
DLHub: Simplifying Publication, Discovery, and Use of
Machine Learning Models in Science

Zhuozhao Lia,b, Ryan Chardb, Logan Wardb, Kyle Charda,b,c, Tyler J.
Skluzaceka, Yadu Babujib,c, Anna Woodarda, Steven Tueckeb,c, Ben

Blaiszikb,c, Michael J. Franklina, Ian Fostera,b,c

aDepartment of Computer Science, University of Chicago, Chicago, IL, USA
bData Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA

cGlobus, University of Chicago, Chicago, IL, USA

Abstract

Machine Learning (ML) has become a critical tool enabling new methods of

analysis and driving deeper understanding of phenomena across scientific dis-

ciplines. There is a growing need for “learning systems” to support various

phases in the ML lifecycle. While others have focused on supporting model

development, training, and inference, few have focused on the unique challenges

inherent in science, such as the need to publish and share models and to serve

them on a range of available computing resources. In this paper, we present the

Data and Learning Hub for science (DLHub), a learning system designed to sup-

port these use cases. Specifically, DLHub enables publication of models, with

descriptive metadata, persistent identifiers, and flexible access control. It pack-

ages arbitrary models into portable servable containers, and enables low-latency,

distributed serving of these models on heterogeneous compute resources. We

show that DLHub supports low-latency model inference comparable to other

model serving systems including TensorFlow Serving, SageMaker, and Clipper,

and improved performance, by up to 95%, with batching and memoization en-

abled. We also show that DLHub can scale to concurrently serve models on

500 containers. Finally, we describe five case studies that highlight the use of

DLHub for scientific applications.
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1. Introduction

Learning systems are an important new class of systems designed to support

the many phases of the Machine Learning (ML) lifecycle (see Figure 1). Various

learning systems have been developed to support model development <1; 2>;

scalable training across thousands of cores and GPUs <3>; model publication

and sharing <4>; and low-latency and high-throughput inference <5>.
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Figure 1: ML lifecycle, adapted from Miao et al. <6>

The rapid adoption of ML across science, for example to design and discover

new materials and molecules <7; 8>; to detect and make cancer diagnoses ear-

lier <9> and to enhance patient care <10>; acting as surrogates for more ex-

pensive simulations <11; 12>, guiding genome-editing capabilities <13>, brings

with it unique and urgent challenges. For example, there is a need to discover,

reuse, and reproduce models published in the literature to validate and extend

cutting-edge results; publish models with descriptive metadata and persistent

identifiers for discovery and unambiguous citation; and to scalably and reliably

execute models on the myriad resources available to researchers.

In this paper, we present the Data and Learning Hub for science (DLHub)

and outline initial experiences applying this learning system to science. While

many learning systems focus on building and training ML models <14; 15; 3>,

DLHub is a unique learning system that is designed to support the publication

and serving of ML models in science. DLHub is implemented as a cloud-hosted

service that allows researchers to deposit and share models of various types, in-
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cluding TensorFlow <15>, Keras <16>, PyTorch <17>, and Scikit-learn <18>.

It defines common metadata schemas for describing these models and the pa-

rameters and other inputs used to invoke them. It also implements a rich access

control model that allows users to publish their models privately, publicly, or

with a select group of other users.

DLHub offers a unique model serving infrastructure that is capable of serving

many different types of models on a range of distributed computing resources in-

cluding clouds, clusters, and supercomputers. The serving infrastructure builds

upon funcX <19; 20>—a distributed Function-as-a-Service platform developed

specifically to support remote and distributed execution of functions. DLHub

implements a flexible pipeline that converts deposited models into servables—

executable containers that implement a standard DLHub execution interface,

irrespective of the model type, and includes the trained model, model compo-

nents (e.g., training weights, hyperparameters), and dependencies (e.g., system

or Python packages). DLHub registers these published functions with funcX

which then allows the servables to be transferred and deployed to remote com-

puting resources and invoked one or more times on different input arguments.

funcX elastically provisions compute nodes (e.g., via cloud API or batch sched-

uler) in response to workload requirements, deploys special funcX worker agents

in servable containers for fine-grain execution, and then manages the secure and

reliable execution of inference tasks.

