
File and Object Replication in Data Grids

Heinz Stockinger1,2, Asad Samar3, Bill Allcock4, Ian Foster4,5, Koen Holtman3, Brian Tierney1,6

1) CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
2) Inst. for Computer Science and Business Informatics, University of Vienna, A-1010 Vienna, Austria

3) California Institute of Technology, Pasadena, CA 91125, USA
4) Mathematics and Computer Science Division, Argonne National Laboratory, IL 60439, USA

5) Department of Computer Science & The Computation Institute, The University of Chicago, IL 60637, USA
6) Lawrence Berkeley National Laboratory, Berkeley, CA  94720, USA

Heinz.Stockinger@cern.ch

Abstract

Data replication is a key issue in a Data Grid and can be
managed in different ways and at different levels of
granularity: for example, at the file level or object level. In
the High Energy Physics community, Data Grids are being
developed to support the distributed analysis of
experimental data. We have produced a prototype data
replication tool, the Grid Data Management Pilot
(GDMP) that is in production use in one physics
experiment, with middleware provided by the Globus
Toolkit used for authentication, data movement, and other
purposes. We present here a new, enhanced GDMP
architecture and prototype implementation that uses
Globus Data Grid tools for efficient file replication. We
also explain how this architecture can address object
replication issues in an object-oriented database
management system. File transfer over wide-area
networks requires specific performance tuning in order to
gain optimal data transfer rates. We present performance
results obtained with GridFTP, an enhanced version of
FTP, and discuss tuning parameters.

1 Introduction

Data replication is an optimization technique well
known in the distributed systems and database
communities as a means of achieving better access times
to data (data locality) and/or fault tolerance (data
availability) [Bres99, Karg99, Tewa99].  This technique
appears clearly applicable to data distribution problems in
large-scale scientific collaborations, due to their globally
distributed user communities and distributed data sites.  As
an example of such an environment, we consider the High
Energy Physics community where several thousand
physicists want to access the Terabytes and even Petabytes
of data that will be produced by large particle detectors
around 2006 at CERN, the European Organization for
Nuclear Research.

The computing model of a typical next generation
experiment at CERN foresees the use of a distributed
network of regional centers, each equipped with
computing and data storage facilities and linked with
wide area network connections [Newm00]. Since these
sites are intended to be used in a coordinated fashion,
there is a natural mapping to a Grid environment
[FoKe99a] and the High Energy Physics community is
building a Data Grid [Cher00] to support the distributed
management and analysis of its data. Recently, the
European Data Grid Project (“EU DataGrid” [EDG01])
project has been initiated and a prototype project GDMP
(Grid Data Management Pilot) [SaSt01] has been used in
a production environment in an experiment involving the
secure replication of database files between several sites
in Europe and the U.S.  GDMP provides file replication
services and some preliminary storage management
functionality.  Although it is not yet a fully functional
replication manager (e.g., see [Hosc00]), it does provide
useful services and is extensible to meet future needs.

GDMP uses services provided by the Globus Toolkit
[FoKe99b] for security and other purposes.  An initial
version, GDMP version 1.2 [GDMP01], was limited to
transferring Objectivity [Obje01] database files. In more
recent work, we have significantly extended GDMP
capabilities by integrating two new Globus Data Grid
tools [Allc01], available as an alpha release as of early
2001: the Globus Replica Catalog, which we use to store
replica location metadata, and the GridFTP high-
performance wide area transport library, which we use as
our transport engine.

In this article, we describe how GDMP uses these new
services to develop a significantly improved architecture.
We provide performance results on GridFTP data
transfers and also describe how GDMP is extended with
an object replication feature that can be used for
distributed data analysis.

The article is organized as follows. Section 2 gives
background on the application domain (High Energy
Physics), file vs. object replication and related Data Grid
projects. In the next section we discuss Globus Data Grid



tools: the Globus Replica Catalog and GridFTP. Section 4
elaborates on architectural aspects of GDMP and discusses
the new components in detail. Object replica issues are
presented in Section 5. Finally we present performance
tests on GridFTP and make some concluding remarks.

2 Background and Related Work

In order to provide some background to our specific
Data Grid domain, we discuss briefly the software
engineering processes used in High Energy Physics (HEP)
and the difficulties that these projects face in the future.
We also review the various Data Grid projects that are
exploring potential solutions.

