fires, or acts of terrorism. Independent, but networked, data centers can be used to 
provide the necessary physical infrastructure. 

2.3.2 Limited time commercial campaign 
Corporate marketing often plans limited-time campaigns, e.g. concert ticket sales, international 
conference registration, or sales promotion campaigns. Current systems for these campaigns 
require fixed IT resources, which are over-provisioned to cope with peaks in demand. Thus they 
need high initial purchase and maintenance costs. The Grid could provide necessary IT 
resources on demand and charge based on usage. 

IT business activity managers can also chose the most inexpensive data centers or use multiple 
data centers for scalability and availability. 

2.3.3 Disaster recovery 
IT systems providing essential public infrastructure services, such as banking systems and air 
traffic control systems, require disaster recovery capabilities. Popularization of the Internet also 
makes many applications – e.g. popular web pages like Google – indispensable. Disaster 
recovery, however, has a very high cost and requires a very high level of technical expertise to 
build and operate. 

The Grid could provide a standard disaster recovery framework across remote CDCs to these IT 
business activities at lower cost. 

2.3.4 Global load balancing 
Geographically-separated CDCs can share high workload and provide scalability for applications. 

2.4 Involved resources 
A CDC is equipped with all sorts of IT resources including servers, storage, data, and networks. 
The Grid should manage at least several thousands of resources. 

2.5 Functional requirements for OGSA 
For the scenarios described above the following functions are required: 

1. Discovery 

At first, an actor of the CDC should pick out a reference to the CDC, which he/she will 
use. One or more well-known discovery services are used as the first step. 

2. Authentication, Authorization, and Accounting (AAA)1 

When the customer submits a job request, the CDC authenticates the customer and 
authorizes the submitted request. The CDC also identifies his/her policies (including but 
not limited to SLA, security, scheduling, and brokering policies). The Grid checks if the 
customer has the right to perform the requests sent. 

                                                        
1 This function should be added to OGSA platform functionality. 
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3. Advance Reservation2 

Based on the customer’s request the Grid registers when to start the request processing3.  
The Grid interprets the job specification description language in which the request is 
written. If the Customer does not provide the Grid system with the timing parameters for 
advance reservation, the reservation services should be able to implement a timing 
chosen by the Grid system (currently or at the end of queue or based on an algorithm).  
The advance reservation feature is needed in many cases due to competing resource 
requirements, and the need for flexibility for the operators, to weigh in on the reservation 
timing as well as the job execution timing.  

4. Brokering 

The Grid finds the most suitable resources for the requested time period (assuming a 
request for advance reservation). Access-control to the resources and quotas are also 
applied. The reservation is made and its reference is returned to the customer.  

5. Data Sharing 

The job request also specifies required user data (databases and/or files). Data 
accessibility should be considered during match-making. 

6. Provisioning 

Some time before the reservation time, the Grid begins application and user data 
deployment. In the case of a Java program, the Grid discovers the designated Java 
program (jar file) and deploys it into the reserved resource. The deployment feature for 
Java is already well-defined and supported on most hosting environments. 

7. Scheduling4 

When the reservation time comes, the Grid starts the task.  

8. Metering and Accounting 

During job execution, the metering service keeps track of resource usage. The 
information is passed to the accounting service. 

9. Fault Handling5 

For this use case it is assumed that the customer only needs failure notification in case 
his/her job encounters an error and cannot complete successfully (the fault handling 
procedure is designated through fault management policies). 

10. Policy 

Several attributes should be handled as policy. A brokering policy defines resource usage 
quotas per customer. An error and event policy guides autonomous management 
including provisioning and failover. 

                                                        
2 This function should be added to OGSA platform functionality. 
3 “Request processing” and “job processing” are different. In the case of advance reservation, the 
request processing books resources for future use, while job processing is the actual job 
execution at the reserved time. 
4 This function should be added to OGSA platform functionality. 
5 This function is called “Fault Tolerant” in [References: 1]. In order to cover more generic 
functionality, the function is renamed to “Fault Handling” in this document. 
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11. Security 

Isolation of customers in the same data center is a crucial requirement. The Grid should 
provide not only access control but also performance isolation.  

For the scenario “Limited time commercial campaign,” the following functions are required in 
addition to the above: 

12. Virtual Organization 

Upon the customer job request the Grid creates a VO in a data center which provides IT 
resources to the job. Depending on the customer’s request, the Grid will negotiate with 
another Grid on remote CDC and create a VO across the CDCs. Such a VO can be used 
to achieve the necessary scalability and availability. 

13. Monitoring 

The customer wants to monitor his/her application running on a remote data center. 

14. Load balancing 

The Grid monitors the job performance and adjusts allocated resources to match the load 
and fairly distributes end users’ requests to all the resources. 

For the scenario “Disaster recovery,” the following functions are required in addition to the above: 

15. Disaster Recovery 

In case of the data center becoming unavailable due to a disaster such as an earthquake 
or fire, the remote backup data center takes over the application. 

For the scenario described in “Global load balancing,” no additional function is required. 

2.6 OGSA services utilization  
The following services are necessary to provide functions in the previous section. 

1. Name resolution and discovery service 

This service is used for the Grid as discovery functionality. 

2. Security service 

This service is necessary for OGSA AAA functionality. Resource access control also 
needs the security service. 

3. Reservation service  

This service is used for advance reservation. 

4. Brokering service 

This service is used for resource brokering. 

5. Data management service 

This service is used for data sharing within a data center and across them. It is also used 
for disaster recovery. 

6. Provisioning and resource management service 

This service is used for provisioning and also for creating a VO on a remote site. 

7. Scheduling service  

This service is used for priority job scheduling. 

8. Metering and accounting service 
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This service is used for metering and accounting. 

9. Fault handling service  

This service is used for fault handling. It is a part of autonomous management. In case of 
disaster recovery, affected IT business activities are relocated to other data center(s). 

10. Policy service6 

This service is used for policy-related functionality. 

11. Monitoring service  

This service is used for monitoring functionality. 

12. Deployment service  

This service is used for provisioning functionality. 

2.7 Security considerations 
Each Commercial IT system (corresponding to a VO) should be securely isolated from the others 
since competing companies may be hosted in the same data center (RO). Before starting 
commercial systems, VOs should be divided using Virtual LAN or equivalent technology. When 
workload increases, IT resources (e.g. servers) will be reallocated to another system by 
rearranging the network configuration, but no information should leak out. 

WS-security is the starting point for the Commercial Grid System.  Some extensions may be 
necessary. 

A VO may sit in a single data center or across multiple data centers. For disaster recovery and 
wide-area load-balancing, VOs should use multiple data centers. 

2.8 Performance considerations 
In contrast to the Science Grid, execution speed is not the highest priority requirement for the 
Commercial Grid. Instead, several Quality of Service matrixes should be considered. A best-effort 
scheme cannot satisfy the Commercial Grid requirements. Since each job request should 
complete by the specified date and time, deadline scheduling by means of advance resource 
reservation is the baseline assumption. Typically, jobs are expected to run for a certain 
predefined period and provide a certain level of performance.  

To avoid the Internet spike problem, adaptive resource allocation (i.e., provisioning) enables 
scalability of the requests throughput.  

Each IT system administrator expresses their requirements in a Service Level Agreement (SLA). 
Based on the SLA, each job demands additional resources under heavy load or substitute 
resources when a failure occurs. In case all requests cannot be satisfied, low priority ones, based 
on SLA, are rejected. 

2.9 Use case situation analysis 
Several cutting-edge technologies7 8 and products9 already in the market attempt to solve one or 
more issues described above. Such attempts take a proprietary approach and have limited scope. 

                                                        
6 The explanation of policy service in [1] is very vague and is not clear what it is.  
7 Océano Project, IBM.  
8 N1, Sun Microsystems.  
9 Jareva, 
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OGSA, however, is an open, extensible, and comprehensive architecture, which can be used to 
address these problems.  

We are now in the research phase. After research completion, we would like to prototype an 
OGSA-based CGS. 

2.10 References 
1. Foster, I and Gannon, D. The Open Grid Services Architecture Platform, 2003. 

https://forge.gridforum.org/docman2/ViewProperties.php?group_id=42&document_conte
nt_id=1903&category_id=357 

2. Kishimoto, H., Savva, A., Snelling, D. OGSA Fundamental Services: Requirements for 
Commercial GRID Systems, OGSA-WG document, 14 October 2002, 
https://forge.gridforum.org/docman2/ViewProperties.php?group_id=42&category_id=431
&document_content_id=3114 
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3. Severe Storm Modeling 

3.1 Summary 
A consortium of meteorologists and environmental modelers are attempting to build a Grid to 
enable them to accurately predict the exact location of severe storms such as tornadoes, based 
on a combination of real-time wide-area weather instrumentation and large-scale simulation 
coupled with data modeling.   This is an extremely difficult problem and it is far beyond the current 
capabilities of storm simulation.  Currently the meteorologists can only say that conditions for 
severe storms are favorable and issue warnings based on actual weather observations.  Given 
the sighting of a storm, they can predict possible tracks, but given current compute and data 
analysis capabilities at their disposal, they cannot predict that a storm will appear at a specific 
location with any accuracy. 

3.2 Customers 
The primary customers are the meteorologists. The must actually use the Grid resources. This 
virtual organization is widely distributed and often mobile.  A secondary set of customers are the 
emergency management people, disaster recovery teams and the mass media.  

3.3 Scenarios 
The scenario is roughly as follows.  Instrument data streams from Doppler radar, satellite imaging, 
and ground-based sensors such as pressure, temperature and humidity detectors, are constantly 
monitored by data mining agents looking for dangerous patterns.  When one is detected, VO 
members are notified and a large number of simulations are launched automatically.   Data 
mining tools are configured to scan the output of the simulations and compare the results against 
the evolving data stream from the instruments.  Data archives are searched for similar patterns.  
Some of the instruments are automatically reconfigured to refine the data streams.   

As the storm evolves additional simulations are launched to refine the resolution of the 
predictions. Once a significant event is detected, humans monitor the entire process and aid in 
the process by steering some of the simulations.  (The simulations generate output files which 
can be visualized as animations.)  Other individuals on the ground are entering more data from 
mobile devices.  The authorities and media are notified of the predictions. 

This scenario is not yet possible because the Grid infrastructure is not yet in place.  At the 
present time, many of the various components exist, but they are not all integrated.  The current 
activity for this group is collaboration on testing the simulation and data mining and integrating the 
simulations with the data streams.   

3.4 Involved resources 
The primary resources involved include: 

• The sensor network, courtesy of several agencies. 

• The data archives of past storm activity and instrument readings. 

• The compute resources, including the Teragrid resources. 

The services to be delivered: 

• An integrated Grid allowing VO members access to the simulation and data mining tools, 
the data archives and the sensor network tools. 

• Eventually an automated, autonomic Grid of services that carry out the scenario 
described above. 
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3.5 Functional requirements for OGSA 
3.5.1 Basic Functions 

• Discovery and brokering:  Very large number of simulations and coupled data mining 
tasks are dynamically invoked when the weather turns bad.  This requires discovery of 
resources and brokering to find resources of different sizes. 

• Data sharing:  Very large databases of weather history (including radar data and other 
ground- and space-based data) must be accessed constantly.  This information is 
distributed over hundreds of different databases.  The evolving real-time weather is 
tracked against the historical information by data mining services and used to control the 
boundary conditions on the simulations. 

• Virtual organizations:  Who has access to what parts of the instrument, data, compute 
resources is very important. 

• Monitoring:  The large simulations must be monitored constantly to make sure they have 
the compute resources to continue.  The entire Grid of instruments and compute/data 
Grid must be constantly monitored. 

• Policy:  Policies control which members of the VO have access to the databases, 
instruments and the simulations.  Policy also defines who must be notified when a severe 
storm is predicted.  The notification process is automatically executed. 

3.5.2 Security Functions 
• Multiple security infrastructures:  Security controls who can control the on-line 

instruments.   

• Authentication, Authorization, and Accounting:  These are all essential for 
management of the individuals in the VO and establishing their privileges.  

• Instantiate new services:  Many of the services are simulation and data mining transient 
services.  These must be instantiated on-the-fly by agents that are monitoring the data. 

3.5.3 Resource Management Functions  
• Advance Reservation:  This is required for many of the scheduled data analysis tasks.  

However, the most important tasks have to be scheduled dynamically. 

• Scheduling:  Dynamic scheduling is an essential component of this scenario.  Compute 
resources must be provisioned on-demand to satisfy the need to complete a forecast on 
time.   

• Load balancing:  If one resource becomes overloaded with simulation and data mining 
tasks, a new compute engine may be needed and the load can be balanced. 

• Notification/Messaging:  Notification and messaging are critical in this very dynamic 
scenario. It is completely event-driven. 

• Logging:  Logging is required to understand what happened in the last "storm" so that 
performance can be optimized later. 

• Workflow management:  The workflow is very dynamic and is event-driven.  

System Properties: 

• Fault tolerance:  Better than real-time prediction: requires extreme fault tolerance.  The 
Grid cannot go down while a severe storm is being tracked.   

• Disaster Recovery:  Must be very fast.  This may require that all computations be 
mirrored and very distributed. 
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• Self-healing capabilities:  The entire analysis/simulation/prediction scenario must be 
able to correct for its own errors.   

3.6 OGSA services utilization  
Required Services:   

• Name Resolution and Discovery: Severe store modeling must be able to discover data 
resources and data catalogs from metadata descriptions. This is part of discovery. 

• Service Domains: Collections of services need to be carefully coordinated. Resource 
brokers must assure compute and data storage resources. Network bandwidth must be 
available for on-time simulation and analysis. So these different types of brokers must be 
carefully coordinated 

• Security: Authentication is required by all members of the VO.  However, careful 
authorization polices which govern who has access to specific resources such as data or 
instruments are also required. For example, not every VO member can be allowed to 
control an instrument. 

• Policy: Policy issues primarily involve access to instruments.  Under what conditions can 
a radar be re-deployed?  Also, policies will determine when a particular running system of 
services will be allowed to preempt resources for what "it perceives" as a critical need for 
public safety. 

• Data Management: Datagrid services: metadata catalogs, directory and index services, 
Grid-wide access to data archives, virtual data management. 

• Messaging, Queuing and Logging:  Grid-wide monitoring is needed by the resource 
brokers in order to provision the needed resources on time.  Messaging and event 
systems are needed because of the very dynamic "demand-driven" nature of the 
application workflow. Logging services are needed to understand what went wrong. 

• Events: Events are an essential component of this use case. Monitors are constantly 
scanning instrument data streams looking for possible storm conditions.  As they are 
found, event and message (pub/sub) systems will trigger the workflow scenarios 
essential to start the simulations and other data mining applications. 

• Metering and Accounting: Resource use costs money. Therefore billing has to be done 
and information required to do that has to be supplied. 

• Service Orchestration:  Workflow engines have to orchestrate the coupled 
simulation/datamining/visualization tasks.  The workflow has a very dynamic nature. 
External events, such as weather condition changes, can alter the flow of work.  There 
are also time constraints on the work.  If predictions are not completed on time, more 
resources may need to be allocated. 

• Administration:  Software deployment is a serious administration issue. 

• Provisioning and Resource Management: Resource requirements change on a very 
dynamic basis.  In the case of emergencies it must be possible to provision very large 
amounts of compute, bandwidth and data resources. 

• Reservation Services: Yes. See provisioning and resource management. 

• Brokering and Scheduling Services: Compute and data resource brokering services 
are needed.  Scheduling and co-scheduling services will be needed. 

• Fault Handling Services:  Faults must be dealt with via system redundancy if better-
than-real-time predictions are to be made. 

• Monitoring Services: Grid-wide monitoring, messaging, event systems and logging 
services. 
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3.7 Security considerations 
The most serious security consideration is the case when an unauthorized user is given access to 
the instrument controls.   This can cause substantial damage to the instruments if they are 
incorrectly used. 

3.8 Performance considerations 
 Performance is an extremely critical component of this use case.  Because the storm predictions 
must be made at better than real-time, it may be necessary to allocate huge amounts of 
computing and network bandwidth resources on-the-fly.  A single storm may require 100 teraflops 
of dedicated performance over a period of several hours. This is currently not possible.   

3.9 Use case situation analysis 
None of the required services are in place at the present time.  However, the instrument and data 
networks are there and there are many early ad-hoc experiments.   

3.10 References 
 “A Modeling Environment for Atmospheric Discovery,” Robert Wilhelmson, et al, 2003,: 
http://www.ncsa.uiuc.edu/expeditions/MEAD/publications/MEAD_AMS_2003_v5.doc. 
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4. Online Media and Entertainment 

4.1 Summary 
To deliver an entertainment experience, several actors form a VO for this purpose. In a first step 
we want to focus on the following roles of actors: 

• A consumer who consumes the entertainment content. 

