
Protocols and Services for Distributed Data-Intensive Science

William Allcock, Ian Foster, and Steven Tuecke
Mathematics and Computer Science Division, Argonne National Laboratory

Ann Chervenak and Carl Kesselman

Information Sciences Institute, University of Southern California

Abstract. We describe work being performed in the Globus project to develop enabling protocols and services for distributed
data-intensive science. These services include:

* High-performance, secure data transfer protocols based on FTP, plus a range of libraries and tools that use these protocols
* Replica catalog services supporting the creation and location of file replicas in distributed systems

These components leverage the substantial body of "Grid" services and protocols developed within the Globus project and by its
collaborators, and are being used in a number of data-intensive application projects.

INTRODUCTION

We describe work being performed in the Globus
project1 to develop enabling protocols and services for
distributed data-intensive science. We will begin with
a discussion of the differences between protocols,
API’s, and services and why each is important. The
features of our data transfer technology, GridFTP, and
our replica catalog services will then be discussed. A
full discussion of the protocols and API’s is beyond
the scope of this paper.

PROTOCOLS, API’S, AND SERVICES

There is a great deal of confusion regarding these
terms. They are frequently used interchangeably,
though incorrectly. Each plays a different role and
provides distinct and important advantages.

A protocol defines the format of data that is sent
between two systems, including the syntax of
messages, character sets, and sequencing of messages.
It does not specify whether this was accomplished by
invoking a Java method, calling a C language function,
or by someone sitting at a terminal typing the replies.
The value of a protocol is that it provides
interoperability. It allows a Java Application running
on a Sun Workstation to work with a C application
running on a Cray T3-E supercomputer, just as TCP/IP
has enabled a heterogeneous collection of operating
systems and computers to communicate over the
Internet.

An Application Programmers Interface (API)
specifies the interface to which an application

programmer can write code. It specifies functionality,
names, data types, parameter sequences, and return
types. It is not an implementation, since several
implementations of the same API can exist. The
advantage to having a common API is efficiency. If
the same API is supported on a variety of
heterogeneous platforms, for example, as interfaces to
different storage systems, then the programmer’s task
is greatly simplified.

Services are processes that are usually started
automatically, always running, and provide basic
functionality for other processes. They are also
known as user agents and daemons. The E-Mail
service is probably the most well known. It runs in the
background. An E-Mail program (client) simply
communicates with the server using a specified
protocol and provides it with the data (address list,
text, images, attachments, etc). The email service
takes care of actually transferring the mail over the
network and the service on the other end informs the
appropriate client that mail has arrived. The
advantages of a service are faster application
development, smaller programs since each client does
not need to have the service code present, and more
stable code since the services can be more complicated
to write.

DATA TRANSFER PROTOCOL:
GRIDFTP

In Grid environments, access to distributed data is
typically as important as access to distributed
computational resources2. Distributed scientific and
engineering applications require transfers of large

amounts of data (terabytes or petabytes) between
storage systems, and access to large amounts of data
(gigabytes or terabytes) by many geographically
distributed applications and users for analysis,
visualization, etc. Unfortunately, the lack of standard
protocols for transfer and access of data in the Grid
has led to a fragmented Grid storage community.
Users who wish to access different storage systems are
forced to use multiple protocols and/or APIs, and it is
difficult to efficiently transfer data between these
different storage systems.

We propose a common data transfer and access
protocol called GridFTP3,4 that provides secure,
efficient data movement in Grid environments. This
protocol, which extends the standard FTP protocol,
provides a superset of the features offered by the
various Grid storage systems currently in use.

In order to make a common data transfer protocol
attractive to users and developers of existing storage
systems, we must provide a transfer protocol that
offers a superset of the features offered by systems
currently in regular use. In addition, the protocol must
be extensible, in order to support future innovations by
storage system users and developers.

We have observed that the FTP protocol is the
protocol most commonly used for data transfer on the
Internet, and the most likely candidate for meeting the
Grid’s needs. It is attractive in particular for the
following reasons.

• It is a widely implemented and well-understood
IETF standard protocol.

• There is a large code base and expertise from which
to build.

• It provides a well-defined architecture for protocol
extensions, and supports dynamic discovery of the
extensions supported by a particular
implementation.

• Numerous groups have added various extensions
through the IETF. Some of these extensions are
particularly useful in the Grid.

• In addition to client/server transfers (i.e. “put/get”),
it also supports transfers directly between two
servers, mediated by a third party client (i.e. “third
party transfer”).

• The separation of data and control channels onto
different sockets allows for easier extensibility for
parallel and striped transfers, efficiently transiting
firewalls, etc.

Most current FTP implementations support only a

subset of the features defined in the FTP protocol and

its accepted extensions. Some of the seldom-
implemented features are useful to Grid applications,
but the standards also lack several features Grid
applications require. We have selected a subset of the
existing FTP standards and further extended them,
adding the features described below. We believe that
the resulting protocol is a suitable candidate for the
common data transfer protocol for the grid.