2.1 High Energy Physics

In many next-generation HEP experiments, object-
oriented software engineering tools and languages are used
to develop the software infrastructure for the final physics
analysis.  To store the experiment’s data, currently an
object-oriented database management system or an object
data store is assumed as the data persistency solution.  At
the highest level of abstraction in the experiment’s data
models, all data are persistent objects and can be accessed
through an object-oriented navigation mechanism.

The experiment's physics detector makes observations
of high energy physics collisions. Each observation is
called an “event” and has a unique event number.  For
each event, a number of objects are present.  There are raw
data objects which hold the data directly taken from the
detector, and reconstructed objects which hold processed
versions of this raw data.

The high level experiment's data view contains neither
the concept of files nor the concept of data replication: all
objects are supposed to simply “exist” without regard to
how they are stored and how many replicas exist.  Files
and replication appear only at lower layers of abstraction
as implementation mechanisms for the experiment's object
view.

A single file will generally contain many objects.  This
is necessary because the number of objects is so large (in
the order of 107 to 1010 for a modern physics experiment)
that storing each object in a single file would lead to
scalability problems in the file systems and tertiary storage
systems used.  Moreover, the object persistency solutions
used only work efficiently if there are many objects per
file. To map the high-level object view of the experiment
to the a lower level storage infrastructure of replicated
files, we assume a three-step process supported by three
catalogs, as shown in Figure 1.

As most objects are read-only after creation, access
patterns show considerable repetitiveness and locality, and
both the user community and the hardware resources are

highly distributed, support for replication is clearly
desirable.  Replication is also desirable because the
(current production versions of the) object persistency
layers in each site do not have the native ability to
efficiently access objects on remote sites [YoMo00], as
they were built under the assumption that a low latency
exists when accessing storage.

Application metadata
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Application
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Set of object
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Figure 1: Interaction between different catalogs when
mapping the application-level view to lower level
storage.

In this article we discuss both file and object
replication.  We define file replication as a mechanism
that replicates data at the granularity of already-existing
files.  Object replication replicates data at the granularity
of the individual objects, regardless of any currently
existing mapping between objects and files.  Figure 2
shows the difference between file replication and our
approach for object replication.

In our approach, object replication is a multi-step
process:
- First, on the source site, an object copier tool is used

to copy the objects that need to be replicated into a
new file.

- Second, the new file is moved to the destination site
using a wide area file copy.

- As a final step, the new file can be deleted at the
source site.

The object replication approach is considered further
in Section 5.  As discussed in Section 5, replication
strategies with object granularity are potentially more
efficient than file replication for some specific HEP
workloads.  This efficiency comes at the cost of greater
complexity however, both in data manipulation and in the
complexity of the object to file catalog [HoSt00].

The object data model of the HEP applications creates
some specific difficulties for replication.  If file
replication is used, the replication mechanism cannot a
priori treat every file as independent and self-contained,
as tight navigational relations or synchronous updating
constraints might couple the objects in several files.  For
instance, two objects in two separate files can have a



navigational association between each other. If only one of
these two files is replicated to a remote site, the navigation
to the associated object might not be possible since the
required file is not available locally too, and the object
persistency layer at the remote site has no awareness of the
files in other sites.  Thus, the two files have to be treated as
associated files and replicated together in order to preserve
the navigation. A more detailed discussion on this topic
can be found in [Stock01].
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Figure 2: File and object replication in a Data Grid.  File
replication is shown at the top, object replication at the
bottom. In both cases, the application code uses an object
persistency layer to read the wanted objects from the file
once it is on local storage.

If a "lazy" form of file replication is used, the
mechanisms that steer replication will have to take into
account any synchronous creation or update constraints
between objects, and by extension between the replicated
files.  The model for file replication is therefore that
"consistency policies", which flow from the application
layer, will steer the replication layer.  To minimize the
constraints that need to be encoded in consistency policies,

application designers must carefully think out the
allocation of objects to files.

For object replication, the problem of update
constraints is of course equally present, and could again
be handled with application-defined consistency policies.
However, to limit complexity, in our object replication
solutions we are currently not considering any flexible
application-defined policies.  Instead we require that all
objects entrusted to the object replication service are
always read-only objects.  This read-only requirement is
no big burden for HEP applications: by using a
sufficiently powerful and pervasive versioning
mechanism, many (but not all) HEP persistent objects can
be treated as read-only after initial creation.