• A service provider that hosts the entertainment content. 

• A publisher that offers the entertainment content. 

• A developer that consumes the entertainment content. 

Each role may consist of multiple companies, and the entertainment content consists of many 
different forms (e.g. move on demand or online games) with different hosting capacity demands 
and lifecycle.  Therefore one of the primary focuses of this use case is to facilitate the ability to 
dynamically manage resources based on workload demands and current system configuration.  
During the lifetime of an entertainment content the actors involved in the delivery of the content 
may change.  During the lifetime of a company the entertainment contents it has to deal with may 
also change.  Therefore the other primary focus of this use case is to provide standard interfaces 
to allow dynamic and open collaboration. 

4.2 Customers and their needs 
There are two main categories of entertainment experiences, with each having unique 
requirements on the infrastructure that delivers it: consumption and interaction.  Consumption of 
content (e.g. video on demand) does not require a lot of user interaction.  Other contents, such as 
online games, require a lot of user interaction and it is very important to guarantee response 
times for these contents. 

Online entertainment has seen a great adoption over the last couple of months. However, it is still 
in its infancy in the areas of content, business models and infrastructure. With more online 
content available, differentiation from competitors will become more important. New commercial 
opportunities will emerge, for example usage-based pricing or subscription models for premier 
consumer experience. Commercial transaction will be tied to entertainment or even inherent to 
the end-user experience. 

Because this is a new area, content developers lack competency in programming for a distributed 
network.  There is no standard architecture or even best practice for how the back-end 
datacenters are used to deliver the contents. The most common practice today is to design one 
stovepipe solution for each game title, and manage each solution separately. Consequently, 
infrastructure and components deployed for each game are not reusable. Furthermore, these 
stovepipe solutions are designed with a particular level of workload assumed (e.g. 10,000 
concurrent users), and scaling beyond this initially-assumed workload requires major redesign.  
As a result, today’s datacenters are either over-provisioned, or over-stressed to the point that 
service outage does occur.  Finally, to make things worse, when a game is first designed, there is 
no way to tell how long the lifetime of the game is going to be.  That is, the datacenters for these 
games may only be needed for only a few days (for a beta-test environment) or a few years (e.g. 
Everquest).  

4.3 Scenario 
In this scenario, there are four actors: consumers, service providers, publishers, and developers.  
A consumer, for example a game player, will access a portal and authenticate as a known 
identity. With this authorization he is then able to interact with his account or consume an offered 
entertainment experience, e.g. play an online game. There may be several providers working in 
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concert with each other.  For example a network service provider that offer bandwidth, a hosting 
capacity provider who provides server and storage resources, and  application service providers 
that offer common services like online game engines, standard customer relationship 
management, and helpdesk applications or billing applications. The content provider or studio 
provides the media content, artwork and game play that the consumer will experience. The 
integrator or publisher ties the offering together and exposes it to the consumer.  The figure below 
shows some simple interaction between these actors.  The interactions between actors may 
change, and the entertainment content may change as well; therefore it is a key requirement to 
be able to autonomously manage resource allocation as well as enabling dynamic discovery and 
interaction of the provided infrastructure and services. 

Consumer
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Studio
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Infrastructure 
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Network Serv ice 
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Fig 2: Online Media and Entertainment Use Case Scenario
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Table 2: Table listing the main behaviors of each of the actors. 

Consumer Publisher Studio xSP 
Sign up for account (with xSP)   Create Account 

 Create a user 
subscription offer 

  

  Purchase and 
subscribe to hosting 
environments 

Create a business offer for 
publishers (environment on 
demand) 

   Provide subscription to game 
environment (includes 
reserve/scheduling and purchase) 

 Delete a user 
subscription offer 

 Delete offering 

Subscribe to contents/game(s)  
(with Publisher) 

Create Authorization  Retrieve Authorization information 

Authorization/authentication   Authorization/authentication 

Find Content   Publish available contents 

Create a M&E session    

Retrieve/use content   Create the On Demand hosting 
environment (provisioning, failover, 
workload management)   

   Monitor Resources 

   Add a physical resource 

   Add new functionality/service 

   Upgrade functions/services 

   Delete an environment on demand 
offer 

   Delete a physical resource from 
pool of servers 

   Delete resources/services 

   Load balancing 

   Error capture, Problem 
Determination, Failover, and 
Recovery 

 Define metering 
requirements 

 Meter usage  

Apply a client patch/PTF    

   E-Commerce Integration 

 Generate billing 
record based on billing 
and rating packages 

 Generate billing record based on 
billing and rating packages 

 Bill player for usage 
(monthly, per hour, 
etc) 

 Bill publisher for usage/footprint 

 

4.4 Resources and Services 
The datacenter of online entertainment consists of at least the following components in a 
potentially distributed environment. 
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• Distributed server 

• Networked storage 

• Secure network (including multiple levels of firewalls) 

• Player consoles 

The online entertainment business includes at least the following functions: 

• Security services (authentication/authorization, identity mapping, etc.) 

• Financial services (billing, rating, accounting, etc.) 

• Contracting/settlement services 

• Customer relations services (logging and data mining of user behaviors) 

• Management service (capacity management, workload management) 

• Media/Entertainment specific services (e.g. multimodal input) 

To solve the problem identified in Section 4.2, the infrastructure hosting the online entertainment 
environment has to: 

• Allow dynamic composition of standard pluggable components (e.g. billing service, 
customer relations service). 

• Be secure and trusted.  

• Have on-demand capacity (autonomic scalability according to workload), 
aggregation/selection of new services, and provide for integration with other companies 
that have needed competencies.  

• Enable new commercial business models. 

• Apply to needs of online game applications. 

There are currently major trust barriers in the online gaming industry, where publishers are very 
reluctant to share resources/components.  To overcome this trust barrier, the components must 
be based on industry-standard interfaces, and must be dynamically replaceable (i.e. the flexibility 
to choose components from a wide selection of providers). 

More-specific functional requirements, illustrated by specific examples, are listed in the sections 
below. 

4.5 Functional Requirements 
4.5.1 Discovery 
OGSA services must be discoverable at both runtime and setup time.  For example, a game 
developer needs to discover a set of rendering engines and choose to use a particular one based 
on the end user’s screen resolution and connection bandwidth. 

OGSA discovery must support masking; more specifically, render some services undiscoverable 
based on, amongst other things, a user’s authorization and service level.  There are different trust 
levels between companies.  A company may want to expose all components of its software stack 
to a company that has a joint development agreement in place, but hide these components from 
other companies. 

4.5.2 Instantiate new services 
New service instances may need to be instantiated.  For example, when an additional 2000 
players join an online game, a new game server needs to be provisioned to host these additional 
players.  To provision the new server, the necessary services needs to be instantiated, and there 
are two aspects to this instantiation: deployment and scheduling/dispatching.  Deployment 
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involves transporting the necessary file/data to the server.  An example of scheduling/dispatching 
may involve: 1) reserving server resources for a period of time (e.g. reserve 2 hours to run AI 
logic); 2) determining the order of execution and whether the reservation can be met; and 3) 
dispatching the appropriate process when the scheduled time arrives. 

4.5.3 Service Level Management 
One of the biggest service levels to be managed for the online entertainment world is response 
time.  For example, guarantee 50 ms response time for first person game, and 100ms for Roll 
Playing Game. 

4.5.4 Metering and Accounting 
Resource usage needs to be logged with respect to each consumer and each provider.  This 
information will be used to charge the consumers based on their usage, as well as used for cost 
analysis by the providers to determine the pricing. 

4.5.5 Monitoring 
The resource or service owners need to surface certain states so that the user of those resources 
or services may manage the usage using that state information. 

4.5.6 Policy 
There may be policies at every level of the infrastructure from the low-level policies that govern 
how the resources are monitored and managed to high-level policies that govern how business 
process such as billing are managed.  High-level policies are sometimes decomposable into 
lower-level policies. 

4.5.7 Grouping/Aggregation of Services – based on policy and functional 
requirements 

Taking on-line games as an example, the game developers lack competency in many areas such 
as network programming, rating and billing, e-commerce integration, etc.  Therefore, composing 
services using existing services is a core requirement.  There are two main types of composition 
techniques needed by the online gaming developers: selection and aggregation.  Selection 
involves choosing to use a particular service amongst many services with the same operational 
interface (e.g. select the fastest MP3 encoder).  Aggregation involves orchestrating a functional 
flow (workflow) between services.  For example, the output of the accounting service is fed into 
the rating service to produce billing records.  One other basic function required for aggregation 
services is to transform the syntax and/or semantics of data or interfaces. 

4.5.8 Security 
In such a flexible environment, resources will over time be used for multiple content titles. 
Therefore trust has to be built on the side of the content providers that such a dynamic 
environment will not interfere with the goal of consistent user experience. Proper isolation 
between content offerings also has to be ensured.  This level of isolation has to be ensured by 
the security of the infrastructure. 

In addition, several securities related services are required: 

• Single sign-on needs to be supported.  A player may traverse several organizations in the 
M&E environment.  For example, a player of Everquest may buy an Everquest character 
on e-bay and pay for it via his PayPal account.  To support single sign-on a game 
developer may want to use a third-party authentication and authorization service, 
identification mapping service, etc. 

• Digital rights management and key management. 

• Intrusion detection and protection. 
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4.5.9 Certification 
A trusted party certifies that a particular service has certain semantic behavior.  For example, a 
company will only use e-commerce services certified by yahoo shopping. 

4.5.10 Lifecycle/Change management 
Upgrade or retire services with minimal impact to deployed and running services.  This could be 
accomplished by a workflow which provisions the required services, and dynamically modifies the 
current running environment by changing its selection rules and/or workflows. 

4.5.11 Failure Management 
OGSI soft state management could be one way to implement a heartbeat function.  Resource 
instrumentation can provide additional information about how well resources are functioning. 
Logging service is needed to keep track of resource’s history of performance and is necessary for 
error capture and trigger recovery actions.  For example, when a game server’s performance is 
degraded because of a software problem, apply patch. 

4.5.12 Provisioning Management 
Take online gaming as an example of the M&E industry.  On-line games’ workloads are very 
close to uniform sinusoidal waves, but typical server farms are still only about 20% utilized. It is 
ideal for the providers of the data centers to not over-provision for the peak workload, but instead 
use just enough capacity to meet the required service level agreements in both a predictive and a 
reactionary fashion.  
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Fig 3: Example of Online gaming system to be provisioned 

4.5.13 Workload Management 
Taking online games as an example, the amount of workload is a direct result of how many 
concurrent players are being hosted on a game server.  If the game server A is responsible for a 
20 square mile area in the game world, and a battle occurred in that area, many players will rush 
to that area, causing workload on that server to increase.  As players enter that area and leave 
other areas, other servers’ workload will decrease.  So, when the workload of server A gets 
above a certain threshold, a load-balancing routine needs to be triggered to rebalance the 
resources (i.e. servers).  That is, redistribute workloads across servers with idle capacity. 
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4.5.14 Application Specific (e.g. multimodal input) services 
Additional domain-specific services may be needed; for example, a voice-recognition engine. 

4.6 OGSA Service Mapping 
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Fig 4: Possible OGSA PortType/Services required for Online Gaming Use Case 

 

4.6.1 Security Considerations 
Each consumer, service provider, developer and publisher must have its own security identity and 
context (e.g. relationships with other entities).  All security functions traditional in the enterprise 
environment must be addressed, including privacy and non-repudiation. 

4.6.2 Performance Considerations 
The backend server infrastructure has to be able to scale, driven by increasing concurrent 
number of consumers and amount of content. Another aspect of scalability is the number of 
content pieces or game titles that will be served by a single datacenter. New titles will also require 
more compute, network and storage resources per player.  

4.6.3 Situation Analysis 
Several cutting-edge technologies and products already in the market attempt to solve one or 
more issues described above. Such attempts take a proprietary approach and have limited 
scope. The OGSA, however, is an open, extensible, and comprehensive architecture, which can 
be used to address these problems.  
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4.7 References 
None. 
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5. National Fusion Collaboratory  

5.1 Summary 
The National Fusion Collaboratory (NFC) project [References: 2] defines a virtual organization 
devoted to fusion research and addresses the need of software developed and executed by this 
community. Up to now, the developers would typically port their software to a standard set of 
platforms and the community users would then install and use this software on their machines. 
This process was found to be complex from the viewpoint of the provider as well as the user. The 
user, after going through the usually complex process of installing the binaries and its 
dependencies, would then have to contribute to maintaining that software whenever a new 
version comes out. This process is made especially difficult by the fact that scientific codes are 
typically developed and refined over decades and result in very complex systems which need to 
be updated frequently in order to reflect the latest improvements in modeling and simulation 
techniques. From the provider’s point of view, the necessity of supporting the software on even a 
limited set of platforms can require significant cost and effort. In addition, maintaining and 
debugging community software on an unfamiliar platform can mean a significant amount of effort 
in reproducing, let alone fixing, a problem.  

Due to these problems, the fusion community recently decided to adopt the application service 
provider (ASP) model, also known as the “network services model.” In the “network services” 
model, software as well as a set of familiar platforms is provided or contracted by a service 
provider and made accessible remotely to clients. The service provider undertakes not only to 
maintain a reasonable set of versions of the software, but also to debug and otherwise manage 
client execution runs to ensure that they achieve their objective. This might include executing the 
software as efficiently as possible, executing it within a certain time bound, producing results of a 
certain accuracy (see next section for details). The clients specify those objectives and execute 
the codes remotely, thus avoiding maintenance costs. This sharing paradigm is new to the Fusion 
community, but is rapidly gaining acceptance as it encourages sharing of software and hardware 
resources and frees the researcher from needing to know about software implementation details, 
thus allowing a sharper focus on the physics.  

5.2 Customers 
The customers of this use case are fusion scientists. Service providers defined above seek to 
reduce maintenance costs by providing a service on a familiar set of platforms, while service 
clients seek to obtain remote execution of software satisfying certain objectives, specifically 
capable of executing within certain time bounds during fusion experiments. Two principal issues 
arise in this environment: issues of trust and issues of control. 

Issues of trust address questions such as: will my software execution run get priority when I need 
it? How do I enter into contract with software/hardware resource provider? What guarantees do I 
have that this contract will be observed? And, on the provider’s side: how can I ensure that my 
deployment is secure and yet deal with a dynamically-changing community of users?  

The issues of control deal with questions like: how do I provide reliable execution in this 
environment? How can I meet clients’ demands?  

All of these issues need to be addressed in a wide-area deployment which is national – and 
eventually international – comprising hundreds and potentially thousands of users at a later 
stage. 

Below we summarize the needs of the clients as well as providers. 

QoS-based execution during fusion experiments: Magnetic fusion experiments operate in a 
pulsed mode producing plasmas of up to 10 seconds duration every 15 to 20 minutes, with 
multiple pulses per experiment. Decisions for changes to the next plasma pulse are made by 
analyzing measurements from the previous plasma pulse (hundreds of megabytes of data) within 



GFD-I.029  Oct. 28, 2004 

ogsa-wg@ggf.org  25 

roughly 15 minutes between pulses. This mode of operation could be made more efficient by the 
ability to do more analysis and simulation in a short time using software running on remote 
resources only if their execution time could be guaranteed. Given the present capabilities, the 
decision to include new software in the “between pulse” analysis usually involves buying a new 
cluster that will be run on-site and dedicated during the experiment. Obviously this mode of 
operation does not scale in the long run.  The ability to run software on remote resources would 
be helpful, on the condition that end-to-end quality of service (QoS) guaranteeing the execution 
within certain time bounds could be provided. For example, end-to-end quality of service should 
combine input and output data transfer and execution time, and ensure execution of this QoS-
based workflow in such a way as to meet the user’s overall QoS requirement. 

Availability contract:  Like in many other scientific communities, much of the work in the Fusion 
community is driven by the need to make results available in time for major conferences. 
Although the current deployment has not yet been found lacking in this respect, we anticipate that 
resource utilization before such events will grow to the point where some users’ requests will not 
be fulfilled due to high demand. The resolution of this problem could be provided by a contract 
mechanism whereby the user contracts for the availability of a service ahead of time, and claims 
it when the need arises. 

Usage policies: Both of the client needs described above require mechanisms for usage policy 
specification and enforcement on the part of service/resource provider as well as the virtual 
organization. The service provider, for example, has the need to assert who (which groups or 
users) have the right to run certain software, the resources they can use, the availability contracts 
they can enter into, the service execution management, etc. Such usage policies also have to be 
suitably enforced by the underlying resource management system. 

