
A Community Authorization Service for Group Collaboration

Laura Pearlman
Information Sciences Institute

The University of Southern California
laura@isi.edu

Von Welch
Department of Computer Science

The University of Chicago
welch@mcs.anl.gov

Ian Foster
Mathematics and Computer Science

Division, Argonne National Laboratory
Department of Computer Science

The University of Chicago
foster@mcs.anl.gov

Carl Kesselman

Information Sciences Institute
The University of Southern California

carl@isi.edu

Steven Tuecke
Mathematics and Computer Science

 Division, Argonne National Laboratory
tuecke@mcs.anl.gov

Abstract
In “Grids” and “collaboratories,” we find distributed

communities of resource providers and resource
consumers, within which often complex and dynamic
policies govern who can use which resources for which
purpose. We propose a new approach to the
representation, maintenance, and enforcement of such
policies that provides a scalable mechanism for
specifying and enforcing these policies. Our approach
allows resource providers to delegate some of the
authority for maintaining fine-grained access control
policies to communities, while still maintaining ultimate
control over their resources. We also describe a prototype
implementation of this approach and an application in a
data management context.

1 Introduction
The sharing and coordinated use of resources within

large, dynamic, multi-institutional communities is
fundamental to an increasing range of computer
applications, ranging from scientific collaboratories to
healthcare. This sharing may involve not only file
exchange but also direct access to computers, software,
data, and other resources, as is required by a range of
collaborative problem-solving and resource-brokering
strategies emerging in industry, science, and engineering.

This sharing is, necessarily, highly controlled, with
resource providers and consumers defining clearly and
carefully just what is shared, who is allowed to share, and
the conditions under which sharing occurs.

A set of individuals and/or institutions defined by such
sharing rules form what has been called a virtual
community or virtual organization (VO) [1].
Infrastructures that support the creation and operation of
VOs are often called Grids [2]. Specialized Grids focused
on close and routine interactions between people,
instruments and information in support of widely
distributed scientific research projects are often called
collaboratories [3].

 A key problem associated with the formation and
operation of distributed virtual communities is that of how
to specify and enforce community policies. Consider the
situation in which a multi-institutional project has
received an allocation of time on a shared computational
resource. With current technologies, each change in
personnel at participating institutions requires that the
project leader contact the resource owner to create an
account and allocation for each new team member.
Furthermore, as project policies change, the project leader
will have to go back to the resource provider to adjust
allocations, rights and priorities for the team members so
that they are consistent with the current focus of the
collaboration. This interaction places undue burdens on

resource providers, who are, in effect, forced to
implement the policy decisions of the consortium.
Conversely, these interactions also place significant
overhead on the administration of the consortium, as
every policy alteration can require interactions with every
resource provider with which the project has established a
relationship.

Policy enforcement for VOs comprising multiple
institutions and resource providers imposes unique
challenges, as follows.

Scalability. The cost of administering a VO (e.g.,
adding or removing participants, changing community
policy) should not increase with the number of resource
providers participating in the VO. Resource
administration overheads should also be bounded. As
each VO represents a new policy, it is reasonable to
require that the cost of administering a resource should be
proportional to the number of VOs, and not their size or
dynamics.

Flexibility and expressibility. Community policy can
be idiosyncratic. It may apply to sets of resources (e.g.,
restricting what fraction of total storage capability
available to the VO) and will vary over time. Enforcing
these agreements and policies in a distributed fashion
introduces difficult bookkeeping issues.

Policy Hierarchy. VOs may be hierarchical. For
example, each institution within a collaboration may wish
to define its own institutional policy. Each of these nested
policies must be consistent: institutional policy must be
consistent with the VO policy, which must in turn be
consistent with the local policy defined by each resource.

We argue that the solution to these and related
problems is to allow resource owners to grant access to
blocks of resources to a community as a whole, and let the
community itself manage fine-grained access control
within that framework.

We have designed and implemented a Community
Authorization Service (CAS) that provides this capability.
A community runs a CAS server to keep track of its
membership and fine-grained access control policies. A
user wishing to access community resources contacts the
CAS server, which delegates rights to the user based on
the request and the user’s role within the community.
These rights are in the form of capabilities [4], which
users can present at a resource to gain access on behalf of
the community. The user effectively gets the intersection
of the set of rights granted to the community by the
resource provider and the set of rights defined by the
capability granted to the user by the community.

The CAS architecture builds on public key
authentication and delegation mechanisms provided by
the Globus Toolkit [5] Grid Security Infrastructure (GSI)
[6], a widely used set of authentication and authorization
mechanisms that address single sign on, delegation, and
credential mapping issues that arise in VO settings.