2.2 Related Data Grid Projects

Data Grid concepts are being explored in a number of
projects worldwide.  In the U.S., the Earth System Grid
(ESG) is applying Data Grid technologies to the
management of climate data [Allc01b], while the Particle
Physics Data Grid (PPDG) [PPDG01] and Grid Physics
Network (GriPhyN) [GriP01] projects are both working
in the HEP domain. Efforts have started within PPDG as
well as EU DataGrid to use the GDMP code base.  Since
GDMP is and has been a mutual effort of EU DataGrid
and PPDG, this collaboration also has the beneficial
effort of encouraging these two projects to go in similar
directions in the development of Grid tools. Work within
the digital library community is also relevant [Moor99].

PPDG and GriPhyN are the most related projects in
the HEP domain (GriPhyN is also addressing
requirements of sky survey and astrophysics applications)
and we state briefly how they differ from our approach.

GriPhyN is mainly addressing fundamental IT
research focused on realizing the concept of Virtual Data.
Virtual Data in general means that data does not
necessarily have to be available in a persistent form but is
created on demand and then materialized when it is
requested. In this virtual data space, requests can be
satisfied via direct access and/or computation, with local
and global resource management, policy, and security
constraints determining the strategy used.

PPDG is a project that deals only with High Energy
Physics applications but focuses on more immediate
issues relating to file replication, job scheduling, and so
forth.

GDMP addresses a subset of the possible project
scopes of EU DataGrid, GriPhyN, and PPDG, focusing
on fast and efficient point-to-point file replication.



3 Globus Data Grid Tools

Since GDMP is using new Globus Data Grid tools
[Allc01], we describe their features and functionality with
respect to file replication.

3.1 Replica Catalog

The Globus replica catalog is intended as a fundamental
building block in Data Grid systems.  It addresses the
common need to keep track of multiple physical copies of
a single logical file by maintaining a mapping from logical
file names to physical locations.  The catalog contains
three types of object.  The highest-level object is the
collection, a group of logical file names.  Discussions with
various user groups show that datasets are normally
manipulated as a whole and the collection abstraction
provides a convenient mechanism for doing this.  A
location object contains the information required to map
between a logical filename (a globally unique identifier for
a file: not a physical location) and the (possibly multiple)
physical locations of the associated replicas.  The final
object is a logical file entry.  This optional entry can be
used to store attribute-value pair information for individual
logical files.  We believe that much of this type of data
will be stored in a separate metadata catalog [BMRW98],
but the facility is available.

The operations that can be performed on the catalog are
as one might expect: creation and deletion of collection,
location, and logical file entries; insertion and removal of
logical file names into collections and locations; listing of
the contents of collections and locations; and the heart of
the system, a function to return all physical locations of a
logical file.  Further documentation for the replica catalog
can be found at:
http://www.globus.org/datagrid/replica-catalog.html

Replica catalog functions can be used directly in
applications, but also form the basis (with GridFTP) for a
replica management system that provides functions for the
reliable creation, deletion, and management of replicas.
Replica management documentation can be found at:
http://www.globus.org/datagrid/replica-management.html

3.2 GridFTP

GridFTP is a data transfer and access protocol that
provides secure, efficient data movement in Grid
environments. The GridFTP protocol extends the standard
FTP protocol, providing a superset of the features offered
by the various Grid storage systems currently in use. We
choose to work with the FTP protocol because it is the
most commonly used protocol for data transfer on the
Internet; of the existing candidates from which to start, we

believe it comes closest to meeting the Grid’s needs.  The
GridFTP protocol includes the following features:
- Public-key-based Grid Security Infrastructure (GSI)

[FKT98] or Kerberos support (both accessible via
GSS-API [Linn00])

- Third-party control of data transfer

- Parallel data transfer (one host to one host, using
multiple TCP streams)

- Striped data transfer (m hosts to n hosts, possibly
using multiple TCP streams if also parallel)

- Partial file transfer

- Automatic negotiation of TCP buffer/window sizes

- Support for reliable and restartable data transfer

- Integrated instrumentation, for monitoring ongoing
transfer performance

Programmatic access to this functionality is provided
via two primary libraries, globus_ftp_control and
globus_ftp_client.  These libraries have been used to
develop a server, based on the Washington University
FTP Daemon (wuftpd), that implements the GridFTP
features listed above.  A full-featured command line tool
appropriate for scripting called globus_url_copy is
provided.  A version of the interactive ncftp client has
also been developed that has GSI support and hence can
communicate with GridFTP servers; however, this client
does not incorporate the other features listed above.
Further documentation for GridFTP and these libraries is
available at:
http://www.globus.org/datagrid/gridftp.html

4 GDMP Architecture

In this section, we briefly describe the entire GDMP
architecture, focusing on the new features of our second-
generation architecture, which concern namespace and
file catalog management, efficient file transfer, and
preliminary mass storage management.  See [SaSt01] for
a description of GDMP version 1.2, which is in
production use in a CERN experiment.