Flexible delegation of rights: Providing seamless maintenance of a client’s run requires flexible 
rights and delegation policies for the server. For example, if a run is found to experience an 
unexpected failure, the service provider may want to diagnose the run, then debug and restart it. 
Since the run may involve access to secure databases in order to perform these actions, the 
service provider will need to acquire rights that allow it to reproduce this usage pattern. 
Impersonating the client is not necessarily a reasonable option as that may give the service 
provider too many rights, and the client may be unwilling to do this.  

Community accreditation: The clients would like to be able to use community services by getting 
accredited with the community rather than with each individual service provider. For example, 
code execution on a hardware resource (which may not even be known to the client) should not 
be associated with the need to obtain an account on that resource. Instead, a mechanism is 
needed whereby it is sufficient for the client to present community credentials in order to initiate 
the run. 

5.3 Scenarios 
In the experimental scenario described above, a scientist at one of the NFC sites (a client site) 
needs to remotely run code installed and maintained at another NFC site (a service provider site) 
during an experiment within time bound T (typically on the order of 10 minutes). For a very simple 
execution, the following would be available on the service provider’s side: a script that will 
download experimental data for the application input once that data becomes available; a suitable 
“short-running” configuration of an application, capable of executing in less than T (some 
applications may be available in multiple configurations reflecting accuracy/time trade-offs); a 
script delivering results to the client; as well as an execution plan, or a workflow, describing the 
sequence of these actions and their QoS dependencies. To ensure that the code executes with 
the required QoS (in this case: within time T), the scientist at the client site enters into a contract 
with the application server and as a result is guaranteed code execution within T any time it is 
requested during the experimental availability window (typically a day). Since only a few such 
executions may be requested during that day, and the service provider resources have to be 
shared with other clients, it is essential that resource allocations are not overgenerous and that 
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other software can share the resource with the time-critical application, getting preempted 
whenever the situation requires.  

When the client claims the execution based on the contract, the service provider initiates and 
monitors the run, adaptively recovering from failure of specific actions if needed. Depending on 
the importance of the run the service provider could overprovision, or replicate the run.  

This scenario can become more sophisticated depending on the service in question. It is 
essential that the execution time or other QoS aspects experienced by the client is end-to-end – 
in other words, the service provider accounts not only for application execution but also allows for 
database access, data transfer, and other activities. It is important to note that data availability 
before transfer time (replication) cannot be leveraged in this case as it becomes available 
dynamically. Similarly, in national (and potentially international) deployment data transfer will 
become a significant factor which cannot currently be reliably managed. Also, it is important that 
the QoS-based execution is available to small fusion labs in small centers as well as large fusion 
labs in large centers. 

Apart from the time, fusion codes can also require a mode of execution that is not time-critical but 
that provides accurate results, or the time requirement can be relaxed to complete by a certain 
deadline rather than in a specific amount of time. More details of the scenario are described in 
[References: 3]. 

5.4 Involved resources 
The primary resources involved include: 

1. The hardware resource at the service provider site; these can range from 
supercomputers to single workstations. 

2. The machines running the client’s sites. 

3. Networks between Fusion sites (the service provider sites and the client site).  These are 
widely distributed, potentially internationally distributed. 

The services to be delivered primarily relate to service executions, and may involve experimental 
hardware services (e.g. experimental apparatus) in the future. 

5.5 Functional requirements for OGSA 
This use case uses the following OGSA functionalities as described in [1]: 

1. Discovery. The clients need to discover network services before they are used. Service 
brokers need to discover hardware and software availability. 

2. Workflow management. A fusion Grid network service is a workflow of multiple 
components (remote execution, input and output data transfer, etc.).  

3. Scheduling of service tasks. The service provider (or broker) acting on the service 
provider’s behalf needs to schedule resource in order to meet the execution constraints 
requested by the client. The scheduling can take the form of advance reservation. 

4. Disaster Recovery. As the service provider (or broker acting on its behalf) strives to 
meet the client’s end-to-end constraints, some degree of adaptation may have to be 
used to prevent failure. 

5. Brokering. The service broker identifies software and platforms suitable for execution 
requested by the client. 

6. Load Balancing. Some load balancing may be required to use service provider 
resource more efficiently. 

7. Fault Tolerance. A reliable solution is needed in order to provide the time-critical 
execution capability. 
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8. Transport Management. Reliable transport management is essential to obtain the end-
to-end QoS required by this application.  

9. Legacy Application Management. Realizing the Grid potential to deal with legacy 
issues was the one of the foremost motivation for this project.  

10. Services Facilitating Brokering. This capability is essential for the service broker to 
compose and later execute a workflow meeting the requested constraints. 

11. Application and Network-level Firewalls. This is a long-standing problem in the fusion 
use case. It is made particularly difficult by the many different policies we are dealing 
with and particularly harsh restrictions at international sites. 

12. Agreement-based interaction. This project requires agreement-based interaction 
capable of specifying and enacting agreements between clients and service providers 
(not necessarily human) and then composing those agreements into higher-level end-
user structures. 

13. Authorization and usage policies. We also require use-policy specification and 
enforcement mechanisms as described above. 

5.6 OGSA services utilization  
The following services are necessary to provide functions in the previous section: 

1. Name resolution and discovery service 

2. Security service 

3. Provisioning and resource management service 

4. Metering and accounting service 

5. Policy service  

6. Messaging and logging 

7. Monitoring service  

8. Metering and accounting 

9. Administration 

10. Service orchestration 

5.7 Security considerations 
The server sites need the ability to provide authorization on the usage of certain software (or 
application services) as well as on the usage of resources. The VO-specific authorization policies 
need to be maintained centrally, while resource-specific policies need to be maintained by 
resource owners. 

In addition, application service providers need to be able to assume a subset of a user’s rights 
needed to debug an application that has gone astray. This is needed because applications 
access the experimental database based on the rights of the user that started the run. Frequently, 
the application provider is able to debug and resubmit the user’s program in a manner 
transparent to the user. 

5.8 Performance considerations 
The ability to deliver services in real-time is essential. Also important is the ability to satisfy other 
QoS constraints (application-specific notions of accuracy).   
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5.9 Use case situation analysis 
Some of the required capabilities have already been provided by Globus, as evidenced by the 
fact that fusion services are deployed and successfully used by the community. Currently 
research in enforcement issues, issues of agreement-based interaction, as well as scheduling 
and adaptive techniques that would support them are going on. Also required are changes in the 
security model and advances in overcoming deployment issues such as firewalls. 
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6. Service-Based Distributed Query Processing using OGSA and 
OGSA-DAI 

6.1 Summary 
A service-based distributed query processor supports the evaluation of queries expressed in a 
declarative language over one or more existing services. These services are likely to include 
database services, such as those provided by the OGSA-DAI project in GGF, but may also 
include other computational services. As such, a service-based distributed query processor 
supports service orchestration, and can be seen as complementary to other infrastructures for 
service orchestration, such as workflow languages. In a Grid setting, distributed query processing 
can benefit from the facility to discover and make use of computational resources on demand, 
based on the anticipated resource requirements of a request. A distributed query processor on 
the Grid can itself be cast as a service, referred to here as a Grid Distributed Query Service 
(GDQS).  

In principle, a GDQS can be used in any Grid application that must integrate and analyze 
structured data collections. Regardless of the application domain, there are several primary 
phases in a typical use case involving GDQS. Some of those phases are transparent to the user, 
whereas some require interaction with the user. All, however, imply particular requirements from 
the Grid software infrastructure. Each phase will be examined in more detail in Section 1.3; below 
is a summary:  

• Factory discovery and service instance creation phase. The user has to discover a 
GDQS factory by querying a Grid Data Service Registry (GDSR). It is the user’s 
responsibility to have the knowledge of an appropriate registry and a reasonable search 
criterion. Once the factory is discovered an instance can be created. 

• Resource discovery phase. The GDQS needs to obtain metadata about the 
computational capabilities of available Grid nodes in order to be able to optimize and 
efficiently schedule a query plan. This phase is transparent to the user. 

• GDQS setup phase. The user is required to prepare the GDQS instance for accessing 
multiple data sources and analysis services. This involves providing the factory handles 
and an appropriate configuration document for OGSA-DAI services that wrap the data 
sources being integrated, as well as providing the WSDL URLs of the services that are to 
be used for analysis. The GDQS uses this information to import the database schemas of 
the data sources and WSDL content of the services so that it can process (compile and 
optimize) the submitted query. 

• Query (request) submission phase. The user is required to formulate a query in Object 
Query Language (OQL) and submit it to GDQS. 

• Query Execution and result delivery phase. Once the query is submitted, the GDQS 
compiles, optimizes, schedules and executes the query utilizing the available 
computational resources on the Grid by taking into account the information collected in 
the resource discovery and GDQS setup phases. The results are then delivered to the 
user subject in the interaction patterns allowed by the OGSA-DAI Grid Data Service 
(GDS) port type interaction semantics [ref to OGSA-DAI]. 

6.2 Customers 
The potential users of SB-DQP could be from either a commercial or a scientific background. A 
fundamental characteristic of the usage pattern is the requirement to integrate data from 
distributed and heterogeneous resources with analysis capabilities provided as services.  For 
example, distributed query processing is considered a relevant technology in bioinformatics, in 
which there are many distributed structured data stores, and in which an individual analysis often 



GFD-I.029  Oct. 28, 2004 

ogsa-wg@ggf.org  30 

needs to access several of these stores and several analysis tools. In bioinformatics, there are 
several hundred important structured data stores (of very variable size) and many analysis tools 
applicable to data that can be extracted from these stores. Currently many bioinformaticians 
apply a sequence of disconnected (or largely manually-connected) activities to achieve data and 
analysis integration. A declarative interface that uses a standard query language to combine such 
disconnected activities in an optimized way is of particular interest to the bioinformatics 
community.  

A detailed scenario that illustrates the potential value of the GDQS for bioinformaticians is given 
in Section 6.3. The scenario provided illustrates the integration of data from two distributed data 
resources: the Gene Ontology (GO) database and the Genome Information Management System 
(GIMS) in combination with an analysis tool, namely BLAST. 

6.3 Scenarios 
The following OQL query is meant to provide a starting point for constructing a scenario that 
illustrates how a bioinformatician can interact with a GDQS, causing it to pass through the phases 
introduced in Section 6.1. First the query is explained and then scenarios are provided that 
exemplify the use case.  

select p.proteinId, blast (p.sequence) 
from p in protein, t in proteinTerm 
where t.termId='GO:0008372' and 
p.proteinId=t.proteinId 

This query returns, for each protein annotated with the GO term 'GO:0008372' (i.e., unknown 
cellular component), those proteins that are similar to it. Assume that (as in [21]) the protein and 
proteinTerm extents are retrieved from two databases, respectively: the Genome Information 
Management System (GIMS) [img.cs.man.ac.uk/gims] and the Gene Ontology (GO) 
[www.geneontology.org], each running under (separate) MySQL relational database management 
systems. The query also calls the BLAST sequence similarity program 
[www.ncbi.nlm.nih.gov/BLAST/], which, given a protein sequence, returns a set of structures 
containing protein IDs and similarity scores. Note that the query is essentially a select-project-join 
query but retrieves data from two relational databases, and invokes an external application on the 
join results. A service-based approach to processing this query over a distributed environment 
allows the optimizer to choose from multiple providers (in the safe knowledge that most 
heterogeneities are encapsulated behind uniform interfaces), and to spawn multiple copies of an 
operator to exploit parallelism. In the example query, for instance, the optimizer can choose 
between different GO and GIMS databases, different BLAST services, and different nodes for 
evaluating the query sub-plans. 

6.4 Service Discovery and Instance Creation 
Fig 5: below illustrates the interaction during the first phase. The first interaction in the figure 
refers to the fact that a GDQS factory registers itself to a GDSRegistry as part of its initialization.  
The client queries a Registry using GridService::FindServiceData operation to find an 
appropriate GDQS factory (GDSF) (interaction 2). The client then creates an instance of the 
GDQS using the OGSI factory port-type.  
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Fig 5: Service Discovery and GDQS instance Creation 

6.4.1 Setting up the GDQS instance 
It is necessary for the GDQS to collect database schema information of the data sources being 
integrated. Fig 6: below illustrates interaction during the setup phase through which the GDQS 
acquires this information. The client discovers a GDS Factory for a particular data source 
(interaction 2) and passes the handle of this factory (GSH:GDSF) along with a configuration script 
obtained by querying the factory (interaction 3) to the GDQS instance, via an import Schema call 
(interaction 4). It is also necessary to provide a configuration document to determine the type of 
the GDS being created. The client should be able to interrogate the GDS factory to find out the 
set of configurations supported, and choose the most convenient one. The GDQS instance then 
creates a GDS instance (GDS1) using the factory handle and the configuration document 
provided by the client (interaction 5), and obtains the database schema of the data source 
wrapped by that GDS (interaction 6). 
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Fig 6: Importing Schema Information of Data Sources 
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6.4.2 Collecting Computational Resource Metadata 
It is also important for the GDQS to collect sufficient data about the available computational 
resources on the Grid to enable the optimiser to schedule the distribution of the plan partitions as 
efficiently as possible. 

Although the current OGSA reference implementation does not fully support this need, it does 
provide a high-level index service, to enable collecting, caching and aggregating of computational 
resource metadata. Fig 7: below illustrates the service-based architecture that enables a GDQS 
to collect resource metadata from multiple nodes on the Grid. In this set-up, an index service 
collects dynamic information on the system it is deployed in using back-end information providers. 
The GDQS identifies a central index service as its server for caching and aggregating metadata, 
and causes it (2) to subscribe to other distributed index services. At specified periods the remote 
index services send (3) notification messages whose payload is resource metadata in a format 
determined by the back-end information provider. The GDQS can use (4) a findServiceData call 
to obtain the aggregated information as SDEs from its server. 

Note that one would expect the index service hierarchy to have been set up as part of a virtual 
organisation's infrastructure, since the identification of Grid nodes that constitute the 
organisation's resource pool is beyond the operational scope of the GDQS. 
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Fig 7: Acquiring Computational Resource Metadata 

6.4.3 Query (Request) Submission  
Most of the interactions (apart from the initial query submission) in this phase are inter-service 
interactions transparent to the user. After importing the schemas of the participating data source, 
the client can submit queries (1) via the GDS port type using a perform call. Note that the format 
and semantics of query submission is compliant with that of OGSA-DAI framework. The 
submitted query is compiled and optimized into a distributed query execution plan. The GDQS, 
then creates a set of Grid Query Evaluator Services (GQES) for executing each query-sub plan 
(or partition) generated by the query optimizer on a different node on the Grid.  The scheduling of 
the GQES instances is also done in an optimized way based on the metadata collected. Once the 
GQES instances are created on their designated execution nodes (and these could be, 
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potentially, anywhere in the Grid), the GDQS hands over to each (2) the plan partition assigned to 
it. This is what allows the DQP framework to benefit from (implicitly) parallel evaluation even as 
the uniform service-based interfaces hide most of the low-level complexity necessary to achieve 
this. Finally, (some of the) GQES instances interact (3) with other GDS instances to obtain data, 
after which the results start to propagate (4) across GQES instances and, eventually, back to the 
client via the GDT port type. 
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Fig 8: Query Execution – Overview 

 

6.4.4 Query Execution and Result Delivery 
For the example query given at the beginning of Section 6.3, the query submission gives rise to 
the Grid Service (GS) interaction diagram in Fig 9: below. The GQESs that scan stores, viz., N1 
and N2, are instantiated in different hosts. Conditions at N2 (e.g., available memory) are such as 
to justify the GDQS having assigned the hash join to N2. For the BLAST operation call, the 
GDQS saw benefits in parallelizing it over two GQESs N3 and N4. The GDQS receives the 
request (1) and compiles it into the distributed query plan in the figure below, each partition of 
which is assigned to one or more execution nodes. Each execution node corresponds to a GQES 
instance which is created by the GDQS (2). The GDQS then dispatches (3), as an XML 
document, each plan partition to its designated GQES instance. Upon receiving its plan partitions, 
each GQES instance initiates its evaluation. Query execution is a data flow computation using the 
iteration model, in which each operator implements an fopen(), next (), and close () interface. 
Data flows from the GQES instances that execute partitions containing operators whose 
semantics requires access to stores. 

Within each GQES instance, the initialization procedure starts when an open() call reaches the 
topmost operator. This call propagates down the operator tree from parent to children at every 
level until it reaches the leaf operators. Then, interaction with other GDSs occurs. The handle for 
each such GDS will have been planted by the GDQS in the XML document passed to each 
GQES instance that needs it. For example, in node N2 (in Fig 9:), when the stream of open() calls 
reaches the sequential scan operator, it causes the N2 GQES to interact with the GDS instance 
on N2, whereby data becomes ready to flow upwards from the protein extent in the GDS through 
which the GIMS database is accessed.  
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Fig 9: Query Execution and Result Delivery – Detailed 

Note that many forms of disruptive heterogeneity in the data stores are encapsulated by the 
standard GDS interface. As such, SB-DQP exploits the power that the Grid metaphor embodies, 
viz., query evaluation is carried out over heterogeneous data and computational resources but 
the heterogeneity is encapsulated behind the universal GS interface, giving rise to consistent and 
uniform inter-service interaction semantics. 