As compared to other authorization systems such as
Akenti [7, 8] and Secure Virtual Enclaves [9], CAS
provides mechanisms for distributing administration that
are critical for solving the issues of scalability and
flexibility. Neuman proposes but does not implement a
similar idea [10].

To date, we have applied CAS to one application, file
access control. However, we believe that the combination
of CAS with restricted delegation and standard interfaces
to policy engines has broad utility in providing a scalable
policy method for communities, and we and others plan to
apply it in many other contexts in the near future.

The rest of this article is as follows. In Section 2, we
review GSI features essential to understanding our
implementation of CAS. In Section 3 we discuss the CAS
architecture in detail. In Section 4 we explain major
extensions we made to the GSI mechanisms to support
CAS. In Section 5 we discuss our current implementation.
In Section 6 we present a case study of integration with a
real world data access application. In Section 7 we discuss
security considerations. In Section 8 we review related
work. In Section 9 we discuss future directions.

2 Grid Security Infrastructure
The Globus Toolkit’s Grid Security Infrastructure

(GSI) [6] has emerged as an essential middleware
component that has been integrated into many tools,
including FTP and LDAP servers and clients and remote
job submission tools. GSI shares with SSH and Kerberos
the distinction of being a security solution that has been
deployed at a number of Grids including the NASA
Information Power Grid [11] and the NSF PACI Grids
[12, 13]. Like these technologies, GSI consists of a set of
standard interfaces and protocols and an implementation.
We summarize here those GSI features needed to
understand our CAS implementation: proxy credentials,
delegation, and authorization.

2.1 Overview
The Grid Security Infrastructure (GSI) software is a set

of libraries and tools that allow users and applications to
access resources securely. GSI focuses primarily on
authentication and message protection [14], defining
single sign-on algorithms and protocols, cross-domain
authentication protocols, and delegation mechanisms [15-
18] for creating temporary credentials for users and for
processes executing on a user’s behalf.

GSI, building on earlier work described in [19], is
based on Public Key Infrastructure (PKI) and uses
authentication credentials composed of X.509 certificates
and private keys. In brief, a GSI user generates a public-
private key pair and obtains an X.509 certificate from a
trusted entity called a Certificate Authority (CA). These

credentials then form the basis for authenticating the user
to resources on the Grid.

One change from the GSI model described in [19] is
that GSI now uses temporary credentials called proxy
credentials. Described in detail in the following
subsection, proxy credentials allow GSI to support single
sign-on by allowing users to access resources at multiple
sites without repeated authentication and to delegate their
rights to remote processes. This single sign-on capability
is critical to advanced Grid applications in which a single
interaction may involve the coordinated use of resources
at many locations.

2.2 Proxy Credentials
In the Grid environment, a user may need to

authenticate multiple times in a relatively short period of
time in order to coordinate access to multiple resources.
Requiring users to type their pass phrase repeatedly is
undesirable both from a convenience and security
standpoint, as each decryption of the private key provides
another opportunity for it to be compromised.

GSI solves this problem with proxy credentials. A user
creates a proxy credential by generating a new private-
public key pair and then generating a new certificate
signed using the private key from the user’s long-term
credential. This process essentially creates a short-term
binding between the new key pair and the user’s identity.
To authenticate using a proxy credential, a user presents
both the proxy certificate and the long-term certificate.
The relying party then verifies that the long-term
certificate is valid, that the long-term certificate’s private
key was used to sign the proxy certificate, and that the
user can demonstrate proof of possession of the proxy
certificate’s private key. If these conditions (and some
others regarding certificate format and lifetime) are met,
then the authentication succeeds, and the user is
considered to have the identity associated with the long-
term certificate. GSI implements this authentication
process via the TLS protocol in a GSS-API library.

In order to support CAS we have also introduced the
ability for a proxy to carry policy information restricting
its use. We call a proxy carrying such a policy a restricted
proxy. We have standardized the format for these proxy
credentials and have submitted it as an internet draft to the
IETF PKIX working group [20].

2.3 Delegation
It is often important in distributed applications for a

user’s application to be able to act, unattended, on the
user’s behalf. For example, a user may submit a job to a
remote site, and that job may in turn need to access some
of the user’s files stored on a mass storage system located
at a third site.

GSI allows the user to delegate a proxy credential to a
process on a remote host; in the example above, the user
can delegate a credential to the remote job, which can
then use that credential to authenticate to the mass storage
system on behalf of the user. The relying party performs
the same verification as described for proxy certificates in
Section 2.2, verifying the signatures in the whole
certificate chain.