4.1 General Architectural Issues

GDMP is a file replication software system that was
initially designed to replicate Objectivity database files
from one site (storage location) to one or more other
remote sites. A storage location is considered to be a disk
space on a single machine or on several machines
connected via a local-area network and a network file
system. Remote sites are connected to each other via long
latency (as compared to local-area network) wide-area
network connections. GDMP works as follows.  A site
produces a set of files locally and another site wants to



obtain replicas of these files. In the case of Objectivity
files, each site is running the Objectivity database
management system locally that has a catalog of database
files internally. However, the local Objectivity database
management system does not know about other sites and a
replication mechanism is required that can notify other
sites about new files, efficiently transfer the files to the
remote site, and integrate the filenames into the Objec-
tivity internal file catalog. An additional server needs to be
available at each site to handle replication requests and to
trigger file transfers, notification messages, and updates of
local catalog information. Simply put, this is done by a
GDMP server running at each site where files are
produced and possibly replicated.

With the new architecture and newly added
components, GDMP has been extended to handle file
replication independent of the file format. Note that we do
not address replica synchronization issues, hence this work
is useful mainly for read-only files. In GDMP 1.2, the file
replication process was too tightly connected to
Objectivity-specific features for naming conventions of
logical and physical files and for obtaining information
about the files from the Objectivity’s catalog. This
dependency is removed in the new version (the official
release will be called GDMP 2.0) by splitting the data
replication process into several steps. Other possible file
types are Oracle files and flat files with particular internal
structure. Thus, successfully replicating a file from one
storage location to another one consists of the following
steps:
- pre-processing: This step is specific to the file formats

and might even be skipped in certain cases. This step
prepares the destination site for replication, for
example by creating an Objectivity federation at the
destination site or introducing new schema in a
database management system so that the files that are
to be replicated can be integrated easily into the
existing Objectivity federation.

- actual file transfer: This has to be done in a secure
and efficient fashion; fast file transfer mechanisms are
required.

- post-processing. The post-processing step is again file
type specific and might not be needed for all file
types. In the case of Objectivity, one post-processing
step is to attach a database file to a local federation
and thus insert it to an internal file catalog

- insert the file entry into a replica catalog: This step
also includes the assignment of logical and physical
filenames to a file (replica). This step makes the file
(replica) visible to the Grid.

The GDMP replication process is based on the
producer-consumer model: each data production site
publishes a set of newly created files to a set of one or
more consumer sites, and GDMP ensures that the
necessary data transfer operations (including all the steps

mentioned above) complete successfully.  These services
are implemented by a set of interacting servers, one per
site participating in the data replication process.

Grid Data Management Pilot

GDMP

Grid Data Management Pilot

GDMP

Grid Data Management Pilot

GDMP

server / client applications

server / client applications

server / client applications

SITE 1 SITE 2

SITE 3

Figure 3: Distributed sites and the location of GDMP
servers/client applications

Figure 3 depicts a small Data Grid with only three
sites where data is produced and replicated (consumed).
Each of these sites deploys a GDMP server to interact
with other sites and provides GDMP client commands for
publishing file information to other sites (notifying other
sites that new data is available) and initiating file
replication requests for a set of files. In more detail, a
high-level file get request is issued by a GDMP client
application at one site to get files from another site and
create replicas locally.

To sum up, GDMP client APIs provide four main
services to the end-user [SaSt01]:
- subscribing to a remote site for getting informed

when new files are created and made public,
- publishing new files and thus making them available

and accessible to the Grid,
- obtaining a remote site’s file catalog for failure

recovery, and
- transferring files from a remote location to the local

site.
Every client request to a GDMP server is authenticated

and authorized by a security service.  GDMP uses the
Globus Security Infrastructure (GSI) [FKT98], which
provides single sign capabilities for Grid resources.