Grid Security Infrastructure (GSI) and
Kerberos support: Robust and flexible
authentication, integrity, and confidentiality features
are critical when transferring or accessing files.
GridFTP must support GSI and Kerberos
authentication, with user controlled setting of various
levels of data integrity and/or confidentiality.

Third-party control of data transfer: In order to
manage large data sets for large distributed
communities, it is necessary to provide third-party
control of transfers between storage servers. GridFTP
provides this capability by adding GSSAPI security to
the existing third-party transfer capability defined in
the FTP standard.

Parallel data transfer: On wide-area links, using
multiple TCP streams can improve aggregate
bandwidth over using a single TCP stream. This is
required both between a single client and a single
server, and between two servers. GridFTP supports
parallel data transfer through FTP command
extensions and data channel extensions.

Striped data transfer: Partitioning data across
multiple servers can further improve aggregate
bandwidth. GridFTP supports striped data transfers
through extensions defined in the Grid Forum draft.

Partial file transfer: Many applications require
the transfer of partial files. However, standard FTP
requires the application to transfer the entire file, or
the remainder of a file starting at a particular offset.
GridFTP introduces new FTP commands, to support
transfers of regions of a file.

Support for reliable data transfer: Reliable
transfer is important for many applications that
manage data. Fault recovery methods for handling
transient network failures, server outages, etc. are
needed. The FTP standard includes basic features for
restarting failed transfer that are not widely
implemented. The GridFTP protocol exploits these
features, and substantially extends them.

REPLICA MANAGEMENT

In this section, we present the Globus Replica
Management architecture4. Replica management is an
important issue for a number of scientific applications.
For example, consider the petabytes of experimental
data that will be generated by the LHC5. While the
complete data set may exist in one or possibly several
physical locations, it is likely that many universities,
research laboratories or individual researchers will
have insufficient storage to hold a complete copy.
Instead, they will store copies of the most relevant
portions of the data set on local storage for faster
access.

Replica management system services include:

• Creating new copies of a complete or partial data set
• Registering these new copies in a Replica Catalog
• Allowing users and applications to query the catalog

to find all existing copies of a particular file or
collection of files

• Selecting the ``best'' replica for access based on
storage and network performance predictions
provided by a Grid information service

The Globus replica management architecture is a

layered architecture. At the lowest level is a Replica
Catalog that allows users to register files as logical
collections and provides mappings between logical
names for files and collections and the storage system
locations of one or more replicas of these objects. We
have implemented a Replica Catalog API in C as well
as a command-line tool. Finally, we have defined a
higher-level Replica Management API that creates and
deletes replicas on storage systems and invokes low-
level commands to update the corresponding entries in
the replica catalog.

The basic replica management services that we
provide can be used by higher-level tools to select
among replicas based on network or storage system
performance or automatically to create new replicas at
desirable locations. We will implement some of these
higher-level services in the next generation of our
replica management infrastructure.

The purpose of the replica catalog is to provide
mappings between logical names for files or
collections and one or more copies of the objects on
physical storage systems. The catalog registers three
types of entries: logical collections, locations and
logical files.

A logical collection is a user-defined group of files.
We expect that users will find it convenient and

intuitive to register and manipulate groups of files as a
collection, rather than requiring that every file be
registered and manipulated individually.

Location entries in the replica catalog contain all
the information required for mapping a logical
collection to a particular physical instance of that
collection. The location entry may register
information about the physical storage system, such as
the hostname, port and protocol. In addition, it
contains all information needed to construct a URL
that can be used to access particular files in the
collection on the corresponding storage system.

Each logical collection may have an arbitrary
number of associated location entries, each of which
contains a (possibly overlapping) subset of the files in
the collection. Using multiple location entries, users
can easily register logical collections that span
multiple physical storage systems.

Despite the benefits of registering and
manipulating collections of files using logical
collection and location objects, users and applications
may also want to characterize individual files. For this
purpose, the replica catalog includes optional entries
that describe individual logical files. Logical files are
entities with globally unique names that may have one
or more physical instances. The catalog may
optionally contain one logical file entry in the replica
catalog for each logical file in a collection.

REFERENCES

1. The Globus Project, www.globus.org
2. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S.

Tuecke, “The Data Grid: Towards an Architecture
for the Distributed Management and Analysis of
Large Scientific Datasets,” to be published in the
Journal of Network and Computer Applications.

3. Grid Forum GridFTP Introduction:
http://www.sdsc.edu/GridForum/RemoteData/Paper
s/gridftp_intro_gf5.pdf

4. Grid Forum GridFTP Specification DRAFT:
http://www.sdsc.edu/GridForum/RemoteData/Paper
s/gridftp_spec_gf5.pdf

5. W. Hoschek, J. Jaen-Martinez, A. Samar, H.
Stockinger, K. Stockinger, “Data Management in an
International Grid Project”, 2000 International
Workshop on Grid Computing (GRID 2000),
Bangalore, India, December 2000.