2.4 Authorization
GSI supports the notion of local policy enforced

locally. To achieve this, GSI provides mechanisms for
translating a user’s GSI identity (i.e., the distinguished
name from the user’s certificate) to a local identity (for
example, a Kerberos principal, or a local Unix user
account). Once translated, the local identity can be used to
enforce local policy decisions, such as file access, disk
quotas, and CPU limits.

The Community Authorization Service, described next,
augments the existing local policy enforcement
mechanisms provided via GSI. It enables community
policy to be enforced on the basis of the user’s GSI
identity, which is constant across resources, rather than
the local identity that will vary from resource to resource.
It is because the CAS works with GSI identities that
scalability with increased resource count is achieved.

3 Community Authorization
As we indicated in the introduction, the fundamental

problem that we address in this work is the scalable
representation and enforcement of access policy within
distributed virtual communities. Such communities may
comprise many members, each participating as resource
provider and/or resource consumer. In such settings,
expressing policies in terms of direct trust relationships
between producers and consumers has the problems of
scalability, flexibility, expressibility, and lack of policy
hierarchy.

We address these problems by introducing a trusted
third party, a community authorization service (CAS)
server that is responsible for managing the policies that
govern access to a community’s resources.

The CAS server contains entries for CAs, users,
servers and resources that comprise the community and
groups that organize these entities. It also contains policy
statements that specify who (which user or group) has the
permission, which resource or resource group the
permission is granted on, and what permission is granted.
What permission is denoted by a service type and an
action; the action describes the type of action (e.g., “read”
or “execute program”), and the service type defines the
namespace in which the action is defined. Different
resource servers may recognize different service types,
but all resource servers that recognize the same service

type should share the same interpretation of that service
type’s actions.

CAS Server

What rights does the
community grant to

this user?

CAS-
Maintained
Community

policy
database

User

CAS request
authenticated
with user
credential

CAS reply with

Capability

Figure 1: In order to gain access to a CAS-managed

community resource, a user must first acquire a
capability from the CAS server.

As illustrated in Figure 1, a member of a community
may send the CAS server a request for a capability that
will allow the user to perform a set of actions; if that
request is consistent with the community’s policy, the
CAS server will delegate an appropriate capability back to
the user. The user can then use that delegated credential to
authenticate to a resource server and exercise the rights
described by the capability. Of course, this authentication
and exercise of rights is effective only if the resource
provider has granted those rights to the community.

Resource Server

Local policy
information

User

Resource
request with

Resouce
reply

Capability

Is the request authorized
For the community?

Does the capability
authorize this request?

Figure 2: A CAS capability is used to authenticate
to the resource. This action can be repeated using the
same capability until it expires.

As shown in Figure 2, when the user presents the

capability to a resource, the resource grants the user
access to the local community resources based on local
policy for the community (determined using the resource

server’s normal local access control mechanisms) and the
community policy for the user (determined by examining
the policy statements carried in the capability). In other
words, the resource server will permit a request
authenticated with a capability if the resource server’s
local policy authorizes the request for the grantor of the
capability, and the capability itself authorizes the request
for the bearer.

This structure addresses the scalability problem by
reducing the necessary trust relationships from CxP to
C+P: each consumer needs to be known, and trusted, by
the CAS server, but not by each producer; each producer
needs to be known and trusted by the CAS server, but not
by each consumer. Of course, the CAS server itself is a
potential bottleneck and single point of failure, but
standard replication techniques can be used to address this
concern.

This structure also addresses flexibility and
expressibility by allowing producer-community
agreements and community policies to be expressed
directly within the CAS server. Thus, for example, it is
straightforward for a provider to agree to provide 10% of
their resources to a community, and for the community to
decide to provide 30% of its aggregate resources for one
purpose.

Finally, by externalizing policy enforcement into a
third party server, it is possible to set up specialized
policy servers, representing sub-communities within a VO
or completely different VOs.

In the rest of this section, we provide more details on
these interactions between the CAS and the different
parties.

3.1 CAS: Community Perspective
An individual representing a community can

instantiate a CAS server by acquiring an identity
certificate for the CAS server, doing some initial
configuration, and running the CAS server software. That
individual can then send requests to the CAS server to
enroll users and resources into the server (thereby
identifying them as members of the community) and to
create policy information (e.g., to create groups of users
or resources, or to grant access on a group of resources to
a group of users).

Depending on a community’s policies, a CAS server
may have a single administrator who controls everything,
or it may take a more distributed approach. For example,
having administrators in geographically distinct areas who
can enroll users but not add them to groups, and allowing
Principal Investigators to maintain the membership of
groups that represent people working on their projects but
not enroll new users.