Client requests are sent to the GDMP server through
the Request Manager. The Request Manager is the client-
server communication module, which is used to generate
client requests and implement server functions for serving
these requests. Using the Globus IO and Globus Data
Conversion libraries, the Request Manager provides a
limited Remote Procedure Call functionality.

File transfer requests are served by the GDMP Data
Mover service that uses a local file transfer server such as



FTP. Since file transfers must be both secure and fast, the
Data Mover service has to use a file transfer mechanism
that provides both features (more in Section 4.3). Once
files are successfully transferred, they have to be inserted
into a replica catalog. The Replica Catalog Service
provides this functionality (see Section 4.2).

In an early version, GDMP was restricted to disk-to-
disk file replication and it was assumed that all files are
permanently available on disk. Since Data Grids deal with
large amounts of data, files are permanently stored in Mass
Storage Systems (MSS) such as HPSS and moved between
disk to tape on demand. Thus, a disk pool is considered as
a cache. GDMP provides a plug-in for initiating file stage
requests on demand between a disk pool and a Mass
Storage System (see Section 4.4).

Figure 4 illustrates these three principal components of
the GDMP software.  In the next subsections, we describe
the replica catalog, data mover, and the storage
management service in detail.

Data
Mover
Service

Replica
Catalog
Service

Storage

Service
Manager

Security Layer

Request Manager

Figure 4: Overview of the GDMP architecture

4.2 Replica Catalog Service

The GDMP replication service uses a Replica Catalog
to maintain a global file name space of replicas (see
Section 3). GDMP provides a high-level replica catalog
interface and currently uses the Globus Replica Catalog as
the underlying implementation. An end-user who produces
new files uses GDMP to publish information into the
replica catalog. This information includes the logical file
names, meta-information about the file (such as file size
and modify time-stamps) and the physical location of the
file. In detail, when a site publishes its files:
- These files (and the corresponding meta-information)

are added to the replica catalog.
- The subscribers are notified of the existence of new

files.
The Replica Catalog service also ensures a global name

space by making sure that all logical file names are unique
in the catalog. GDMP supports both the automatic
generation and user selection of new logical file names.

User-selected logical file names are verified to be unique
before adding them to the replica catalog. Race
conditions on the replica catalog are currently not dealt
with.

Client sites interested in a new file can query the
Replica Catalog Service to obtain the information
required to replicate the file.  Users can specify filters to
obtain the exact information that they require;
information is returned only about those logical files that
satisfy the filter criteria. The information returned
contains the meta-information about the logical file and
all the physical instances of the logical file. This
information can then be used as a basis for replica
selection based on cost functions, which is part of
planned future work.  (See [VTF01] for some early
ideas.)

The current Globus Replica Catalog implementation
uses the LDAP protocol to interface with the database
backend. We do not currently distribute or replicate the
replica catalog but instead, for simplicity, use a central
replica catalog and a single LDAP server for the Replica
Catalog service. In the future, we will explore both
distribution and replication of the replica catalog.

The GDMP Replica Catalog service is a higher-level
object-oriented wrapper to the underlying Globus Replica
Catalog library.  This wrapper hides some Globus API
details and also introduces additional functionality such
as search filters, sanity checks on input parameters, and
automatic creation of required entries if they do not
already exist. The high-level API is also easier to use and
requires fewer method calls to add, delete, or search files
in the catalog.

We have already tested the new API successfully on
two independent test beds involved LDAP servers at
CERN (Switzerland), Caltech (California, USA) and
SLAC (California). Note that each test bed only used a
single replica catalog.

4.3 Data Mover Service

In a Data Grid where large amounts of data have to be
transferred from one site to another (“point-to-point
replication”) we require high-performance data transfer
tools. This is one of the major performance issues for an
“efficient” Data Grid and is the target of the Globus Data
Grid Toolkit’s GridFTP system. In Section 6, we present
the results of detailed performance studies conducted
with the alpha GridFTP release.

The GDMP Data Mover service, like the GDMP
Replica Catalog service, has a layered, modular
architecture so that its high-level functions are
implemented via calls to lower-level services that
perform the actual data manipulation operations.  In this
case, the lower-level services in question are the data



transfer services available at each site for movement of
data to other Grid sites.