6.5 Involved resources 
A GDQS can be expected to make use of computational resources for: (i) running query evaluator 
services, several of which may collaborate in the evaluation of a single query; (ii) moving data 
from primary sources to analysis tools or to evaluators that join or manipulate the data in a query; 
and (iii) holding intermediate results for performance or reliability. All such computational services 
need to be identified and allocated dynamically to support the specific needs of complex 
requests.  
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In terms of the services used by a GDQS, these are likely to include: (i) service registries, as 
service descriptions must be imported into a GDQS before queries are evaluated over them; (ii) 
structured data access services, as consistent access to structured stores is important for 
reducing set-up costs; and (iii) flexible transport services, for example supporting streaming of 
data and delivery to multiple sites in parallel.  

6.6 Functional requirements for OGSA 
• Discovery and Brokering. It is very important for SB-DQP to be able to discover available 

computational resources, Grid Data Services (GDS) and Analysis Services (AS). The 
discovery of the GDSs is needed for importing the database schemas of the data sources 
over which a query is to be formulated. Discovery of analyses services is needed to 
identify the type of operations and data types supported/required by those operations, so 
that they can be embedded in a query. The crucial requirement here is a uniform model 
that will enable both the SB-DQP clients (users) and the DQP service itself to discover 
and interpret the metadata about such services but also to relate them to the information 
about computational resources (hosting environments, machine capabilities such as CPU 
speed, available memory etc.). 

• Metering and accounting. SB-DQP can potentially use many GDSs and other Grid and 
Web services. Each of these may have its own impact on the overall billing cost of the 
distributed query service. SB-DQP must be able to integrate into metering, accounting 
and billing mechanisms employed by other participating data sources and/or services and 
if possible choose from among the most convenient ones based on user preferences. 
This is only possible if such seamless integration is supported at the infrastructure level. 

• Data sharing and management. Data sharing and management is fundamental to SB-
DQP. It does this at two levels. At the lower level it relies on Grid Data Services for 
accessing  data  sources, and at a higher level it processes the data it obtains (joins, 
reduces, analyses etc.) in a way that conforms to the principles of a data-flow 
architecture. It does not, however, currently address the problem of schema integration 
and consistency. SB-DQP would benefit from such data management facilities as 
semantic data model integration, transparent data caching and consistency management. 

• Monitoring.  SB-DQP requires monitoring in several contexts. First, it should monitor the 
progress of the services it orchestrates. Progress information has to be collected from the 
Evaluator services (GQESs), GDSs and analysis services. Second, since a query can 
potentially involve long-running interactions (because of large amounts of data or network 
conditions) the SB-DQP should respond by re-allocating resources and re-scheduling 
evaluator services. This, in turn, requires monitoring of computational resources to collect 
dynamic information to aid in reaching a decision as to how to adapt to the changing 
conditions. 

• Multiple security infrastructures. In most of the cases the distributed query will require 
access to multiple data resources, access to which may be restricted by different security 
policies and infrastructures. It is essential for the SB-DQP to rely on infrastructure support 
for obtaining access permission to multiple resources on behalf of the client in a 
transparent way.  

• Optimization of resource usage. SB-DQP uses a query optimizer (the Polar* system)10 
which is responsible for generating an efficient execution plan for a declarative OQL 
query over distributed services (both data and computational, since OQL supports 
invocation of external functions).  As such, SB-DQP offers system-supported optimization 
of declarative requests with implicit parallelism.  

                                                        
10 The Polar* system: http://www.lpds.sztaki.hu/~zsnemeth/apart/cyprus/talks/apart/gounaris.ppt 
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• Transport Management. As the SB-DQP executes the queries as a data flow computation, 
efficient data transport is of paramount importance. Shipping only XML data over 
SOAP/HTTP is not particularly convenient for data-intensive applications. It is very 
desirable to have multiple transport protocols, including very efficient ones, to be 
available for inter-service interactions. 

• Fault tolerance and disaster recovery. Fault tolerance is particularly important for long 
running queries that can potentially return large amounts of data.  

6.7 OGSA services utilization  
• Name resolution and discovery. The discovery of Grid services via an easy-to-use 

interface that enable rich queries to be submitted against metadata maintained in the 
registries is important for the usability of the SB-DQP. The setup of SB-DQP requires the 
discovery of Grid Data Service Factories for importing the schemas of the participating 
data sources.  

• Service domains. SB-DQP can be seen as a good example of service domains. It 
coordinates and orchestrates multiple Grid Query Evaluator Services and other Web 
services in a particular context during its lifetime. 

• Messaging and events. There may be several contexts where SB-DQP needs to be 
notified of events. If the schemas of the participating data sources change the DQP 
would want to know about those changes so that the queries can be validated against the 
new database schemas. Another context is progress monitoring. When the query 
execution is in progress, the SB-DQP needs to receive notification messages that 
indicate the state of the execution at each query evaluation node. It is also required to 
receive regular updates on the state and availability of the computational resources, so 
that the query evaluation can be re-scheduled if needed. 

• Transaction. Currently distributed transactions are not supported in SB-DQP, but it would 
certainly benefit from transaction interfaces provided by the infrastructure in the future. 

• Service orchestration. SB-DQP implements a service orchestration framework in two 
senses: in terms of the way its internal architecture handles the construction and 
execution of distributed query plans and in terms of being able to query over data and 
analysis resources made available as services. The latter form of service orchestration 
can be seen as complementary to other infrastructures, such as workflow languages. 

6.8 Security considerations 
The nature of the security challenges facing a GDQS are likely to vary from setting to setting, but 
may be quite demanding. For example, a single query may run over services within different 
domains of control, and could benefit from allocating evaluators to run on nodes that are under 
different domains of control. There may also be privacy issues on the data being manipulated by 
a query – for example, a requester may be reluctant ever to allow data from a private source to 
leave his/her organization, but may want to join that data with data from a public source. Thus 
single-enterprise, multi-enterprise and all-comers scenarios are all possible. 

6.9 Performance considerations 
There are many aspects to the performance of a distributed query. As queries are declarative, 
their execution must be planned. Query planning needs access to comprehensive information on 
the costs of using the services of relevance to a query, and also requires information on the 
computational resources available for evaluating a query. 

Different operations in a query plan may prefer different forms of transport. For example, many 
distributed query processors support pipelined parallelism, but some operations are blocking, and 
thus may be more suited to bulk data delivery.  Which operators should be used to evaluate a 
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portion of a query will depend on the capabilities and load of the computational resources 
available. Parallelism can often be exploited to improve the performance of query evaluation, but 
scheduling is clearly challenging in an open environment such as the Grid. 

6.10 Use case situation analysis 
As stated in Section 6.1 each phase in the use case has implication on the required 
services/functionalities from the underlying infrastructure. The following list is an attempt to 
identify those requirements for each phase and to what extent they are met by the current OGSA 
reference implementation. 

Service discovery and instance creation. The primary requirement here is the ability to 
discover the GDQS Factory and GDS Factories for the data sources by submitting a query to the 
service registries. This requires the service registries to support both the ability to specify and 
publish potentially rich information on the services being registered, and the ability to query this 
rich information using a well-known (easy to use) query language.  

The existing OGSA reference implementation does not sufficiently support the ability to query 
against the service descriptions. The idea of Service Groups proposed in the latest draft of the 
OGSI specification provides more complete support in this regard.  

Setting up the GDQS instance. One important requirement here is that the Grid Data Services 
must provide the schema of the database they wrap in a well-defined way. In other words the 
GDQS must be able to query the GDS instances to obtain the schema of a particular data source. 
Service Data Elements are one obvious candidate to provide such information in a well-defined 
way. Currently, querying this information via SDEs is not supported. GDQS obtains the database 
schemas by a custom extension to OGSA-DAI framework. The requirement referred to here, 
however, is more directly relevant to OGSA-DAI project rather than OGSA. 

Collecting computational resource metadata. The relevant OGSA service here is the Index 
Service, which is not part of the core OGSI but is provided as a higher-level service.  Although the 
Index Service seems to offer a flexible approach to collecting Grid resource metadata, there are 
some issues that remains unresolved. The SB-DQP requires several classes of metadata to be 
interrelated and provided in a coherent way. The classes of metadata required are: 

• The capability of a Grid node (a machine that offers its computational resources to the 
Grid user community) in terms of the CPU power, available memory, available disk space 
etc.  

• Dynamic (real-time) information on the communication load on network connection 
between a set of Grid nodes.  

• The characteristics of a Grid node in terms of the services it hosts. For example the 
information as to whether a particular Grid node hosts a Grid Data Service Factory or a 
Grid Query Evaluation Factory.  

Currently there is no coherent way of collecting and relating such classes of metadata.  

Query (request) submission. The implication of a query request in regard to the use of 
infrastructure services is that the GDQS has to dynamically create instances of GQESs on an 
arbitrary number of Grid nodes to execute the sub-queries. Currently it is only possible to create a 
Grid service instance on a node if its factory is already deployed on that particular node. This 
constrains the query optimizer to consider only a limited set of Grid nodes (only those where a 
GQES factor exists). It is desirable to have the ability to dynamically ship the factory code to a 
hosting environment and deploy it so that any Grid node can be considered for scheduling GQES 
instances. 

Query execution and result delivery. The primary requirement here is being able to bind to 
efficient transport mechanisms.  Currently only XML over SOAP/HTTP is seamlessly supported. 
The Reliable File Transfer Service that provides access to Globus Grid FTP APIs does not seem 
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to be seamlessly integrating with the service interfaces.  What is needed is direct support for 
efficient data transfer at the inter-service interaction level. 
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7. Grid Workflow 

7.1 Summary 
Workflow is drawing attention as a convenient way of making new services by connecting existing 
services (like shell-scripts of UNIX systems). A new Grid service can be created and used by 
registering a workflow definition to a workflow engine. The definition is interpreted by the workflow 
engine, and calls several other Grid services as is specified in the definition.  

7.2 Customers 
Workflow will be used by both users and providers of Grid services. The cases when workflow will 
be used are as follows: 

1. Connection of simple services: Users (or service providers) make a new Grid service 
by connecting several simple services (whose execution time is relatively short). For 
example, by connecting a stock information service and a currency exchange rate 
information service, a foreign stock information service can be made.  

2. Job workflow: Users (or service providers) combine several jobs, specifying their 
execution order, input, output, etc. Here, jobs include both scientific and commercial jobs. 
For a scientific job example, a simulation service and a visualization service are 
connected using workflow. (Of course there are many other examples like compound 
simulation, data Grid, etc.) Scientific job workflow may require a huge amount of data 
transfer between services. As for commercial jobs, an example would be summing up 
sales results at each branch shop in parallel, and then collecting them at the head office. 
It will be beneficial if individual services provide a more exacting definition of their 
interface (e.g. “INPUT:LSID” instead of ‘INPUT:String’). The current situation with regard 
to this is not optimal (for e.g. providing ‘XSD:Any’).  Work is being done in semantic 
webservices (OWL-S) that would aid this scenario. 

3. Description of business process: Service providers describe business processes by 
connecting several services. For example, a travel agency connects a flight ticket 
reservation service, a hotel reservation service, and a vehicle reservation service to 
make a new travel reservation service. This kind of workflow is well investigated in the 
area of Web services. Business process may take a long time (e.g. one month) to finish, 
and may need exception handling mechanisms (e.g. cancellation of reservation). 
Another related issue to service descriptions is the concept of ‘discovery.’ 

4. System administration: Service providers describe a service for system administration 
using workflow. For example, a system administration workflow obtains an application 
program from an application repository using a file transfer service and deploys it to a 
Grid service container.  

Combinations of the above examples are also possible. For example, one can think of a workflow 
which obtains weather information from various place of a country (above example: 1), and 
executes weather simulation job using the information and visualizes the result (above example: 
2). 

In addition, everything which is abstracted as a Grid service can be dealt with by workflow.  

A workflow definition itself should be seen as a Grid service. Thus, workflow should comply with 
the various rules which the Grid Service Specification requires. For example, a workflow definition 
should have FindServiceData operation in Grid Service Port Type, and may need to support 
Notification; and a workflow instance should be created by a Factory.  
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7.3 Scenarios 
As described above, workflow is used in various cases. Here, I will describe “application 
deployment scenario” in which a typical relationship between other services/functions is shown. 

7.3.1 Application deployment scenario 
In this scenario, we assume that a system administrator or a user of a Grid system wants to 
deploy (install) an application to a Grid container.  

The process is executed by a service orchestration engine. In the service orchestration, firstly, an 
application program is obtained from an application repository which may be implemented as 
shared storage. The storage may be found using a discovery service. If the storage has a 
functionality of data cache/replication, the program code can be efficiently obtained.  

When connecting to the storage, authentication/authorization should be performed in order to 
restrict the access to the program. For authentication and authorization, a policy management 
service may be needed to get security policy for deciding if providing the program is allowed or 
not.  

After obtaining the program, it is deployed using a deployment service which may be a part of an 
administration service. Here, authentication/authorization should be performed again. It may be 
needed to reserve the resource (the Grid container) beforehand using a reservation service.  

All these processes might need to be logged using a logging service, and the log information 
might be passed to an accounting service for accounting.  Again, for logging and accounting, a 
policy management service may be needed to obtain policies for them. 

7.4 Involved resources 
Computational resources are required in order to interpret and execute workflow descriptions.  

For managing long-lived workflow, non-volatile memories like files or databases are needed.  

7.5 Functional requirements for OGSA 
In the scenario described above, the following functionalities are required.  

1. Workflow 

With this functionality, several services are connected to realize application deployment. 
This functionality is represented as “Flow” in [References: 1].  

2. Discovery 

In the above scenario, service discovery functionality is needed to discover a storage 
service which contains the application program to deploy. This functionality is 
represented as “Discovery and Brokering” in [References: 1].  

3. Shared storage 

In the above scenario, shared storage is used as an application repository. This 
functionality is represented as “Data Sharing” in [References: 1]. 

4. Authentication and authorization 

Obtaining application programs and deploying them into a Grid system may require 
authentication/authorization. This functionality is described in “Multiple Security 
Infrastructures” and “Perimeter Security Solutions” in [References: 1]. 

5. Application deployment 

This functionality is required to deploy an application to a Grid container. This 
functionality is included in “Administration” functionality in [References: 1]. 
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6. Advance reservation 

This functionality may be required to execute the application on reserved resources. This 
functionality is described in “Provisioning” functionality in [References: 1].  

7. Logging and accounting  

Processes like obtaining/deploying application programs might be logged, and the 
information might be used for accounting. This functionality is represented as “Metering 
and Accounting” in [References: 1]. 

8. Policy 

Authentication, authorization, metering, and accounting may require policies.  

7.6 OGSA services utilization  
1. Service orchestration service 

This service corresponds to “workflow” functionality, and is used as “workflow engine.”  

2. Name resolution and discovery service 

This service corresponds to “discovery” functionality. 

3. Security service 

This service corresponds to “authentication and authorization” functionalities. In some 
cases, security is not implemented as services but functions attached to each service. 
However, some of the security functions such as decision of authorization may be 
implemented as services. 

4. Data management service 

This service corresponds to “shared storage” functionality. 

5. Administration service 

This service includes “application deployment” functionality. 

6. Provisioning and resource management service 

This service includes “advance reservation” functionality.  

7. Metering and accounting  

This service corresponds to “logging and accounting” functionality.  

8. Policy service 

This service corresponds to “policy” functionality. 

7.7 Security considerations 
There may be a need to deny access to workflow definitions from non-registered users.  To 
implement this, authentication and authorization should be performed when creating a workflow 
instance using a Factory, and when accessing a workflow instance.  

In addition, services called from workflow may require authentication and authorization. To 
support this, delegation mechanism like GSI may be needed.  

7.8 Performance considerations 
If execution time of a service called from a workflow is long enough, performance of a workflow 
engine does not matter much. However, if it is short, performance of a workflow engine may be 
important.  
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In addition, if there is need to transfer a large amount of data between services called from a 
workflow definition, it is not efficient for a workflow engine to receive and send the data. Therefore, 
it may be needed to allow description of direct data transfer between services [References: 7]. 