In our implementation, management of the CAS server
is supported through a command-line tool (useful for
automated processes) as well as a GUI interface. CAS

also supports the notion of groups, both of users and
resources, thus allowing the community to have different
roles within the community and to grant members the
rights of those roles by assigning them to the appropriate
groups.

Community users request a capability for a set of
actions from the CAS server using the CAS client library
or tools built on it. The user uses the capability to
authenticate to a resource server and exercise the rights
described by the capability. The request action can be
easily integrated with existing applications, as we discuss
in Section 6, either by wrapping the application in a
program call that makes the appropriate request or by
adding to the application a call to a simple client API we
have developed.

3.2 Resource Provider Perspective
A resource provider that wishes to accept credentials

from CAS servers must be able to enforce not only its
own local policies but also the community policies carried
in CAS credentials. To accomplish this task we designed
and implemented a policy evaluation API. Server
software on the resource must be modified to use this API
for parsing and evaluating the policy statements contained
in CAS credentials.

Once a resource provider has installed the appropriate
resource server software, that provider can grant access to
specific resources to specific communities by using local
access-control mechanisms to grant access to those
resources to the subject names associated with those
communities’ CAS servers. Prior to granting that access,
the resource providers may use offline methods to verify
that the CAS server is run by someone who actually
represents the community, and that the community’s
policies are compatible with those of the resource
provider. For example, the resource provider may require
that the CAS server administrators verify that new users
agree to a certain Acceptable Use Policy before being
enrolled into the CAS server.

4 Enabling Mechanisms
The development of a CAS implementation requires

three major extensions to GSI mechanisms (Section 2):
restricted proxy credentials that allow for fine-grained
control of delegated rights; a policy language for
specifying the rights carried in the restricted proxy
credentials, and libraries and APIs to facilitate the
delegation of restricted proxies by the CAS server and the
enforcement of proxy restrictions by resource providers.

4.1 Restricted Proxy Credentials
The CAS server grants rights to community members

by using GSI delegation mechanisms to grant them proxy
credentials. GSI originally supported only a simple form

of delegation, namely impersonation. However, in most
cases it is inappropriate for the CAS server to delegate all
of its authority to a user, because a community’s access
control policy usually grants different sets of rights to
different users.

We have extended the GSI delegation feature to
support rich restriction policies to allow grantors to place
specific limits on rights that they grant. We accomplished
this by defining extensions to X.509 Certificates to carry
restriction policies [20]; we call a proxy carrying such a
restriction policy a restricted proxy. CAS servers use
these restricted proxies to delegate to each user only those
rights granted to that user under the community’s policy.

The CAS server uses restricted proxy credentials to
delegate to each user only those rights granted to that user
by the community policy. The CAS server delegates the
user a restricted proxy credential that both authorizes the
user to act as a member of the community and limits what
the user can do as part of that community.

Some applications base authorization decisions on the
comparison of two identities (for example, a peer-to-peer
application may permit access if and only if the remote
and local identities are the same). This comparison
becomes meaningless for proxy credentials, because the
same entity may grant proxies to several different
individuals. We have implemented a hierarchical "proxy
group" mechanism that enables the grantor of a proxy
credential to associate a group name with each proxy
certificate it grants, so that these applications can use the
combination of issuer identity and proxy group (for
example, a peer-to-peer application may permit access if
and only if both the remote and local issuer identities and
proxy groups are the same). The CAS server uses a
different proxy group for each session.

4.2 Policy Language
Our restricted proxy credential format is designed to be

neutral to the actual policy language employed and can
support arbitrary policy languages such as Controlled
English [21], ASL [22], or Ponder [23]. In our
specification we do not state a specific language to be
used, but instead have a field in restricted proxies that
specifies the language of the policy carried by the proxy.
GSI also treats the policy as opaque, meaning that only
the creator of a policy and resources enforcing it need to
understand it. This allows us to evolve our policy
language over time as new requirements are understood,
and as policy languages themselves evolve.

For our initial implementation of CAS, we chose to
implement a simple policy language consisting of a list of
the rights granted. Each right consists of a list of object
names and a list of allowed actions on those objects.
Although this simple language is obviously not rich
enough to cover the whole range of applications, it has
proven useful in our initial application case study (Section

6). We will continue to evaluate and compare various
existing and emerging policy languages for their
applicability to Grid applications.

4.3 Libraries and APIs
Policies carried in restricted proxy credentials need to

be evaluated by resources accepting these credentials for
authentication. To accomplish this task we designed and
implemented a policy evaluation API and library.
Internally our implementation uses the Generic
Authorization and Access control (GAA) API [24]
because of its ability to be configured to allow pluggable
modules for acquiring, parsing and evaluation of policy;
this flexibility is an essential requirement for supporting
new policy languages that we may choose to use in the
future.