It seemed to us that the GridFTP design addressed the
principle requirements for a Data Grid data transfer
primitive, in particular security, performance, and
robustness.  Hence, we have explored the use of GridFTP
as GDMP’s underlying file transfer mechanism.
The large size of many data transfers makes it essential
that the Data Mover service be able to handle network
failures and perform additional checks for corruption,
beyond those supported by TCP’s 16 checksums.  Hence,
we use the built-in error correction in GridFTP plus an
additional CRC error check to guarantee correct and
uncorrupted file transfer, and use GridFTP’s error
detection and restart capabilities to restart interrupted and
corrupted file transfers.  In the future, we will exploit
GridFTP’s support for “pluggable” error handling modules
to incorporate a variety of specialized error recovery
strategies.

4.4 Storage Management Service

In order to interface to Mass Storage Systems (MSS),
the GDMP service uses external tools for staging files. For
each type of Mass Storage System, tools for staging files
to and from a local disk pool have to be provided. We
assume that each site has a disk pool that can be regarded
as a data transfer cache for the Grid and that, in addition, a
Mass Storage System is available at the same site but does
not manage the local disk pool directly. The staging to
local cache is necessary because the MSS is mostly shared
with other administrative domains, which makes it difficult
to manage the MSS’s internal cache with any efficiency.
Thus, GDMP needs to trigger file-staging requests
explicitly. This is our current environment, which might
change slightly in the future.

A file staging facility is necessary if disk space is
limited and many users request files concurrently. If a
remote site requests a replica from another remote site
where the file is not available in the disk pool, GDMP
initializes the staging process from tape to disk. The
GDMP server then informs the remote site when the file is
present locally on disk and at that time performs
automatically the disk-to-disk file transfer.

In the replica catalog, physical file locations are stored
and contain file locations on disk. Thus, by default a file is
first looked for on its disk location and if it is not there, it
is assumed to be available in the Mass Storage System.
Consequently, a file state request is issued and the MMS
transfers the file to the disk location stored in the replica
catalog. Note that Objectivity has an interface to HPSS
[Hanu01] and the file naming convention is the same: the
default location is a disk location. Some other storage
management systems have a tape location as a default file
location.

Note that more sophisticated space management
mechanisms such as reservation of disk space are
currently not available but are easy to add [FRS00]. In
particular, the underlying storage system needs to provide
an API for storage allocation, e.g.,
allocate_storage(datasize). In this case, the file
replication transfer might be started only if the requested
storage space can be allocated.

GDMP has a plug-in for the Hierarchical Storage
Manager (HRM) [Bern00] APIs, which provide a
common interface to be used to access different Mass
Storage Systems. The implementation of HRM is based
on CORBA communication mechanisms. Some initial
integration tests have been performed, with promising
results.  Integration with HRM will provide GDMP with
a flexible approach to deal with the different MSSs being
used at the different regional centers where GDMP has
been installed. It also provides a cleaner interface as
compared to the staging script solution, which we had
employed previously.

5 Object Replication

Object replication was introduced in Section 2.1 as an
alternative to file replication.  In this section, we cover
object replication in more depth.

5.1 Motivation for Object Replication

File replication as implemented by GDMP works well
for many types of data handling in HEP.  However, there
is an important exception: in the later stages of a physics
data analysis effort, file based replication would be too
inefficient.  To understand why this is the case, the
physics analysis process needs to be considered more
closely.

The goal in a physics experiment is to observe new
physics phenomena (or observe phenomena with new
levels of accuracy) in the particle collisions occurring
inside the detector.  The physics of two colliding particles
is highly stochastic. The collision creates a highly
localized concentration of energy, in which new particles
may be created, with different rates of probability.  Most
“interesting” particles will be created with extremely low
probabilities.  The most resource and time-consuming
task in a physics analysis effort is therefore to recognize
and isolate, from all events, only those events with a
collision in which a particular sought-after phenomenon
occurred.

For example, in one effort one might start with a set of
109 stored events (which corresponds to all measurements
made by the detector in one year) and narrow this down
in a number of steps to a smaller set. This set might then



contain 104 events where all corresponding particle
collisions display the sought-after phenomenon.

One separates the “interesting” from the “uninteresting”
events by looking at the properties of some of the stored
objects for each event: in the first few steps one only needs
to look at a small stored object for each event. In later
steps, the information content of these small objects is
exhausted and one needs to look at larger and larger
objects.  The subsequent data analysis steps in such an
effort will thus examine smaller and smaller sets (109

down to 104) of larger and larger (100 byte to 10 MB)
objects.