In this paper, we extend our previous work <21; 22> by outlining the new

DLHub architecture that is able to serve models on arbitrary distributed re-

sources using funcX. This architecture also allows researchers to use their own

resources when invoking models published in DLHub.

We evaluate the performance of DLHub by showing that it can scale to hun-

dreds of concurrent containers when deployed on different resources including

a supercomputer, cluster, and Kubternetes cluster. and compare it against al-

ternative learning systems. We show that DLHub performs comparably with

other systems, such as TensorFlow Serving <23> and SageMaker <3>, when

using a Kubernetes cluster. Finally, we show that memoization and batching
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can significantly improve performance and that DLHub can serve models on

remote computing resources in less than 75ms.

The remainder of the paper is structured as follows. In §2, we outline the

need for, and unique requirements of, learning systems in science. In §3, we

survey a range of model repository and serving systems. In §4, we present the

DLHub architecture and describe how it supports publication and serving. In

§5, we evaluate DLHub by exploring the serving latency and scalability, perfor-

mance optimizations, and comparing it against three related systems. Finally,

in §6, we present case studies that highlight the benefits of DLHub in science,

and we summarize our contributions in §7.

2. Specialized Requirements of Science

Increasingly sophisticated learning systems are being developed, in particular

by cloud providers, to support commercial ML use cases. However, scientific use

of ML has specialized requirements, including the following.

Publication, citation, and reuse: The scholarly process is built upon a

common workflow of publication, peer review, and citation. Progress is depen-

dent on being able to locate, verify, and extend prior research, and careers are

built upon publications and citation. As scholarly objects, ML models should

be subject to similar publication, review, and citation models. Lacking standard

methods for doing so, (a) many models associated with published literature are

not available <24>; and (b) researchers adopt a range of ad hoc methods (from

customized websites to GitHub) for sharing ML models <25; 26; 27>.

Reproducibility: Concerns about reproducibility are having a profound

effect on research <28>. While reproducibility initiatives have primarily fo-

cused on making data and experimental processes available to reproduce find-

ings, there is a growing interest in making computational methods available as

well <29; 30; 31>.

Unlike sharing software products, there is little guidance for sharing ML

models and their artifacts (e.g., weights, hyper-parameters, and training/test
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sets). Without publishing these artifacts, it is almost impossible to verify or

build upon published results. Thus, there is a growing need to develop stan-

dard ML model packages and metadata schema, and to provide rich model

repositories and serving platforms that can be used to reproduce published re-

sults.

Research infrastructure: While industry and research share common re-

quirements for scaling inference, the execution landscape differs. Researchers

often want to use multiple (often heterogeneous) parallel and distributed com-

puting resources to develop, optimize, train, and execute models. Examples

include: laboratory computers, campus clusters, national cyberinfrastructure

(e.g., XSEDE <32>, Open Science Grid <33>), supercomputers, and clouds.

They often have their own resources that they would like to use for inference.

Thus, learning systems need to support execution on different resources and

enable migration between resources.

Scalability: Large-scale parallel and distributed computing environments

enable ML models to be executed at unprecedented scale. Researchers require

learning systems that simplify training and inference on enormous scientific

datasets and that can be parallelized to exploit large computing resources.

Low latency: ML is increasingly being used in real-time scientific pipelines,

for example to process and respond to events generated from sensor networks;

classify and prioritize transient events from digital sky surveys for exploration;

and to perform error detection on images obtained from X-ray light sources.

There is a need in each case for low latency, near real-time ML inference for

anomaly/error detection and for experiment steering purposes. As both the

number of devices and data generation rates continue to grow, there is also a

need to be able to execute many inference tasks in parallel, whether on central-

ized or “edge” computers.