GSI uses the Generic Security Services API (GSSAPI)
[25] as its API, with extensions that we have designed and
developed to support security features required in
advanced Grid applications, specifically delegation
flexibility and mechanisms to extract information. We
have documented our extensions in an Global Grid Forum
draft [26] to encourage their implementation in other
GSSAPI libraries.

5 Implementation
We have implemented a CAS server, administrative

clients for managing community policy information, and
end-user client applications. These programs are all
written in python and built on the pyGlobus wrappers [27]
for the Globus Toolkit.

We have developed an Authorization API and library
that services accepting CAS credentials can use to
evaluate the policies contained in those credentials. We
have also modified an FTP server to use this authorization
library and accept restricted proxy credentials.

As we describe in the following section we have then
built on these tools to integrate CAS into a real
application.

6 Earth System Grid Case Study
We describe here an early CAS application, namely

file access control within the Earth System Grid (ESG)
[28], a distributed network of storage systems containing
environmental data. In particular, we integrated CAS
access control with the Visual Climate Data Analysis
Tool (VCDAT) [29], an interactive tool that allows
environmental scientists to select from and visualize a
large collection of (potentially replicated) climate data.

ESG data is stored in a distributed system consisting of
a metadata service, a replica manager, and a number of
geographically and administratively distributed FTP
servers. The metadata service lists available datasets,
information about the data in each set, and the logical

filenames of the datasets. The replica manager [30] maps
from logical filenames to physical locations (i.e.,
hostnames and paths). Datasets are stored on the FTP
servers, with each dataset generally replicated on multiple
servers for locality and reliability. VCDAT processes user
requests by consulting the metadata service to discover
available datasets. It presents this information to the user
who selects one or more datasets for visualization. For
each dataset selected, VCDAT consults the replica
manager, discovers where the data is located, selects an
FTP server, downloads the data from the server, and then
renders it for the user.

Prior to the work described here, access control within
VDCAT was handled via manual updating of access
control lists at individual FTP sites. As discussed earlier,
this approach has significant scalability and usability
difficulties. There are also expressiveness limitations: for
example, some Unix systems cannot enforce the policy
“these five people may read this file, and these three
people may write it.”

A CAS server solves these problems by giving both
users and resource administrators a single point of contact
for dealing with each other. For example, when a resource
administrator decides to make resources available to the
ESG community, they first grant access to the ESG CAS
server using their existing local mechanisms. In the ESG
case, this consists of creating a Unix account, using
standard GSI mechanisms to map the ESG CAS server’s
subject name to that Unix account, and granting file
permissions to that account. Note that the administrator
needs to perform this process only once. If the resource
administrator later decides to grant the community access
to additional resources, or to revoke the community’s
access to some resources, then that administrator can do
so using the same local mechanism (in this case, by
changing file system permissions). The resource
administrator does not need to be involved when
individuals join or leave the community, or when an
individual’s role within the community changes.

A new ESG user needing access to the climate data
now needs only to go to the ESG CAS administrator to
obtain needed rights. The CAS administrator simply adds
the user to the CAS database, putting them in the groups
appropriate to the ESG community policy. The ESG CAS
administrator can be someone more closely tied with the
ESG community than the FTP administrators and hence
more familiar with ESG users and the community
policies. Depending on the community’s policies, the
CAS administrator may also delegate some of the
responsibility for maintaining the CAS database—for
example, the CAS administrator may grant the authority
to enroll new users to several people at different
geographic locations, or may grant the principal
investigator of a project the authority to add people to or
delete people from a group of project participants.

A modified VCDAT client contacts the ESG CAS
server before downloading the data and retrieves a CAS
credential granting rights to access the data. It then uses
the CAS credential to authenticate to the FTP server and
retrieve the data using standard Globus software. All this
extra activity involving the CAS is performed
transparently to the user.

We have prototyped the above CAS-enabled system
and verified it works as expected. Modifying the VCDAT
client was trivial, requiring only a dozen or so lines of
code changes.

7 Security Considerations

7.1 Restricted Proxy Certificates
The security implications of restricted proxy

certificates are discussed in detail in [20]. To summarize,
we have tried to ensure that an entity cannot delegate
more authority than it has and that a server process that
does not know how to enforce the restrictions in a
restricted proxy certificate will reject the certificate
outright. The effective validity time for a proxy certificate
(restricted or otherwise) is the intersection of the validity
times of all the certificates in the certificate chain; the
effective set of allowed operations is the intersection of
what’s allowed by all the certificates in the chain. Proxy
restrictions are encoded in a critical X.509 extension, so
restricted proxies are rejected by authentication libraries
that don’t understand restrictions. The authentication
libraries that do understand restrictions reject restricted
proxies unless the calling program has indicated its
willingness to enforce proxy restrictions.