Consider a step somewhere in the middle, where after
isolating 106 events, the physicist will now need the
corresponding set of 106 objects of some type X to go
further.  Assume that each object of this type has a size of
10 KB, given a total object set size of 10 GB.  Further
assume the physicist wants replicas of these objects on a
specific destination site, because this site has enough CPU
power available to run the necessary analysis jobs.  To
support this data movement efficiently with file based
replication, the Grid would next need to find a set of files
with all the needed objects while this set is not larger than
e.g. 20 GB.  However, this set of files can very likely not
be found at all!  Since the requested set is only 106 objects
of type X out of the available set of 109, the a priori
probability that any existing file happens to contain more
than 50% of the selected objects is extremely low, even if
every file contains only a few objects.  A smart initial
placement of “similar” objects together in the same files
can raise the probability, but not by very much.
Furthermore, the activities of other users are unlikely to
create just the right files, as the physicist just selected
objects related to a completely “fresh” event set which
nobody else has worked on yet.

Therefore, the only way to efficiently replicate the
required objects is by using object replication, in which the
right files, 10 GB in total, are created with an object copier
tool first. (An alternative solution is never putting more
than one object in a file, but that would make the object
persistency layers in Figure 2 too inefficient, and in any
case this alternative can be seen as an object replication
implementation that eliminates the need for the object
copier tool.)

The above sparse selection effects do not only affect
file replication efficiency but also local disk access
efficiency. This is the context in which they have first been
studied for HEP [Holt98] [Scha99]; some of the results of
this prior research have been incorporated into the object
replication prototype discussed below.

5.2 Architectural Choices

Architectural solutions for the object replication
problem are being investigated: some earlier results are

[HoSt00], [Holt01].  The use of wide-area object
granularity access and replication protocols is considered
unattractive, as large wide-area overheads have been
observed in existing implementations of such protocols.
Wide-area networks are scarce resources for HEP, and
this has driven the architecture considered for object
replication.  Rather than trying to build high-performance
specialized file granularity replication protocols, a
strategic choice was made to leverage the ongoing R&D
activities on maximizing throughput for moving large
(>100 MB) files over the WAN.

This architectural choice has led to the use of
significant parts of GDMP and the underlying Globus
services in creating object replication prototypes.

A complete object replication cycle is performed as
follows:
- Objects that are needed by an application on the

destination site are identified, as a group, before the
application starts accessing any of them.

- The objects not yet present on the destination site are
identified, and a source site, or combination of
source sites, for these objects is found.

- On the source site, the needed objects are copied into
a new file or files, which are then sent to the
destination site.

Object copying and file transport operations are
pipelined to achieve a better response time and greater
efficiency.  In the current prototype implementation, the
application on the target site can start reading the objects
from a file as soon as the file has been transferred
completely.  After having been transferred, the files are
deleted on the source site(s).  The new files on the target
site are first-class citizens in the Data Grid: they too are
potential object extraction sources for future object
replication requests.

A global view of which objects exist where is
maintained in a set of index files. These files are
themselves maintained and replicated on demand using
file-based replication by GDMP and Globus.  At the time
of writing, the current prototype does not implement such
a global view yet.  An important future challenge is to
demonstrate scalability of this global view to a huge
numbers of objects [HoSt00].  We can exploit some
specific properties of the HEP data model and workloads
to achieve this scalability.  For example, it is possible to
structure most data-intensive HEP applications in such a
way that each application run specifies up front exactly
which set of objects are needed. These objects can then
be found in one single collective lookup operation on the
global view.

5.3 Prototyping Experience

Most HEP experiments involved in Data Grid
activities do not yet perform physics analysis efforts that



would require efficient object replication services.  The
reason for this is simply that their detectors are still in the
building or commissioning phase, so they only have small
amounts of simulated data to analyze.  On the other hand,
the building of the detectors and the related data analysis
software is already creating a strong demand for file
replication services.  As a result, GDMP is a tool that is in
production use whereas Grid object replication services are
still in an architectural and prototyping phase.