7.9 Use case situation analysis 
Sizeable work has been done in the field of Web services in this regard. For example, there are 
WSFL[References: 2] by IBM, XLANG[References: 3] by Microsoft, BPEL4WS[References: 4] 
derived from both of them, WSCI[References: 5] by SUN, WSCL[References: 6] by HP. In the 
Grid computing field, GSFL [References: 7] was proposed by ANL. In addition, WFMC (The 
Workflow Management Coalition) has been working in this field for a long time. These significant 
works can be a basis of a workflow specification of OGSA.  
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8. Grid Resource Reseller 

8.1 Summary 
It is not always desirable for owners of Grid resources to interface with end users directly. 
Inserting a supply chain between the resource owners and end users will allow the resource 
owner to concentrate on his/her core competence (e.g. in maintaining large supercomputers) and 
avoid providing costly interaction and support to a large number of consumers, allowing them 
instead to deal with a few large customers (potentially only one) who resell the resources. 

End users can purchase resources bundled into attractive packages by the reseller (aggregation); 
these resources might in fact come from several resource owners. 

The resellers can make money from reselling aggregated computational resources without having 
to own any resources themselves, thereby minimizing their own risk.  In general, the reseller 
maintains resource provision by sustaining relationships with upstream providers.  However, to 
protect the agreed service level with the end users, the reseller may occasionally find it necessary 
to switch provider, either temporarily or permanently.  Instead of worrying about maintaining 
resources, the reseller can focus on providing good customer care as well as marketing resource 
bundles to their target market(s). 

This use case is adapted from the “Computational Reseller” use case, which was written by Jon 
MacLaren and William Lee, and appears in the GESA Use Cases Document [Reference: 1]. 

8.2 Customers 
There are three key actors in the Grid Resource Reseller scenario, all of whom are customers of 
Grid services in some form or fashion.  The first of these is the “Resource Owner,” of which 
there may be several in this scenario (which is considered from the point of view of the reseller). 
The Resource Owner is imagined to own resources which are expensive and rare, e.g. a 
supercomputer, although this does not have to be the case.  These owners want to sell resources 
on in bulk, dealing with only a few large customers, who are resellers.  They are interested in 
ensuring that they sell all their resources; they are less concerned about the actual usage of the 
resource, which is the concern of the resellers, who are their customers.  There will, however, be 
service level agreements between the resource owner and the resellers. 

Next, there is the central actor, the “Resource Reseller.”  The reseller acts as both customer (of 
resource owners, or upstream providers), and provider (to end users or downstream providers).  
The reseller need not be interested only in resource utilization, as their primary concern will be 
making a profit, i.e. if they can get all their customers to buy pre-paid resource usage packages 
(like “free minutes” on mobile phones). They do not care if these are ever used.  In fact, a certain 
amount of overselling might happen, i.e. if everyone used all their pre-paid resources at once, the 
reseller would be in trouble. But this is extremely unlikely.  A reseller will have service-level 
agreements both with the providers and with the consumers of the resources.  The reseller will 
have many more consumers than providers (e.g. an order of magnitude more), providing a 
natural fan-out as the supply chain moves from the resource owner to the end users. 

Finally, there are the “End Users,” who are customers of a Resource Reseller.  They are the real 
consumers of the resources.  They do not know who owns the resources they use, as they get all 
their resources and associated service and support from the reseller.  They will be free to select a 
reseller who is suitable for them – maybe based on the packages the reseller offers, and the 
package cost. 

Naturally, the resource owner, reseller(s) and end users will be part of different organizations, and 
may be geographically distributed. 

In the scenario presented below, we only consider a single reseller between several resource 
owners, and many end users.  However, in considering the requirements for this scenario, it is 
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important to envisage the possibility of a chain of resellers (as is the case for Internet providers 
today). 

8.3 Scenarios 
As this use case is extremely general, there are many possible scenarios.  Further, these 
examples are all similar, differing only in the details.  Therefore, only one example is provided. 

8.3.1 Computational Chemistry Reseller 
Consider the example of a reseller who has strong links with the chemical industry and the 
expertise to support a wide range of chemistry applications running on supercomputers.  To 
establish their business, they offer supercomputer owners the chance to sell resource in bulk to 
them, on the understanding that they will resell the resource.  The reseller agrees to respect the 
policies of the resource owners when reselling.  One resource owner provides cycles which are 
only for use by academic users; another offers a two-tier price structure, where cycles that are 
sold on to non-academic users are priced at a higher tariff.  Both resource owners specify that the 
provided cycles must not be sold on to another reseller.  Therefore the reseller decides only to 
deal with end users in this case. 

As well as sourcing supercomputer centers, the reseller wants to provide access to all the popular 
chemistry packages.  In some cases, the reseller can lease the licenses from the resource 
owners, some of whom have installed a subset of the target software.  However, the reseller also 
sources some of these packages directly from the manufacturer, and must arrange for the staging 
(or installation) of the software on the target machines. 

Finally, the reseller engages in a publicity campaign to attract users to its services.  They market 
monthly packages of resources which include pre-paid (“free”) items such as CPU cycles, secure 
and backed-up disk storage, and software licenses.  To make itself as attractive as possible, the 
reseller deliberately resells the resources at a loss for the first three months of operation as a “not 
to be repeated” offer (loss-leading). 

To facilitate the execution of the user’s work, the reseller provides a resource broker.  Users 
submit their work to the broker, which matches the user’s preference with the policies of the 
resource owners.  Based on this matching, plus information about the state of the resources 
themselves, the user’s job is dispatched. 

Where the reseller’s service-level agreement with the end user is “broken,” the user may be 
entitled to some compensation.  This may be described as part of the service-level agreement 
itself. 

It is useful to summarize the potential advantages of this scenario from the perspective of each 
type of actor: 

1. The Resource Owner. There are a number of reasons why a supercomputing centre 
might wish to sell its cycles to a reseller: 

a. If all cycles are sold this way, the resource owner never needs to deal directly 
with large number of customers; this is useful as it is costly to maintain high 
quality of customer care. This policy enables them to manage their resources in a 
small number of large transactions. 

b. During a period of low local usage, a centre might want to make a one-off sale of 
a large amount of otherwise-redundant cycles. 

c. A centre with seasonal peaks and troughs in local user usage might want to sell 
an amount of cycles (varying per month) to match expectation, thus maintaining 
steady usage. 

2. The Resource Reseller. The reseller bundles the resources available to it from the 
various upstream providers, including some licenses it can obtain from the software 
vendors at a reduced rate (as it deals mainly with academics and in large quantity). An 
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example offer is that for a reasonable monthly fee, the chemist gets 200 “free” CPU-
hours on a Cray T3E, plus thirty uses of Gaussian98 thrown in (exceed that, and he gets 
charged quite a lot, of course.) They also include some compensation deal when jobs are 
not delivered due to downtime (a kind of insurance).  A Reseller who has insights in the 
market trend can predict future demand and source resource provision from upstream 
vendors in advance when the price is attractive. 

3. The End User. The chemist wants to get resources from the reseller because getting 
bundled resources reduces transaction costs in dealing with all parties manually. Also, he 
would expect to have better customer care and risks are shared with the reseller if 
upstream vendors default. Finally, the academic might be able to get his bundle for less 
because he gets it from the same reseller he gets his electricity/mobile phone time from. 
It encourages companies with existing micro-transaction technology (such as telecom, 
utility, etc.) to participate as resellers. 

8.4 Involved resources 
The Resource Owner is selling resources to one or more Resource Resellers (see also the 
GESA-WG Computational Provider Scenario [Reference: 1]). 

Each Resource Reseller in the supply chain is buying resources from one or more Resource 
Owners and upstream Resource Resellers.  The reseller may bundle these resources before 
selling them to End Users or to downstream Resource Resellers. 

The End Users buy (possibly) bundled resources from the Resource Resellers. 

Ultimately, it is the resources bought from the providers that are being consumed by the end 
users.  This could potentially be any Grid resource.  These resources could be geographically 
distributed, and could belong to a number of resource owners. 

8.5 Functional requirements for OGSA 
The presented scenario has many requirements; however here we have chosen to describe only 
those functions specific to the activity of reselling – i.e. we ignore generic requirements for work 
scheduling and execution which will arise from other use cases.  Here are the headings and 
functions from Section 3.2 of the OGSA Architecture document [References: 2], required for 
reselling.  

Discovery and Brokering 

In the scenario, each reseller operates a broker to dispatch the user’s work to the available 
resources.  The most important requirement here is that the broker can perform some sort of 
matching between the users’ preferences, and the resource owners’ policies (perhaps something 
like the Condor ClassAd scheme [References: 3]).  Using the evaluated list of possibilities, the 
broker then uses information like acceptable turnaround time and cost to select specific resources 
for the work. 

A reseller must be able to discover resource owners (or downstream resellers), and end-users 
must be able to identify resellers.  Service-level agreements must be agreed between these pairs 
of entities.  However, in our scenario, these are infrequent (even once-only) activities, and will be 
achievable through existing mechanisms such as networking, advertising, etc. 

Metering and Accounting 

The model for accounting and charging in the scenario is quite sophisticated.  The Resource 
Owner will sell large amounts of cycles to one or more resellers.  The price for these cycles will 
be negotiated between the two parties; it is unlikely to be uniform for multiple resellers.  Further, 
whether cycles are used or not, are not really the concern of the resource owner; some partial 
refund for unused cycles may be arranged between the two parties.  In the situation of overuse, 
the resource owner would want to limit the amount of cycles that the reseller could use.  Whether 
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the resource owner would refuse any overrun, or whether overrun would be charged for at a far-
higher rate, would be a question of policy. 

For the resellers, they must do their utmost to sell sufficient packages of resources to cover their 
expenditure and running costs, along with some profit margin.  It should be possible for users to 
sign up for some sort of monthly plan, on-line, without human intervention.  The resellers will 
need to bill the end users on the basis of usage, which is covered by existing plans in OGSA.  It is 
worth noting again that if resellers obtain most of their money through contracts for pre-paid 
resource use, that they can oversell their resources (like hotel and airplane overbooking) to 
maximize income.  Like the resource owner their income need not depend on the actual usage of 
the resources. 

In terms of charging, different granularities of trading must be supported. This also implies the 
ability to use different payment options such as purchase order/invoicing, credit card, etc. 

Several different charging schemes are mentioned above.  However, all the models described 
should be possible within OGSA Platform.  Similarly, it should be possible for the accounting 
systems to operate autonomously for the vast majority of circumstances (including under-usage 
and over-usage).  While the systems being designed in the GESA Working Group [References: 4] 
have cases like these in mind, it is hard to see how this functionality can be covered by the 
charging systems proposed in the OGSA Platform document [References: 2] (see Section 5.9 in 
particular); these seem to focus mainly on tariff-based charging, based on “accounting schemas,” 
and do not contain the concept of reselling. 

Monitoring 

The Resource Owner must be able to track the usage by the clients of the various resellers to 
check for resources being overused.  

Policy 

End Users and Resource Owners will have potentially complicated policies, as may the resellers.  
A reseller must not be able to sell-on a resource in a way that violates the Resource Owner’s 
policy – e.g. selling cycles to an industrial user at an academic rate. Similarly, a reseller should 
not be able to run a user’s work on resources which violate their policy, e.g. running a job from a 
user with an “environmentally-friendly-only” policy on a computer owned by a corporation 
frequently responsible for pollution, etc. 

There must be some way in which to aggregate the policies of all upstream providers. 

Extended Service Level Agreements 

This is not a heading in OGSA Platform, but it’s something that is needed in this scenario and 
other GESA-WG use cases [References: 1]. We want to incorporate cost information into the 
SLAs between parties.  In certain circumstances, we would also like it to be possible to define 
rates of compensation in the SLA – for example if the user can’t access their pre-paid resources 
for 24 hours or more in a month, they will be refunded £2, etc.  This is the subject of ongoing work 
within the GESA-WG group.11 

8.6 OGSA platform services utilization  
The following services (or interfaces if appropriate) are necessary to provide functions in the 
previous section. 

1. Policy  

The scenario described here has sophisticated requirements for policy definition and 
handling within OGSA Platform.  In particular, we have a need to aggregate several 
policies within a supply chain. 

                                                        
11 Grid Economic Services Architecture Working Group (GESA-WG), GGF 
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2. Metering and accounting 

This interface will need to be made more flexible if it is to cope with the requirements of 
the scenario described in this document. 

3. Provisioning and resource management 

Required for SLA agreement and monitoring.  This functionality will need to be able to 
handle the extended SLAs discussed in the previous section. 

4. Brokering  

Brokering functionality is required.  The policy matching aspects of this are probably to be 
handled by the Policy interface. 

5. Monitoring service  

This service is used for the monitor function. 

8.7 Security considerations 
The Resource Owner and reseller chain should be able to provide the user with assurances on 
privacy, where this is required. 

8.8 Performance considerations 
Where the reseller chain is a few steps long, it should still be possible for the user to get good 
performance when accessing the resources. 

8.9 Use case situation analysis 
We do not believe that there are any examples of this use case in the Grid.  (Although Application 
Service Providers exist, these also own the computational resources used to process the work, 
and so do not qualify as Resellers.)  Of course, there are hundreds of examples in other areas, 
most notably internet provision and mobile phone provision.  We are confident that once the 
enabling technology is present, reseller businesses will be established. 
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9. Inter-Grid 

9.1 Summary 
This use case is similar to the Commercial Data Center (CDC) in many respects (it needs all the 
features of CDC). But additionally this use case looks at Grid running at its full potential in a 
geographically-distributed company with access to the outside world (not just in a specified data 
center). To do that two verticals are selected: aerospace and financial industry. But the use case 
is applicable to any other vertical like telecom, manufacturing and so on.  It emphasizes the 
following features: plethora of applications that are not really Grid-enabled and are difficult to 
change; mixed Grid and non-Grid data centers; Grid across multiple companies that agree to 
collaborate; interoperability with Web services standards; and a combination of 
compute/service/data working as a single whole. It brings generic concepts of utility computing 
into view, to enable Grid to successfully operate in industrial environments. It also takes into 
account industrial concerns like migration, mixed operating environments, maintenance 
requirements etc. 

9.2 Customers 
Grids in industry verticals (manufacturing, telecom etc) – for example, the aerospace and 
automobile industries. 

On a user basis the main roles are Grid administrator, IT system integrator, business activity 
Manager (There is also the every day Grid user, but his/her requirements are included in the 
business activity manager’s requirements). These roles are defined in the CDC use case.  

9.3 Scenarios 
We take the examples of aerospace and financial industries here to illustrate the use case. 

The operating environment in the financial industry comprises data centers (Linux, UNIX flavors, 
mainframe systems, storage management systems across geographies) and user machines 
(PCs, workstations). Grid has to interface with Windows XP-based servers and mainframes in its 
entire feature set, as it does with UNIX flavors and Linux. 

Migration is a very important parameter for financial industry. Many financial applications and 
systems are legacy – that means they are not Grid-enabled and do not follow any specific 
models. The industry may not consider Grid as an option for the data center unless a safe 
migration path is defined that enables minimum downtime of applications and systems. 
Additionally non-Grid applications have to be accessed by Grid applications as in a normal Grid, 
and the performance of non-Grid applications cannot be degraded (but can be enhanced). 

Typically a large aerospace company has many data centers and geographical sites. The 
industry also has a large number of scientific and high–performance-computing industrial 
applications that reside and exist alongside business applications. Some of the business 
applications and even some of the computing applications are legacy, and very difficult to change. 
These maybe installed in Grid-enabled systems as well, although not designed to derive any 
particular benefit from it. Hence a mixed environment of Grid and non-Grid networks and systems 
will be employed. This has additional complications in geographical and virtual separation of 
systems, user access management and so on. This brings in the generic utility computing 
requirements for the data centers where the applications are not aware of the Grid infrastructure 
but still are able to get flexed resources if needed. The Grid administrator, on the other hand, has 
perfect freedom to co-populate his system with non-Grid environments as well. 

A large number of applications (especially on the business side) will be using and accessing Web 
services. Further there might a fully-fledged Web services environment coexisting in the Grid 
environment. Therefore there is a need for coexistence between Grid and Web services and 
conflicting requirements or environments are a setback. 
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Typically in a large aerospace company there are design centers that may be outside the firewalls 
of the company, but with whom there are contractual agreements for collaborative design. 
Therefore there is a whole issue of control of systems and applications by the correct entity, 
identity management and in general issues associated with all levels of security in a fully-
collaborative environment used by two companies that want to protect their IP and resources at 
various levels of access.  A Grid security and collaboration mechanism should allow this.  This 
again brings the utility computing concept into view, since all kinds of situations can occur from a 
security perspective. So it becomes imperative to control and flex the layer 2 devices, firewalls 
and other non-computing devices in the IT network to concur with the strict security requirements.  