We do not currently provide a mechanism for the
revocation of proxy certificates, relying instead on their
short lifetimes.

7.2 Compromised CAS server
If a CAS server is compromised or untrustworthy, it

can issue credentials that do not reflect the policies of the
community that it represents; for example, it may grant
access to people who are not members of the community.
A resource provider would honor such a credential for
any access that its local policies grant to that community.

A compromised CAS server might also issue
credentials that (attempt to) grant access to resources that
don’t belong to the community, but unless a resource
server has been configured to grant access on those
resources to that community, those credentials will be
rejected.

If a CAS server is discovered to have been
compromised, resource servers can use their local access
control mechanisms to revoke any permissions granted to
that server.

7.3 Revocation Mechanisms
If a user credential is compromised, then that user can

be unenrolled from the CAS server (i.e., removed from
the list of users in the community). The CAS server will
then refuse to delegate any credentials to that user;
however, any credentials previously delegated to that user
will continue to be honored until they expire.

Credentials issued by the CAS server to community
members, like most GSI proxy credentials, are given
relatively short life spans, usually on the order of hours.
This allows these credentials to be used without the use of
a revocation mechanism since they generally expire
rapidly enough for most applications.

7.4 Compromised Resource Server
Although a compromised or untrustworthy resource

server is likely to be a serious problem (e.g., if a
community stores sensitive files on that server), this does
not create cascaded security issues. For example, if a user
uses a CAS credential to authenticate to a compromised
resource server, that server cannot use that CAS
credential to gain additional access, because the resource
server never sees the private key.

For highly-sensitive applications where greater
assurance of resource enforcement of community policy
is required, a mechanism such as Law-Governed
Interaction [31] can be used to help assure this.

8 Related Work
The Akenti system [7, 8] identifies a set of

stakeholders with a resource, where each stakeholder is
allowed to place restrictions on who and how the resource
can be used. These restrictions are specified in terms of
what attributes a user must possess in order to perform
specific requests. If all stakeholders approve a request,
then the request may be performed. Akenti makes
extensive use of PKI certificates for encoding both user
attributes as well as usage conditions. Our work is
distinguished by its focus on supporting the centralized
specification of community policies governing collections
of resources, such as who is allowed to read and write
replicated data in a Data Grid; Akenti, on the other hand,
is concerned primarily with expressing the use conditions
that govern access to individual resources. This different
focus leads us to adopt different technical approaches. For
example, in Akenti every resource must know about and
trust the CA of every potential user, which seems to us to
be a significant obstacle to scalability. In contrast, a CAS
server must know about and trust the CA of every user,
but individual resources need know about only the CAS
server’s CA. Similarly, a CAS server provides a
centralized location at which can be collected the various
use conditions that govern access to a resource; once
these are verified, the resource need deal only with a

single capability, rather than consulting a potentially large
set of repositories to find all the applicable use conditions
and attribute certificates. Finally CAS provides a
mechanism to delegate permissions on a set of resources
distributed across different administrative domains. We
believe that for these reasons CAS represents an
interesting alternative—and most likely complementary—
technology to Akenti; for example, Akenti could be used
as the “local” access mechanism in the CAS model.

The Secure Virtual Enclaves (SVE) infrastructure [32]
provides a mechanism for the controlled sharing of
resources among organizations. An enclave is a set of
resources managed by the same organization. An SVE is a
collection of subsets of one or more enclaves. Local
enclave administrators grant permissions on types (groups
of resources, or of operations on resources, within the
local enclave) to domains (groups of users), possibly
subject to additional conditions. The mapping of
resources to types, and the granting of permissions on
each type, is done within each local enclave and not
shared with other enclaves in the SVE; however, the
specification of domains is shared across enclaves within
an SVE (i.e., if the administrator of any enclave within an
SVE adds a user to a domain, that user will be considered
part of that domain within the entire SVE). SVE provides
“interceptors,” middleware components for some software
architectures, that enable the use of SVE without
modifying application-level code.