Initial prototyping of object replication was done to
validate the architectural choices and  shows little
surprises.  As long as the object replication server is
powerful enough in terms of disk I/O and CPU resources,
the object copying actions in the server do not form a
bottleneck, and the server has no problems maintaining
several wide area parallel FTP connections with the
expected efficiency.  The tuning issues for the FTP
connections are not changed.  Overall though, compared to
a file replication server dimensioned to saturate the same
amount of network bandwidth, an object replication server
will need more CPU and disk I/O resources.  The running
of the object copier tool means a significant extra load on
the operating system: it needs to process more file system
I/O calls and context switches per byte sent over the
network.  Also the amount of traffic on the machine
databus per network byte sent is increased. In situations
where a single box needs to drive a very high-end network
card, a degradation in network traffic handling efficiency
might therefore be noticeable when compared to using the
box as a file based replication server.  In that case, running
the object copier tool on a different box (connected via a
fast disk server) might be necessary.

6 Experimental Results with GridFTP

The main motivation for our performance tests is to study
the impact of TCP socket buffer size tuning on parallel
(multi-flow) data transfers [Tier94, QZK99, Morr97] as
well as to understand the throughput that can be achieved
in realistic settings.  TCP uses what it calls the “congestion
window” to determine how many packets can be sent at
one time. In general, a larger congestion window size leads
to higher throughput. The TCP “slow start” and
“congestion avoidance” algorithms determine the size of
the congestion window. The maximum congestion window
is related to the amount of buffer space that the kernel
allocates for each socket. For each socket, there is a default
value for the buffer size, which can be changed by the
program using a system library call just before opening the
socket. The buffer size must be adjusted for both the send
and receive ends of the socket. To get maximal throughput
it is critical to use optimal TCP send and receive socket
buffer sizes for a particular link. If the buffers are too
small, the TCP congestion window will never fully open

up. If the buffers are too large, the sender can overrun the
receiver, and the TCP window will shut down.
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Figure 5: Transfer rates achieved for different numbers
of parallel streams with GridFTP. These results are with
the default TCP buffers that are typically 64 KB in the
test environment. Four different files were transferred
with sizes of 1 MB, 25 MB, 50 MB and 100 MB. The
graph shows the curves for the larger files going up
almost linearly with the number of streams, reaching a
peak at around 23 Mbps for 9 streams.

TCP buffer tuning is a good way to increase
throughput on a high-speed WAN link, but we face the
obvious problem of having to determine the “optimal”
value for the TCP window size.  The optimal window
size needs to be calculated by accurate measurements of
link delay and bandwidth.   Alternatively, we can use
parallel data streams [Berk01].  The Globus GridFTP
library supports both of these facilities.
We carried out a detailed study of GridFTP parallel
transfer performance. The test environment consisted of a
45 Mbps link between CERN and ANL with a RTT of
125 milliseconds.  The GSI enabled WU-ftpd server
version 0.4b6 was used as the test server. Test programs
“extended_get” and “extended_put” from the Globus
distribution were the chosen clients. These programs test
the parallel stream and buffer tuning features of GridFTP.
Since we have seen similar behaviour for the GridFTP
put and get functions, we present only results for get. The
results presented in Figures 5 and 6 lead us to the
following conclusions.  First, proper TCP buffer size
setting is the single most important factor in achieving
good performance. The performance obtained from 10
streams with untuned buffers can be achieved with just 2-
3 streams if the tuning is proper. Next, note that 2-3 tuned
parallel streams will gain an additional 25% performance
over a single tuned stream. Finally, note that it is possible
to get the same throughput as tuned buffers using untuned
TCP buffers with enough parallel streams.



Figure 6: The same experiments as are presented in Figure
3, but with TCP buffers tuned to 1 MB.  Results are
similar, except that peak performance is achieved with just
3 streams.

To determine the optimal TCP buffer size, we use
following standard formula, as described in [Tier00]:

optimal TCP buffer = RTT x (speed of bottleneck link)
The Round Trip Time (RTT) is measured using the

Unix ping tool, and the speed of the bottleneck link is
measured using pipechar [Jin01],  a new tool from LBNL
designed for this purpose.

A simple method to the optimal number of parallel
streams is not yet known. With too many streams, there is
a possibility of overloaded the receiving host, and causing
network congestion. We typically run multiple iperf
[IPERF] tests with various numbers of streams, and
compare the results. We usually find that 4-8 streams is
optimal.

7 Summary

The GDMP replication service has been enhanced with
more advanced data management features, including
namespace and file catalog management, efficient file
transfer, and preliminary storage management. New
architectural components have been discussed.  A detailed
study of the Globus GridFTP implementation is presented.
We also analyzed more advanced object-based replication
techniques and explained how these techniques can be
structured in terms of file replication mechanisms.
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