All kinds of Grid environments are possible in an aerospace company. These include compute 
Grids, data Grids, service Grids, and any other nomenclature-based Grid identification schemes. 
These need to coexist. Some examples for these are given below to illustrate that there will be 
Grids with different purposes 

Compute Grids 

Very intensive computing is involved – for example: 

• Computational Fluid Dynamics (CFD): aerodynamics 

• Structures: stress testing, crash simulation, bird-strike simulation 

Some of these are bounded problems which can be parallelized and run adequately on 
distributed memory message-passing architectures. These are “utility-computing-feasible” – that 
means a capacity-on-demand feature is equally important with the other capabilities provided by 
Grids, such as virtualization or resource sharing (using existing PCs or workstations that are not 
part of a data center). 

Data Grid 

As an example, a simulation of wing structure analysis could require a 1 Terabyte memory single-
system image. This could potentially run on a 64xcpu Superdomes (high-end Hewlett-Packard 
systems given as example) and creates 20 terabytes of data (highly compressed) on stresses 
and strains throughout the wing structure. So this level of data handling capability is very 
important from a data Grid perspective. These major simulations need changes to the OS or 
middleware that can support these kinds of operations specifically to address the 1 Terabyte 
memory requirement and huge amount of data redundancy and synchronizations needed. That in 
turn translates to Grid middleware and API requirements for customizations that individual 
customers need to carry out. 

Service Grid 

A grand challenge is the need to be able to simulate whole aircraft systems which are otherwise 
decade-long major projects. Financially it makes sense to  do away with as much physical testing 
as possible with numerous outsourced and collaborating design consulting companies (for 
example – 12 risk-sharing partners for an existing project). Therefore different computing 
activities (for example tests/interaction to one consulting company) are drawn up as services with 
service agreements. Through interplay of Web services and Grid the computing a service is 
executed over multiple sites/companies. Additionally, buying and selling extra compute cycles 
from/to a third-party utility provider is also considered (Grid Resource Reseller use case). Difficult 
problems that need to be solved are: 

• Security guarantees between different collaborating companies. 

• Management of resources to fulfill all the different service requirements detailed above 
(this includes configuration and figuring out the quantity of resources needed). 

• Guaranteeing mechanisms to satisfy reliability and meeting all the different levels of SLM 
requirements (at a resource level, to a service level). 
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Interoperability between Grids is a key requirement. Therefore some sort of interoperability 
standards need to be there. Different data centers in one company might be using different Grid 
middleware. 

Maintenance is another strict business requirement – things like usability and troubleshooting 
mechanisms are relevant in this regard. 

The ability to upgrade Grid software without bringing down all systems is a necessity.  

Human interfaces to a Grid have to be usable – it might be necessary to enforce some guidelines 
on user interfaces.  

9.4 Involved resources 
The resource needs assume the CDC use case resource needs as a base. Additional emphasis 
is placed on the needs of handling non-computing resources in the Grid: for example devices with 
a software interface (aircraft systems – the Grid concept is applied and this resource is shared, 
especially for testing and modeling by different teams), firewalls, router configurations etc. 

These resources are geographically distributed inside a company. There is multiple user access 
to these resources (with varying levels of access). 

9.5 Functional requirements for OGSA platform 
The Commercial Data Center use case is the base. Additional requirements are listed below. 

• Discovery and brokering. Ability to discover and broker services that are across 
organizations with various levels of security being considered 

• Metering and accounting: Access to heterogeneous storage systems; preferences for 
interface format to such systems; accounting requirements, including information on the 
requirements for dealing with multiple accounts and/or accounting systems. 

• Monitoring. A global, cross-organizational view of resources and assets with emphasis on 
life cycle management and fault handling. Automated actions are necessary, and hence 
the data should be sufficient for that. There need to be APIs to allow this information to 
be located in a mixed Grid/non-Grid environment. 

• Provisioning.  Compatibility to non-Grid provisioning systems due to the mixed 
environments. A way out is specifying APIs to interact with Grid provisioning APIs. 

• Resource collision resolution. In a fully mixed Grid/non-Grid environment there is a 
possibility of usage of same resource in both Grid and/or non-Grid fashion.  Management 
of collision of these resources (even when it’s inside Grid) is imperative. This needs to be 
resolved (at least guidelines ought to be there). 

• Usage models that provide for both batch and interactive access to resources.  

• Support for the management and monitoring of resource usage and the detection of SLA 
violations by all relevant parties. 

• Load-balancing. An additional requirement is dynamic consideration of security 
requirements along with this. Legacy application management. Legacy applications are 
those that cannot be changed, but are too valuable to give up or too complex to rewrite. 
The Grid infrastructure has to be built around them so that they can be used as well by 
the non-Grid user. 

• Administration. Be able to “codify” and “automate” the normal practices used to 
administer the environment. The goal is that systems should be able to self-organize and 
self-describe to manage low-level configuration details based on higher-level 
configurations and management policies specified by administrators. There is also the all-
important issue of migration of services that are not Grid-enabled to Grid-enabled 
services. Some usability guidelines might be required to ensure easy usability of Grids.  A 
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Grid software upgrade should not enforce a complete Grid environment downtime, but 
should be done partially, system by system or without downtime at all. 

• Programming model. Guidelines and methods to Grid-enable applications (including 
legacy applications – this could end up being difficult for the first revision, for example 
when applied to programs that are multithreaded or multiprocessed).   

• Program execution. Specified tolerance of application and network delays.  Scheduling of 
priority to get application real time requirements (resources, messages etc). Standard job 
description (environment, job etc.). 

• Logging. The logged information should be enough for detailed troubleshooting. This 
might mean varying levels of logging as required by the administrator.  

• Policy (from a security and identity point of view). 

• Collaboration requirements.  Various levels of security to control the access of a resource 
or a service. 

• User interfaces.  A number of user interfaces will be required.  Such interfaces will be 
required to provide the user with the ability to submit, monitor, and steer runs. In addition, 
it would be helpful to have an interface which provides information for administration and 
for performance-tuning, providing the ability to audit the computation, compare different 
runs in terms of resource usage, and provide information about each run, including what 
version was installed on the computing resources, how different resources performed, 
accounting information, etc. 

9.6 OGSA platform services utilization  
Since this use case covers a vast area of application of Grids, all services in the OGSA 
architecture specifications are needed. 

9.7 Security considerations 
The CDC use case requirements are the base to start with. Additional to that is the use, access 
and flexing of non-computing resources like software interfaced systems, routers, firewalls and so 
on. To successfully operate in a fully-fledged Inter-grid environment these will have to be 
manipulated and allocated as desired. Security then becomes the prime factor for the 
administrator to consider here. 

9.8 Performance considerations 
Again the CDC requirements are the base here, the caveat being that speed of execution is also 
a parameter considered in some parts of the Inter-grid where scientific applications are running.  

From a gross performance requirement the CIO wants to be able to quickly deploy the 
corporation’s resources to the critical problems at hand. Today in the financial industry, for 
example, it is a manual process that can take 13 weeks or more in some situations. As the 
company consolidates data centers, the potential loss of a data center looms large. The ability to 
redeploy critical customer-facing services to another facility is also critical. So migration and 
deployment have to be undertaken with industrial-quality mission criticality. 

To adequately manage the performance of the system, monitoring and forecasting requirements 
prior to and during application execution are required for identified systems. Some of these are: 
Network bandwidth, latency and jitter, CPU load, information service query time, disk capacity, 
speed, multicast performance, remote memory and data sizes and access times, application 
timings, and CPU speeds (specs and benchmarks).  Some of these can be collected using 
existing performance management tools and some (the ones required for dynamic and automatic 
tuning) will have to be supplied by the Grid system or API-based tools. 
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To get a feel for the real world performance and fault management requirements in the Inter-grid 
scenario, consider a financial company where about 40000 servers could be used along with the 
120000 agent office machines – this while spread across 19 data centers, shrinking to about 4 
over the next few years. They are driven by their ability to manage the complexity of deploying an 
ever-growing set of services without additional people (migration and performance requirements). 
The disaster recovery expectation is to be able to lose a data center and have the critical 
service up in less than 24 hours (currently 7-10 days). Reliability requirements are a downtime 
that can be measured in minutes in a year. 

9.9 Use case situation analysis 
This is clearly in the research phase. Industrial and business applications running in a Grid 
environment is uncharted territory. Once the CDC use case becomes a success a proper 
company-wide industrial-strength Grid (Inter-grid) can be attempted.  

9.10 References  
1. Forrester ‘Organic IT’ report , 2003 

2. Foster, I and Gannon, D. The Open Grid Services Architecture Platform, 2003, 
https://forge.gridforum.org/docman2/ViewProperties.php?group_id=42&document_conte
nt_id=1903&category_id=357 

3. Kishimoto, H., Savva, A., Snelling, D. OGSA Fundamental Services: Requirements for 
Commercial GRID Systems, OGSA-WG document, 14 October 2002, 
https://forge.gridforum.org/docman2/ViewProperties.php?group_id=42&category_id=431
&document_content_id=3114 
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10. Interactive Grids  

10.1 Summary 
In addition to batch processing, interactive processing can be envisioned as a useful application 
of Grid technology.  Applications that today are restricted to running on a single platform might be 
made to run on a network/Grid by using the concept of an interactive Grid and thus allow 
individual user interactions. That means that the applications and spawning processes should 
know where to send the job parameters and execution results (or a middleware agent should 
route them), and the user interface should be able to interact and synchronize seamlessly with 
processes that have been farmed out or restarted.  Compared to the Online Media use case, this 
use case emphasizes a very high granularity of distributed execution (thread-based, or even 
procedure-based, depending on the customer scenarios). 

Another aspect of interactive Grid is the ability to schedule and perform work, based on an 
automated schedule, and to do automated series of actions. This also means that a job is being 
controlled dynamically by an external agent which may or may not be a human.  

Computational steering12 is another aspect of interactive Grids that follows from this. This means 
that the Grid user has the capability to steer his/her computations and resource needs 
interactively and dynamically during runtime. This also means that user can access new Grid 
locations and ask to change underlying physical resources dynamically during normal interactive 
proceedings.  

10.2 Customers 
This use case is applicable to the following types of customers: 

• Individual Grid users who are oblivious of whether their application is running in a Grid or 
a non-Grid environment. This is especially important for virtualization of future 
applications and usage scenarios, as application vendors do not have to design 
specifically for being part of a Grid environment for the applications to become virtualized. 

• Small and medium business customers who have limited computing resources and have 
applications that do not require huge resources, but do need more than single PCs. 

• Grid users who have graphical interfaces (as complexity increases all user interfaces 
tend to be graphical and hence require synchronization and enable interactive use).  

• Users of legacy applications that today run on a specific platform, but in the future will be 
able to run on the network (Grid) without the code being Grid-enabled.  

10.3 Scenarios 
1. UI-based operations controlled by a Grid user. 

2. Pure parallelism (to any granularity) and pervasive computing (not just batch jobs). 

Traditionally, scientific and academic users have submitted work to Grid computing systems in 
batch jobs.  For their purposes, the time delay while awaiting results from batch jobs has been 
acceptable.  However, as Grid computing becomes more of a tool for commercial markets, users 
are expected to want to be able to monitor and manipulate results in real time. 

                                                        
12 Computational Steering  can be defined to include modifying program states, managing data 
output, starting and stalling program execution, altering resource allocations, changing underlying 
resources etc. Dynamic steering requires the user to monitor program, environment requirement, 
system state and have the ability to make changes.  



GFD-I.029  Oct. 28, 2004 

ogsa-wg@ggf.org  54 

In the current batch model, each computing job is submitted to a Grid management system with 
instructions for the task and requirements for computing resources.  The Grid management 
system allocates resources, completes the job and sends back the results—the user cannot 
review intermediate results, and cannot submit changes until the next batch job submission.  With 
the new interactive Grid model, users could have results delivered in real time via graphical 
displays, allowing for adjustments, manipulations and data changes to the job while it is still in 
process. There is a computational steering aspect in this. 

Interactive technology for Grid systems is useful for reducing run time and improving results for a 
broad range of compute-intensive applications, including graphics visualization and rendering, 
engineering applications such as CAD/MCAD, digital content creation, streaming media, video 
games, text editing and e-mail applications.  In addition, the remote access enabled by interactive 
Grid technology can deliver cost savings by limiting the number of licenses necessary for 
expensive, specialized software.  

In terms of parallelization, process-level, thread-level and even instruction-level parallelization 
can be visualized in Grid by introducing the interactive Grid concept. 

10.4 Involved resources 
This use case only requires the use of generic computing resources (CPU resources and various 
operating systems running on them, and storage resources). 

10.5 Functional requirements for OGSA platform 
The commercial data center use case is assumed to be the base here to avoid rewriting every 
functionality. However the dynamic nature of interactive Grids brings in new requirements to 
traditional services from the perspective of fine grained transience and virtualization of interaction. 
Some of these capabilities required are: 

• Discovery and Brokering.  These functionalities should be able to recognize those Grid 
resources that can support interactive Grid functions.  It must be possible to make real-
time adjustments to resources based on job requirements and user input. 

• Metering and accounting. It must be possible to measure and account for resource 
usage. This is more complex in a computationally-steered model of execution than in the 
preordained model of a batch environment.  

• Monitoring. Monitoring Agents – stand-alone software agents launched by the interactive 
Grid middleware to monitor security and performance, so that, for example, SLAs can be 
enforced.  

• Data sharing. Data archives and data-caching capability, managed for consistency per 
user per job interaction. 

• Policy. It is important to be able to represent policy at multiple stages in hierarchical 
systems with a view to automating the enforcement of policies that might otherwise be 
implemented as organizational processes or managed manually. 

• Transport management.  It can be important to be able to schedule or provision 
bandwidth dynamically for data transfers, or in support of other data-sharing applications. 

• Session Management. For maintaining job performance, including enforcement of SLAs 
and QoS requirements. Hierarchical sessions are supported – sessions that can have 
global scope, individual layer scope, and sub sessions inside that to track unit 
computations described by policies. 
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10.6 OGSA platform services utilization  
This use case is currently being implemented, and hence we do not yet have a full understanding 
of all the services that will be required. However, an initial list based on current experience is 
given below. 

• Name resolution and discovery service: Capability to differentiate devices that can 
participate in an interactive Grid.   

• Data management service: Has to take into account data caching, and managing 
consistency per job per user.  Additionally, it must be possible to schedule bandwidth 
dynamically for data transfers. 

• Fault handling service: Fault handling per job per user. 

• Policy service: Policies and policy handling at multiple stages in hierarchical systems. 

10.7 Security considerations 
Security mechanisms must allow for session-based action series. There is a hierarchical session 
model, and the security for these has to be coordinated to prevent unauthorized access and 
malicious use. So admission control for global and individual sessions should be possible. 

10.8 Performance considerations 
Matching of resources to user requirements on a much more dynamic scale than for a batch Grid 
will introduce performance issues.  

10.9 Use case situation analysis 
This use case is currently in the research phase. Hewlett-Packard has produced the initial 
versions/demos of this. 

10.10 References 
1. Foster, I and Gannon, D. The Open Grid Services Architecture Platform, 2003, 

https://forge.gridforum.org/docman2/ViewProperties.php?group_id=42&document_conte
nt_id=1903&category_id=357 
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11. Grid Lite  

11.1 Summary 
This use case extends the use of Grids to small devices – PDAs, cell phones, firewalls etc. The 
key requirement is to identify a set of essential Grid services for PDAs, for example, that enable 
the device to be part of a Grid environment. Grid software components running in a “Grid lite” 
environment need to have a smaller footprint, and generally to be more efficient, than would be 
necessary for a “normal” computational Grid node. With a Grid lite infrastructure in place, other 
Grid applications and users would be able to run tasks on these Grid-enabled PDAs or other 
smaller-footprint devices, and vice versa. 

Layer2 or 3 devices that have more of a firmware interface (embedded operating systems) should 
also be able to be virtualized and to be Grid devices. The main requirements here are 
virtualization and pure software-based remote configuration/provisioning. 

Mobility has many issues with connectivity/virtualization and synchronization/interactivity.  

11.2 Customers 
This use case is applicable to the following customers: 

• Individual Grid users who use PDAs. 

• Companies that manufacture small devices or network devices or other non-computing 
devices like printers. 

• Small and medium business customers who have limited financial resources, who would 
like to virtualize their environments completely but cannot do so due to the presence of 
layer2 devices like firewalls or routers in the network.  

11.3 Involved resources 
This use case involves PDAs, cell phones, appliances, Layer2 devices like firewall or other 
network devices. 

11.4 Functional requirements for OGSA platform 
The requirements that are specifically applicable to this use case, and may not be covered in 
other use cases, are:  

• Discovery and Brokering.  Discovery mechanisms and registry mechanisms for layer 2 
devices and transient devices.  Ability to handle a very large number of resources. 