The SVE approach has some features in common with
the CAS approach. Both frameworks allow local resource
administrators to determine the upper bound of what
access is granted to the community, while allowing
people other than the local administrators to specify some
parts of the effective policy. Both frameworks also
support the aggregation of users and resources. The SVE
approach allows an enclave to export resources to more
than one SVE; the CAS approach allows resource
providers to grant permissions to more than one
community. However, there are significant differences.
The SVE model seems to be focused on relationships
among organizations, while the CAS model is focused on
the relationships between organizations and communities
and among individuals within a community. In the SVE
model, all policy is managed by enclave administrators,
and all enclave administrators have equal authority to
maintain the membership of domains (user groups). In the
CAS model, course-grained access control is maintained
by local resource administrators, and fine-grained access
control is maintained by a community representative, who
may delegate out subsets of that authority; neither the
original community representative nor anyone to whom
this authority is delegated is required to be a resource
administrator. This delegation of administrative authority
may also be very fine-grained; for example, a community
administrator may create a group and delegate to an

individual the authority to add established community
members to and delete them from that group, without
giving that person any other administrative authority. The
SVE model allows aggregation of resources, but only
within an enclave; the CAS model does not have that
restriction. We have found that communities often wish to
grant permissions to collections of resources that belong
to different organizations; for example, in data grids [33],
multiple replicas of a file, which generally should have
identical access control policies, typically exist on servers
in different organizations. The SVE project has
concentrated more than the CAS project on programming
frameworks.

The theoretical concepts of proxy certificates,
restricted proxies, and authorization servers that generate
proxy certificates were described in [10].

9 Future Directions

9.1 Accounting
Many policies contain quotas or similar rights that are

dynamic in that they depend on a user’s current resource
consumption. For example a user may be assigned a quota
on the total amount of storage they can consume by
community policy, meaning the amount of new data a
user can store is the difference between the quota and
amount they have currently stored.

CAS currently works with statically defined rights. For
CAS to enforce these policies a distributed accounting
system must be put into place to provide feedback on the
user’s resource consumption across all resource servers.
The development of such a system can be expected to be
complicated, due to the need to communicate usage
information from resources to CAS as well for standard
methods for describing resource usage.

We plan to experiment with an approach to this
problem based on tagging each restricted proxy issued by
the CAS with a Globally Unique ID (GUID). This GUID
will be used by resources to track resource consumption
and report it back to CAS. CAS will then map the GUID
back to the original user and keep track of the resources
being consumed by the user.

Additional areas we intend to research that are needed
to complete the accounting system are tools for allowing
resources to log usage, protocols and tools for distributing
this accounting information back to the CAS, and policy
languages for expressing limits on the amount of resource
consumption allowed by a user.

9.2 Delegation tracing
While thinking of an individual as simply a member of

a community is acceptable for the purpose of
authorization, there are instances where resources will
want to know the actual identity of a user. Auditing is a

common reason for this, so that if malicious behavior is
attempted it can be tracked back to an individual.

To enable this functionality we are investigating
methods of tracing delegations. This would allow a party
accepting a credential to be able to determine the identity
of the party to whom the credential was delegated and
hence the identity of the user who accepted the credential
from CAS.

9.3 Replication of CAS Server
A system based on a single CAS server for a

community may have the problem of being a single point
of failure as well as a potential performance bottleneck.
We will explore methods of replicating the CAS server to
alleviate this potential problem. The best approach will
depend on how often we see the community policy
changed in practice. If community policy tends to be
changed infrequently we can define a single master server
that can accept changes and then routinely replicates the
policy to one or more read-only slave servers. If the
community policy changes frequently we will require a
more complicated distribution among a set of peer servers
where all can act to update the policy and the loss of any
one server does not lead to a loss of functionality.

10 Summary
This paper describes the Community Authorization

Service (CAS) we have developed to solve three critical
authorization problems that arise in distributed virtual
organizations: scalability, flexibility and expressibility,
and the need for policy hierarchies. We address these
problems by introducing a trusted third party administered
by the virtual organization that performs fine-grain
control of community policy while leaving ultimate
control of resource access with the resource owners. We
also describe our experience integrating CAS with a real
world application. This experience provides us with some
initial evidence that CAS is a viable solution to our target
problems.

11 Acknowledgements
We would like to thank Doug Engert, Sam Meder,

Chris Nebergall, and Shubi Raghunathan for contributions
to the CAS project. Apologies to anyone we missed. We
also thank the anonymous reviewers for their insightful
critiques.

This work was supported in part by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under
contracts W-31-109-Eng-38, DE-AC03-76SF0098, DE-
FC03-99ER25397 and No. 53-4540-0080.

12 References
1. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy

of the Grid: Enabling Scalable Virtual Organizations.
International Journal of High Performance
Computing Applications, 2001. 15(3): p. 200-222.

2. Foster, I. and C. Kesselman, eds. The Grid: Blueprint
for a New Computing Infrastructure. 1999, Morgan
Kaufmann.

3. Agarwal, D.A., S.R. Sachs, and W.E. Johnston, The
Reality of Collaboratories. Computer Physics
Communications, 1198. 110: p. 134-141.