• Monitoring. Monitoring model that incorporates a synchronous and asynchronous model 
(for offline processing and mobile processing). 

• Data sharing. Data archives and caching data capable and managed for consistency for 
offline and online actions. 

• Proxy Grid client mechanism:  For many devices it may not be acceptable to have a Grid 
client running in them.  In these cases a proxy mechanism would be needed. 

• Small footprint essential service group:  The Grid services groupings should take into 
account small-footprint devices.  

11.5 OGSA platform services utilization  
The preliminary service requirements for Grid lite are listed below.  More details should be 
forthcoming as Grid-lite infrastructures are implemented.  
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• Name resolution and discovery service: Efficient naming and discovery of layer2 devices, 
PDAs, and transient devices such as mobile phones.  In the case of mobile devices the 
issues of discovery associated with moving away from local environments is also 
important.  

• Security service: Like discovery, security has to tackle the issues related to devices that 
can have no security, and with devices that can have mobility, as well as VPN-based 
connections.  Reconfiguring firewalls is another issue here.  

• Scheduling service: Handling transience. 

• Brokering service: Handling transient devices. 

• Data management service: This service has to take into account the often very low 
bandwidth available for communication (coding schemas and so forth).  

• Provisioning and resource management service: Provisioning layer2 and devices such as 
PDAs. 

• Fault handling service: Fault handling of Grid lite devices. 

• Policy service: Policies and policy handling of Grid lite devices – especially policies for 
mobility and offline synchronized actions. 

• Monitoring service: Monitoring of Grid lite devices (monitoring principles may be different 
for transient devices and layer2 devices). 

11.6 Security considerations 
A VPN-based security model should be acceptable. Devices with null security mechanisms will 
have to be able to work as part of the Grid if desired. 

11.7 Performance considerations 
There may be bandwidth issues if large amounts of data must be transferred to main Grid activity. 

11.8 Use case situation analysis 
This use case is currently in the research phase. 

11.9 References 
1. Foster, I and Gannon, D. The Open Grid Services Architecture Platform, 2003, 

https://forge.gridforum.org/docman2/ViewProperties.php?group_id=42&document_conte
nt_id=1903&category_id=357 
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12. Virtual Organization Grid Portal 

12.1 Summary 
Given that the Grid enables people to be members of many VOs and each VO gives one access 
to various computational, instrument-based data and other types of resources, it is very natural 
for these VOs to produce a Grid portal which provides an end-user view of the collected 
resources available to the members of the VO.  By producing a portal with “one-stop shopping” 
for users who participate in a VO, the VO makes its resource much more useful and accessible 
for their users. 

These Grid portals have several elements in common: 

• Provide a public face for the VO with various outreach and informational materials. 

• Provide a set of collaborative tools (discussion, file storage, calendar, announcements, 
etc.). 

• Provide access to any large data stores which are available to the members of the VO. 

• Provide the ability to make use of any computational resources available to the members 
of the VO. 

These portals are usually a combination of web-based and other tools.  Typically, essential 
functionality is provided via Grid-enabled web servers while more sophisticated tools are 
deployed to users’ desktops. 

Given that there are a number of common elements which can be reused across multiple Grid 
portals, and to simplify the user’s experience as he/she moves from one portal to another, it is 
important to develop best practices and techniques for the development and deployment of 
Virtual Organization Grid Portals. 

12.2 Customers 
The customers of this capability are effectively any virtual organization which intends to provide a 
user-facing component to its resources.  In many ways, the Virtual Organization Grid Portal is a 
capability which can be used by many of the other scenarios described in this document.  This 
scenario does not describe the particular portals for the other scenarios, but instead focuses on 
the common tools and capabilities which may have uses for any Virtual Organization Grid Portal. 

12.3 Scenarios 
There are an increasing number of Grids where the focus is collaboration centered on some 
scarce physical resource.  Often these resources are so large or so expensive that there can only 
be a very small number of installations across the world.  Some of the examples of this type of 
collaborative activity include astronomy, high-energy and nuclear physics, fusion research, 
earthquake engineering and others. 

These broad collaborative efforts generally have the following attributes: 

• Geographically-dispersed access to computation, data and instruments. 

• The need for environments for participants to meet and work together across large 
geographical distances. 

Most of these collaborative activities are by their nature world-wide and cross-organizational.  
Within the collaboration there are many groups of varying sizes which are dynamically formed to 
work on a wide range of problems including experiment design, experiment scheduling, 
equipment operations, management, publication of results, and many others.  All of these groups 
must operate with members scattered around the world in any time zone. 
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For these collaborations it is very important to maintain the security of the data, ideas, and the 
interactions of each group.  While there is overall collaboration in the use of the equipment, there 
is often competition between subgroups within the collaborations in their pursuit of research 
results.  In addition proper security and access control are absolutely necessary when dealing 
with the control and operation of any type of experimental equipment or the monitoring of real-
time data as it comes from the experimental equipment. 

12.4 Involved resources 
The Grid Portal can provide interfaces and access to any type of Grid-enabled resource which is 
within the purview of the Virtual Organization.  These can range from computer resources to 
physical sensors and data resources.  They can be centrally located or widely distributed. 

12.5 Functional requirements for OGSA platform 
Because of the cross-cutting nature of this scenario, the functional requirements on the OGSA 
platform cut across all of the services described in the OGSA Platform document.  

12.6 OGSA platform services utilization  
Because of the cross-cutting nature of this scenario, Grid Portals have the potential to utilize all of 
the services described in OGSA platform document.  Virtual Organization Grid Portals will place 
particular strain on the security capabilities of the OGSA platform, as described in the next 
section. 

12.7 Security considerations 
As membership in multiple Virtual Organizations becomes a desirable and feasible situation, and 
as increasingly-broad user populations interact with the Grid, there are a number of new issues 
which will come to the forefront and need solutions.  These fall into two broad categories: 

• Security proxy capabilities 

• Credential management issues 

Security proxy capabilities are a significant but somewhat short-term problem.  To understand the 
need for security proxy capabilities, imagine that a Grid portal would like to allow its users to use 
WAP on a cellular phone to monitor a batch job and possibly steer the batch job in some way.  
For the foreseeable future, it is not likely that the cellular phone will have complete support for 
OGSA protocols and services.  To allow the cell-phone user to perform operations within the Grid 
there will be a need for a proxy which talks the WAP protocol to the cellular phone and the Grid 
protocols to the rest of the Grid. 

Some day in the future, this will not be necessary when all devices support OGSA services and 
protocols in a native way. 

Credential management is related to security proxy, but different in some important ways.  Much 
as the cellular phone is not capable of running the Grid protocols directly, it is also not capable of 
carrying Grid credentials around to properly establish identity.  As such, an intermediate 
mechanism is needed which is capable of handling the user’s credentials. 

The problem is further complicated as users join perhaps thousands of virtual organizations, each 
possibly with different credential mechanisms and credential authorities.  At some point, the 
management of these credentials becomes completely unwieldy.  This is especially the case if a 
person is a mobile user migrating between different workstations throughout each day.   It is not 
practical to install several hundred credentials in every piece of equipment that the user may use 
throughout the day before he/she can use the equipment.  Beyond the inconvenience of installing 
key material as one moves around, there is the grave danger of leaving key material in a place 
where it may be compromised. 
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The ideal solution for this is to use “smart cards” which can contain key material in such a way 
that it is not actually placed on the computer which the user intends to use.  The unfortunate 
situation is that smart cards are effectively not supported at all by any commodity 
hardware/operating system combinations. 

The net result is that we will need a mechanism for the management of user credentials.  The 
MyProxy [10] mechanism which is currently available is a basic mechanism, but requires 
moderate user sophistication to manage and use their credentials.  In addition, users still must 
keep track of the location and purposes of each of their credentials. 

An additional consideration is that a VO might have a dynamic nature with ever-changing 
permissions on resources. A solution for this could be to have a sufficient description language to 
be in place addressing this requirement.  

These security problems are not unique to the Virtual Organization Grid Portal, but as 
organizations are increasingly able to quickly and easily deploy portals, these problems will 
quickly become very important. 

12.8 Performance considerations 
Grid Portals generally do not have significant issues in terms of performance.  However, there is 
often a situation where a Grid portal must act as a proxy between a non-Grid-enabled tool and a 
resource which is available using Grid protocols.  Some of this proxy activity is short-lived and is 
transactional in nature.  Other proxy activity may need to be maintained for a long period of time 
such a running a Brew [2] application running in a cellular phone which needs a proxy to a 
subscribed OGSA service. This area seems to be of interest for Semantic Grid research groups 
as well – towards making Semantic Web technologies interoperable with Grid technologies over 
such portals.  

12.9 Use case situation analysis 
The primary unmet needs of the Virtual Organization Grid Portal fall into two basic categories: 

• The need for enhanced security and credential capabilities as described above. 

• The need for high level services which reflect a “user view” of underlying services. 

To understand the need for “user-centric” services, we can look at the GridFTP capability in the 
Globus Toolkit and compare the GridFTP API used by programmers with the command line 
program globus-url-copy.  The GridFTP API is very powerful and flexible and exposes all of the 
capabilities of GridFTP to a sophisticated programmer.  The globus-url-copy command (at its 
simplest) takes two parameters in the form of URLs and copies data. 

As we move towards Virtual Organization Grid Portals, we will increasingly need access to OGSA 
services which provide simple, high-level functions more akin to the globus-url-copy command 
than to the GridFTP API.  Virtual Organization programmers will need to write small applications 
which are capable of easily composing several of these high-level services to accomplish some 
new task.  These applications may be written in languages such as JSP, Perl, TCL/TK, etc., 
rather than JAVA or C.  It is entirely possible and desirable that the writers of the low-level 
(powerful/flexible) services will also provide these high-level services.  The advantage of both 
services being implemented by the same group is that the higher-level service is a natural 
mechanism to test the lower-level services. 

There are a number of existing efforts which can be viewed as early analogues for this concept.  
The Globus Toolkit COG [3] is an example of encapsulating Grid functionality in an “easier-to-
use” form.   The COG enabled the creation of simple Grid tools in a variety of simple languages.  
Another early example of this type of effort is the Grid Portal Development Kit (GPDK) which 
encapsulated high-level Grid functionality in a set of JAVA beans which enabled development in 
the JSP language. 
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It is important to note that the key need here is not the particular implementations in these 
languages/environments, but instead the services which provide the high-level user-oriented 
functionality which will allow a wide range of portal toolkits to be developed using those services.  
These services can be thought of as a layer which is built on the more fundamental OGSA 
services. 
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13. Persistent Archive 

13.1 Summary 
We build many large-data scientific preservation environments using the capabilities provided by 
virtual data Grid technology (e.g. California Digital Library, NARA persistent archive, NFS 
National Science Digital Library).  Preservation environments handle technology evolution by 
providing appropriate abstraction layers to manage mappings between old and new protocols, old 
and new software systems, and old and new hardware systems, while maintaining authentic 
records.  Preservation environments typically organize digital entities into collections.  Authenticity 
is tracked by the addition of appropriate metadata attributes to the collection to describe 
provenance, track operations performed upon the data, manage audit trails, and manage access 
controls.  Validation mechanisms are provided to check that the data has not changed. 

Virtual data Grids provide two necessary capabilities: 

• Support for the creation of a “derived data product” from a specification.  Derived 
products can be a “transformative migration” of a digital entity to a new encoding format, 
or even the application of the archival processes that are used to create an “archival 
form” of a collection. 

• Management of the completion state associated with the execution of a service.  Note 
that the “completion state” that describes the result of the application of “archival 
processes” must be preserved in order to check authenticity. 

Persistent archives differ from virtual data Grids in that in addition to an “execution state” that is 
transient; a “completion state” is preserved.  Persistent archives build upon standard remote data 
access transparencies: 

• Logical name space to provide location independent naming convention. 

• Storage repository abstraction to characterize the set of operations that are performed on 
remote storage systems (file systems, archives, databases, web sites, etc.). 

• Information repository abstraction, to characterize the set of operations used to manage a 
collection within a database. 

• Access abstraction, to characterize the set of services that are supported by the 
persistent archive. 

Preservation environments support archival processes, used to create the archival form of 
collections.  The archival processes include: 

• Appraisal – analysis of which digital entities to preserve. 

• Accession – the managed ingestion of digital entities into the data Grid.  This 
corresponds typically to a registration step, and then a data transport step. 

• Arrangement – the creation of a hierarchical collection for holding the digital entities. 

• Description – the assignment of provenance and authenticity metadata to each digital 
entity. 

• Preservation – the creation of archival forms through transformative migrations, and the 
storage of the data. 

• Access – support for discovery and retrieval of the registered digital entities. 

13.2 Customers 
Equivalent technology is needed by all groups that assemble large data collections, or that try to 
manage a collection for a time period greater than three years (the timescale on which technology 
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becomes obsolete).   Users include NARA, Library of Congress, NHPRC state persistent archives, 
NSF NSDL, NVO, NIH BIRN, NASA ADG, NASA IDG, DOE PPDG, etc. 

When dealing with scientific data, three capabilities are needed in particular: 

• Support for parallel I/O, to send data effectively without having to optimize the window 
size and the system buffer size 

• Support for bulk operations, including registration, loading, unloading, deleting. 

• Support for remote proxies, for data subsetting directly at the remote storage repository, 
for metadata extraction, for bulk operations 

Every community we work with is dealing with small data sets (size less than the network latency 
* Bandwidth delay product).  In aggregate, their data is measured in tens of terabytes to 
petabytes.  An example is the 2 Micron All Sky Survey, a collection of 5 million images totaling 10 
TBs of data.  The images are registered into a collection, aggregated into containers, and stored 
into the HPSS archive.  Containers were used to minimize the number of files that were seen by 
the archive.  At SDSC, the archive contains over 700 TBs of data, but only 17 million files.  The 
addition of 5 million names to the HPSS name space for only 10 Terabytes of data was viewed as 
unacceptable.  By aggregating the images into containers, we stored the 10 Terabytes in 147,000 
“files.”  Since we sorted the images when they were written into the containers, such that all 
images for the same region of the sky were in the same container, it then became very easy to 
support the construction of mosaics. 

An example of the use of remote proxies is the Digital Palomar Observatory Sky Survey.  In this 
case, each image is 2 GBs in size.  The extraction of a region around a star of interest required 
the movement of the entire image to a processing platform, which took 4 minutes.  A remote 
proxy was written that supported the image cutout operation directly at the remote storage system, 
shortening the time for completion to a few seconds. 

All collections we support are multi-site.  Replication across sites is essential for: 

• Disaster recovery.  We cannot afford to have a collection lost due to fire or earthquake. 

• Fault tolerance.  When a site is down, we can still access the data from the alternate site. 

• Performance.  We can load-balance accesses across sites. 

• Curation.  Data is managed and maintained by experts who reside at different institutions.  
The primary copy tends to be at the site where the expertise is located. 

13.3 Scenarios 
The primary scenario is the execution of the archival processes listed above.  The Storage 
Resource Broker has implemented all of the capabilities listed above, and is in production use in 
support of multiple persistent archives.  They include: 

• California Digital Library, crawl of federal web sites, resulting in 16.9 million digital entities, 
1.5 TBs of data.  The digital entities are registered into the SRB logical name space, and 
accessed through a web browser HTTP interface.  This makes it possible to display the 
archived material through the same web mechanisms used to access the original.  The 
URLs for each digital entity are mapped as attributes onto the logical name space used to 
register the digital entities. 

• NARA persistent archive.  In this project, the NARA digital holdings are registered into the 
SRB data Grid, replicated between U Maryland, NARA, and SDSC.  Currently over 1.5 
TBs of data is registered. 

• NSF National Science Digital Library.  SDSC runs a persistent archive that holds a copy 
of each digital entity that is registered into a central repository at Cornell.  The number of 
digital entities is rapidly growing.  The system currently has 1.5 million digital entities, with 
an average size of 50 Kbytes. 
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13.4 Involved resources 
The Persistent Archive contains up to one petabyte of data and several dozens million files.  

The Storage Resource Broker is installed on: 

• Sun, AIX, Linux, 64-bit Linux, HP Tru-64, Mac OS X, Windows NT 

and is used to access: 

• File systems (Unix, Mac OS X, Windows, and Linux), archives (HPSS, Unitree, ADSM, 
and DMF), databases (DB2, Oracle, Sybase, Informix, SqlServer, Postgres), object ring 
buffers, hierarchical resource managers, web sites, FTP sites. 

and provides access to the systems through APIs requested by the application areas: 

• C library calls, C++ library calls, Unix shell commands, Python library, Windows DLL 
library, Windows browser, Web browser, Open Archives Initiative, WSDL, Java 

13.5 Functional requirements for OGSA platform 
We have the challenge that the preferred access mechanism is specified by the user community.  
In all cases, they prefer to continue to use legacy APIs for access to distributed data.  An 
example is the CMS high-energy physic project at Caltech.  They have developed an analysis 
program called Clarens, which was based on Python.  Hence they requested a Python I/O library 
for interacting with the SRB. 