4. Mullender, S.J. and A.S. Tanenbaum, The Design of a
Capability-Based Distributed Operating System. The
Computer Journal. 29: p. 289-99.

5. The Globus Project. 1997: http://www.globus.org/.
6. Globus Security Policy and Implementation. 1997:

http://www.globus.org/security/.
7. Thompson, M., et al., Certificate-based Access

Control for Widely Distributed Resources, in Proc.
8th Usenix Security Symposium. 1999.

8. Johnston, W. and C. Larsen, A Use-Condition
Centered Approach to Authenticated Global
Capabilities: Security Architectures for Large-Scale
Distributed Collaboratory Environments. 1996(3885).

9. Shands, D., et al., Secure Virtual Enclaves: Supporting
Coalition use of Distributed Applications
Technologies. ACM Transactions on Information and
System Security, 2001. 4(2): p. 103-133.

10. Neuman, B.C. Proxy-Based Authorization and
Accounting for Distributed Systems. in 13th
International Conference on Distributed Computing
Systems. 1993.

11. Johnston, W.E., D. Gannon, and B. Nitzberg. Grids as
Production Computing Environments: The
Engineering Aspects of NASA’s Information Power
Grid. in Proc. 8th IEEE Symposium on High
Performance Distributed Computing. 1999: IEEE
Press.

12. National Computation Science Alliance. 2001:
http://alliance.ncsa.edu/.

13. National Partnership for Advanced Computational
Infrastructure. 2001: http://www.npaci.edu/.

14. Foster, I., et al., A Secure Communications
Infrastructure for High-Performance Distributed
Computing, in Proc. 6th IEEE Symp. on High
Performance Distributed Computing. 1997. p. 125--
136.

15. Gasser, M. and E. McDermott. An Architecture for
Practical Delegation in a Distributed System. in Proc.
1990 IEEE Symposium on Research in Security and
Privacy. 1990: IEEE Press.

16. Hardjono, T. and T. Ohta, Secure End-to-End
Delegation in Distrbuted Systems. Computer
Communications. 17(3): p. 230-238.

17. Howell, J. and D. Kotz. End-to-end authorization. in
Proc. 2000 Symposium on Operating Systems Design
and Implementation. 2000: USENIX Association.

18. Y. Kortesniemi, T.H., J. Partanen. A Revocation,
Validation and Authentication Protocol for SPKI-
Based Delegation Systems. in Network and
Distributed Systems Security Symposium. 2000.

19. Foster, I., et al. A Security Architecture for
Computational Grids. in Proceedings of the 5th ACM
Conference on Computer and Communications
Security. 1998.

20. Tuecke, S., et al., Internet X.509 Public Key
Infrastructure Proxy Certificate Profile. 2002.

21. J. Bacon, M.L., K. Moody. Translating Role-Based
Access Control Policy within Context. in Policies for
Distributed Systems and Networks. 2001.

22. S. Jajodia, P.S., V.S. Subrahmanian. A Logical
Language for Expressing Authorisations. in IEEE
Symposium on Security and Privacy. 1997.

23. N. Darnianou, N.D., E. Lupu, M. Sloman. The Ponder
Policy Specification Language. in Policies for
Distributed Systems and Networkds. 2001.

24. Ryutov, T. and C. Neuman, Access Control
Framework for Distributed Applications. 1998, IETF.

25. Linn, J., Generic Security Service Application
Program Interface, in Internet RFC 1508. 1993, IETF.

26. Meder, S., et al., GSS-API Extensions. 2001, Global
Grid Forum.

27. The pyGlobus Toolkit. 2001: http://www-
itg.lbl.gov/grid/projects/pyGlobus.html.

28. Earth System Grid. 2001:
http://www.earthsystemgrid.org/.

29. Climate Data Analysis Tool. 2001:
http://cdat.sourceforge.net/.

30. Allcock, W., et al. Secure, Efficient Data Transport
and Replica Management for High-Performance Data-
Intensive Computing. in Mass Storage Conference.
2001.

31. Ao, X., N. Minsky, and V. Ungureanu. Formal
Treatment of Certificate Revocation Under Communal
Access Control. in IEEE Symposium on Security and
Privacy. 2001.

32. D. Shands, R.Y., J. Jacobs, E. John Sebes. Secure
Virtual Enclaves: Supporting Coalition Use of
Distributed Application Technologies. in Network and
Distributed Systems Security. 2000: ISOC.

33. Chervenak, A., et al., The Data Grid: Towards an
Architecture for the Distributed Management and
Analysis of Large Scientific Data Sets. J. Network and
Computer Applications, 2001(23): p. 187-200.