The digital library community (NSF NSDL project) required the use of the Open Archives Initiative 
protocol for exchanging metadata.  This is a simple packaging of the metadata that is exchanged 
between sites. 

The Web Services Description Language (WSDL) environment is based on Java.  Hence we 
implemented a pure Java interface to the SRB. 

A major distinction between the services provided for current persistent archives and OGSA-
based persistent archives is the integration of capabilities into composite sets.  We are under 
pressure to optimize the ability to manage bulk registration of files into the logical name space, 
bulk loading of data onto a storage repository, bulk extraction of data, and bulk deletion of data.  
This means that we have to issue one request, and then perform operations on 10,000 to 
100,000 files.  To accomplish this, we do the following: 

• Integrate authorization, determination of file location, file access, and file retrieval into a 
single command.  The data Grid must process each of these operations without requiring 
additional interaction with the user. 

• Support bulk registration.  This is the aggregation of location information about remote 
files into a series of metadata concatenation files, and the bulk load of the files into the 
metadata registry.  Rates on the order of 600-1000 per second are needed. 

• Support bulk loading.  This is the combined aggregation of files into containers, and the 
aggregation of location information into a metadata catalog 

A second distinction is the implementation of consistency constraint mechanisms that work 
across multiple services.  Consider access controls on containers that are replicated.  In the SRB, 
the access controls apply to each digital entity that is registered into a container, for all copies of 
the container.  The access controls are a property of the logical name space.  Operations on the 
logical name space result in “completion state” information that is mapped as attributes onto the 
logical name space and stored in the metadata catalog.  To make the problem more specific, 
consider writes to a file that has been aggregated into a container that was replicated.  The data 
Grid needs to implement the following: 

• Mapping of access controls onto the logical name space 

• Management of write locks on the container 
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• Management of synchronization flags on the replica copies 

• Mechanism to synchronize the replicas 

A similar set of constraints emerges when the data is encrypted or compressed.  Again, the state 
of encryption/compression needs to be a property of the logical name space, such that no matter 
where the data is moved, the correct encryption algorithm can be used before transport, and the 
correct decryption algorithms can be invoked by a client. 

The required set of services depends strongly upon the application area.  Thus 3D visualization of 
multi-terabyte data sets requires the ability to do partial file reads, seeks, and paging of data into 
a 3D renderer.  An OGSA service that supports paging of data may be too heavyweight for the 
3D rendering system.  Services are also needed for data and metadata manipulation.  An 
example of metadata manipulation is the automated extraction of metadata from a file at the 
remote storage repository, and the bulk load of the metadata into the metadata repository.  An 
example of metadata discovery is the OAI-based metadata extraction, and the formatting of 
extracted metadata into an HTML or XML file.  An interesting metadata service is the provision of 
access control lists on metadata attributes, as well as on the digital entities. 

For data Grids, the major challenge is the consistent management of “completion state.”  For any 
large collection, the metadata must be maintained in a consistent state with respect to the digital 
entities.  We use databases to manage the state information in “hard state” repositories.  
Metadata updates are done within the service, internal status information is kept for operations 
which are in a partial completion state (such as a write to a replica, we need to eventually 
synchronize across copies). 

Explicit data operations include: 

• Change permission – Can be used to change access permission on a data Grid 
collection or a data set.  

• Copy – Copy contents of data Grid collection or a dataset into a new collection or a 
dataset respectively within the default storage resource or any other storage resource. 

• Create – Create a new container or a collection. 

• Ingest data set – Insert a data set present as an attachment to the data Grid request. 

• Download data set – Download a dataset as an attachment to a data Grid response. 

• Delete – Delete a data Grid collection or a dataset. 

• List – List the contents of collection or a container. 

• Prepare ticket – Prepare a new Grid Ticket. 

• Rename – Rename a collection or a data set. 

• Replicate – Replicate the contents of a collection or a dataset. 

• Seek’N'Read – Seek to a point in a data set and read (get) specified bytes as an 
attachment. 

• Seek’N'Write – Seek to a point in a data set and write (put) the bytes present in the 
attachment. 

13.6 OGSA platform services utilization  
Utilizing the OGSA data services, the persistent archives will implement bulk registration, load, 
unload, and delete functions. 
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13.7 Security considerations 
The persistent archive should provide access control for stored data. The current SRB 
interoperates with GSI 1.1 and GSI 2.4.  The next step is to interoperate with GSI 3. 

13.8 Performance considerations 
The ultimate goals are to use all available bandwidth, and register 1000 files per second. 

13.9 Use case situation analysis 
We are not currently using OGSA.  Instead we have implemented native APIs and WSDL/SOAP. 

13.10 References 
1. R. Moore, A. Merzky, “Persistent Archive Concepts,” Global Grid Forum Persistent 

Archive Research Group, draft on Persistent Archive Recommendations, May 3, 2003. 

2. R. Moore, “Common Consistency Requirements for Data Grids, Digital Libraries, and 
Persistent Archives,” Grid Protocol Architecture Research Group, Global Grid Forum, 
Tokyo, Japan, March 5, 2003. 

3. R. Moore, C. Baru, “Virtualization Services for Data Grids,” Book chapter in "Grid 
Computing: Making the Global Infrastructure a Reality,” John Wiley & Sons Ltd, 2003. 

4. Arcot Rajasekar, Michael Wan, Reagan Moore, George Kremenek, Tom Guptil, “Data 
Grids, Collections, and Grid Bricks,” Proceedings of the 20th IEEE Symposium on Mass 
Storage Systems and Eleventh Goddard Conference on Mass Storage Systems and 
Technologies, San Diego, April 2003. 

5. Michael Wan, Arcot Rajasekar, Reagan Moore, Phil Andrews, “A Simple Mass Storage 
System for the SRB Data Grid,” Proceedings of the 20th IEEE Symposium on Mass 
Storage Systems and Eleventh Goddard Conference on Mass Storage Systems and 
Technologies, San Diego, April 2003. 

6. Arcot Rajasekar, Michael Wan, Reagan Moore, Arun Jagatheesan, George Kremenek, 
“Real Experiences with Data Grids – Case studies in using the SRB,” International 
Symposium on High-Performance Computer Architecture, Kyushu, Japan, December, 
2002. 

7. R. Moore, “The San Diego Project:  Persistent Objects,” Proceedings of the Workshop on 
XML as a Preservation Language, Urbino, Italy, October 2002. 

8. Edward A. Fox, Virginia Tech: Reagan W. Moore, San Diego Supercomputer Center; 
Ronald L. Larsen, University of Pittsburgh; Sung Hyon Myaeng, Chungnam National 
University; and Sung-Hyuk Kim, Sookmyung Women's University, Toward a Global 
Digital Library: Generalizing US-Korea Collaboration on Digital Libraries, D-Lib Magazine, 
October 2002, http://www.dlib.org/ 

9. Arcot Rajasekar, Reagan Moore, Bertram Ludäscher, Ilya Zaslavsky, “The Grid 
Adventures: SDSC’s Storage Resource Broker and Web Services in Digital Library 
Applications: 4th Russian Conference on Digital Libraries, Dubna, Russia, October, 2002. 

10. R. Marciano, B. Ludaescher, I. Zaslavsky, R. Moore, and K. Pezzoli, "Multi-level 
Information Modeling and Preservation of eGOV Data,” First International Conference, 
EGOV 2002, Aix-en-Provence, France, September 3, 2002 

11. G. Bruce Berriman, David Curkendall, John Good, Joseph Jacob, Daniel S. Katz, Mihseh 
Kong, Serge Monkewitz, Reagan Moore, Thomas Prince, Roy Williams, “An Architecture 
for Access to a Compute Intensive Image Mosaic Service in the NVO,” SPIE Conference 
4686 "Virtual Observatories,” Hawaii, August 2002. 



GFD-I.029  Oct. 28, 2004 

ogsa-wg@ggf.org  67 

12. R. Moore, A. Merzky, “Persistent Archive Basic Components,” Persistent Archive 
Research Group, Global Grid Forum; July 27, 2002 

13. Rajasekar, M. Wan, R. Moore, “mySRB and SRB, Components of a Data Grid,” 11th 
High Performance Distributed Computing conference, Edinburgh, Scotland, July 2002. 

14. R. Moore, “Preservation of Data, Information, and Knowledge,” Proceedings of the World 
Library Summit, Singapore, April 2002. 

15. R. Boisvert, P. Tang, “The Architecture of Scientific Software,” pp. 273- 284, “Data 
Management Systems for Scientific Applications,” Kluwer Academic Publishers, 2001. 

16. Chen, “Global Digital Library Development,” pp. 197-204, “Knowledge-based Data 
Management for Digital Libraries,” Tsinghua University Press, 2001. 

17. Rajasekar, R. Moore, "Data and Metadata Collections for Scientific Applications,” High 
Performance Computing and Networking (HPCN 2001), Amsterdam, Holland, June 2001. 

18. H. Stockinger, O. Rana, R. Moore, A. Merzky, “Data Management for Grid 
Environments,” European High Performance Computing and Networks Conference, 
Amsterdam, Holland, June 2001. 

19. R. Moore, “Knowledge-based Grids,” Proceedings of the 18th IEEE Symposium on Mass 
Storage Systems and Ninth Goddard Conference on Mass Storage Systems and 
Technologies, San Diego, April 2001. 

20. Ludäscher, R. Marciano, R. Moore, “Preservation of Digital Data with Self-Validating, 
Self-Instantiating Knowledge-Based Archives,” ACM SIGMOD Record, 30(3), 54-63, 
2001. 



GFD-I.029  Oct. 28, 2004 

ogsa-wg@ggf.org  68 

14. Mutual Authorization 

14.1 Summary 
The document “Grid Authentication Authorization and Accounting Requirements” is an 
informational document created by SA3-RG and it describes security requirements for Grid. One 
of the important requirements mentioned in the document is the need for mutual authorization. 
This requirement, however, cannot be provided by the current Grid toolkit technology.  

When a job is submitted to a specific resource on the Grid, the user is authorizing this resource to 
run the job and process the resultant data implicitly through the act of targeting this resource for 
the job submission. However, the specified resource may in turn, transfer or re-submit this job to 
another resource because of load-balancing or to satisfying expected quality of service. This 
secondary remote resource may be trusted by the Virtual Organization, but not by the owner of 
the Grid job. 

14.2 Customers 
The mutual authorization requirement comes in general from large-site customers with specific 
security needs to protect the Intellectual Property (IP) of the Grid job or the resultant data. This is 
the use case Commercial Data Center or National Fusion Collaboration, but with the added or 
specific security need. 

14.3 Scenarios 
This need can be seen in a scenario where the user submits a Grid job which uses or produces 
sensitive data or the job itself has IP value. The Grid VO may trust a variety of computers but the 
user may not want this job to be run on an OS known for security breaches, or may want it to be 
run only on an OS with particular security features or updates. 

14.4 Involved resources 
The utilized resources should have a callback service to the user. The callback is used before the 
resources transfer or the Grid job gets resubmitted to another remote resource.  This callback 
identifies the secondary remote resource and the user’s associated Grid job. The user will handle 
this mutual authorization call to authorize the secondary remote resource. 

14.5 Functional requirements for OGSA platform 
The following list includes necessary functional requirement of OGSA document for this use case: 

• Policy 

• Multiple Security Infrastructures 

• Perimeter Security Solutions.  

14.6 OGSA platform services utilization  
The following list includes services of the OGSA document that are utilized by the Mutual 
Authorization use case: 

• Name Resolution and Discovery 

• Security 

• Policy 

• Events 
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• Service Orchestration. 

14.7 Security considerations 
The security considerations are described above. 

14.8 Performance considerations 
 The mutual authentication process should be automated and expedient. 

14.9 Use case situation analysis 
The current use cases do not currently seem able to handle this requirement. OGSA virtualizes 
the Grid and the resources and computers that comprise the Grid. The requirement for Mutual 
Authorization requires end-to-end knowledge of job distribution. 

14.10 References 
1. Global Grid Forum, SAAR -WG documents. 
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15. Resource Usage Service (RUS) 

15.1 Summary 
The Resource Usage Service (RUS) facilitates the mediation of resource usage metrics produced 
by applications, middleware, operating systems, and physical (compute and network) resources 
in a distributed, heterogeneous environment.  It is one of the core services in the Open Grid 
Services Architecture.   

15.2 Customers 
The RUS will be exploited by customers interested in measuring resource consumption for a 
number of reasons, usually motivated by scenarios related to cost allocation and capacity 
planning.  Potential customers come from both the commercial and scientific domains. 

15.3 Scenarios 
The RUS is intended to support a wide variety of usage scenarios including those based on cost 
allocation (i.e., chargeback); capacity and trend analysis; fraud and intrusion detection; dynamic 
provisioning; service-level agreement compliance; pricing of Web services; and workload 
management. 

15.4 Involved resources 
Involved resources include all resources whose utilization needs to be measured. 

15.5 Functional requirements for OGSA platform 
The following list describes the relationship of functions outlined in the Open Grid Services 
Architecture document to those functions performed by the Resource Usage Service: 

1. Discovery and brokering 

The RUS may use discovery mechanisms to locate resources producing resource usage 
metrics. 

2. Metering and accounting 

The RUS is a key part of this function. 

3. Data sharing 

No known requirements. 

4. Virtual organizations 

No known requirements. 

5. Monitoring 

The RUS uses function provided by the Monitoring fabric to collect usage metrics. 

6. Policy 

Policy Services will drive the configuration and orchestration of RUS instances. 

7. Security 

Security should support accounting capabilities present in traditional Authentication, 
Authorization & Accounting (AAA) systems.  Several commercial-based scenarios require 
the Resource Usage Service to tag consumption metrics with account codes obtained 
from the AAA system.   
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15.6 OGSA platform services utilization  
The following list describes the relationship of services outlined in the Open Grid Services 
Architecture document to the RUS. 

1. Core Service: Name resolution and discovery 

The RUS will use this core service for resolving handles into references. 

2. Core Service: Service domains 

The RUS will probably not use this service. 

3. Core Service: Security 

The RUS will use AAA function to obtain account codes. Also, Security services will be 
needed to protect against unauthorized access to resource usage metrics.  Authorization 
control is required for both operation invocation and access to service data elements. 

4. Core Service: Policy 

RUS instances will be configured using the Policy service. 

5. Data and Information Services: Data Management 

The RUS will probably not use this service. 

6. Data and Information Services: Messaging, queuing, and logging 

The RUS exchanges metrics using messaging and queuing.  RUS requires Logging 
services for audit and recovery. 

7. Data and Information Services: Events 

Resource Metrics are events and the RUS should exploit and conform to the Event 
services.  

8. Data and Information Services: Metering and accounting 

The RUS is a member of this set of services. 

9. Data and Information Services: Transactions 

The RUS will probably not use this service. 

10. Management of Computation and Resources: Service Orchestration 

Since resource usage is metered in a distributed environment, RUS instances need to be 
wired together (orchestrated) with other infrastructure (e.g. messaging) services. 

11. Management of Computation and Resources: Administration 

The Administration service manages the deployment, changes, and identity of RUS. 

12. Management of Computation and Resources: Provisioning and resource 
management 

Provisioning systems use resource usage metrics obtained from the RUS to make their 
provisioning decisions. 

13. Management of Computation and Resources: Reservation and scheduling services 

The RUS will probably not use this service.  

14. Management of Computation and Resources: Deployment services 

The Deployment service will be used to deploy the software that supports the RUS. 
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15.7 Security considerations 
RUS requires security services to protect access to potentially-sensitive resource usage 
information. This is important as the RUS will exploit accounting information extracted from the 
AAA system. 

15.8 Performance considerations 
To minimize the cost of accumulating resource usage data, the implementations of the RUS must 
be very efficient.  In general, the cost of measuring resource consumption should be a small 
fraction of the cost of total resource consumption. 

15.9 Use case situation analysis 
Since RUS consumes metrics generated by underlying resources, there appears to be a need for 
standard semantics and policy for controlling resource instrumentation.  Perhaps this function 
should be covered in the Web Service Distributed Management (WSDM) or Common 
Management Model (CMM). 

15.10 References 
1. Global Grid Forum, RUS-WG documents. 
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Security Considerations 
This document is informational, and does not contain recommendations.  Security considerations 
are noted in individual use case sections. 
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