Research ecosystem: Researchers rely upon a large and growing ecosys-

tem of research-specific software and services: for example, Globus <34> to

access and manage their data; community and institution-specific data sources

(e.g., the Materials Data Facility <35> and Materials Project <36>) as input
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to their ML models; and research authentication and authorization models (e.g.,

using campus or ORCID identities).

Model in the loop: Scientific analyses often involve multiple steps, such

as the staging of input data for pre-processing and normalization, extraction

of pertinent features, execution of one or more ML models, application of un-

certainty quantification methods, post-processing of outputs, and recording of

provenance. There is a growing need to expose models with simple and secure

Web interfaces for on-demand consumption such that models can be used in

cohesive, shareable, and reusable scientific workflows.

3. Learning Systems: A Brief Survey

We define a learning system as “a system that supports any phase of the ML

model lifecycle including the development, training, inference, sharing, publica-

tion, verification, and reuse of a ML model.” To elucidate the current landscape,

we survey a range of existing systems, focusing on those that provide model

repository and serving capabilities. Model repositories catalog collections of

models, maintaining metadata for the purpose of discovery, comparison, and

use. Model serving platforms facilitate online model execution.

A repository or serving platform may be provided as a hosted service, in

which case models are deployed and made available to users via the Internet,

or self-service, requiring users to operate the system locally and manage the

deployment of models across their own infrastructure.

3.1. Model Repositories

Model repositories catalog and aggregate models, often by domain, storing

trained and untrained models with associated metadata to enable discovery and

citation. Metadata may be user-defined and/or standardized by using common

publication schemas (e.g., author, creation date, description, etc.) and ML-

specific schemas. ML-specific metadata include model-specific metadata (e.g.,

algorithm, software version, network architecture), development provenance
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(e.g., versions, contributors), training metadata (e.g., datasets and parametriza-

tion used for training), and performance metadata (e.g., accuracy when applied

to benchmark datasets). Model repositories may provide the ability to associate

a persistent identifier (e.g., DOI) and citation information such that creators

may receive credit for their efforts.

Table 1 summarizes four representative model repositories plus DLHub along

the following dimensions; we describe each repository in more detail below.

• Publication and curation: Whether models can be contributed by users

and if any curation process is applied.

• Domain: Whether the repository is designed for a single domain (e.g.,

bioinformatics) or for many domains.

• Model types: What types of ML models can be registered in the repos-

itory (e.g., any model type, TensorFlow).

• Data integration: Whether data (e.g., training/test datasets) and con-

figuration (e.g., hyperparameters) can be included with the published

model.

• Model metadata: Whether the repository supports publication of model-

specific metadata, model building requirements, and/or invocation meta-

data.

• Search capabilities: What search mechanisms are provided to allow

users to find and compare models.

• Model versioning: Whether the repository facilitates versioning and

updates to published models.

• Export: Whether the repository allows models to be exported, and if so,

in what format.

ModelHub <6> is a deep learning model lifecycle management system

focused on managing the data artifacts generated during the deep learning life-
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Table 1: Model repositories compared and contrasted. BYO = bring your own.

ModelHub Caffe Zoo ModelHub.ai Kipoi DLHub

Publication

method
BYO BYO Curated Curated BYO

Domain(s)

supported
General General Medical Genomics General

Datasets

included
Yes Yes No No Yes

Metadata

type
Ad hoc Ad hoc Ad hoc Structured Structured

Search

capabilities
SQL None Web GUI Web GUI Elasticsearch

Identifiers

supported
No BYO No BYO BYO

Versioning

supported
Yes No No Yes Yes

Export

method
Git Git Git/Docker Git/Docker Docker

cycle, such as parameters and logs, and understanding the behavior of the gen-

erated models. Using a Git-like command line interface, users initialize reposito-

ries to capture model information and record the files created during the creation

process. Users then exchange a custom-built model versioning repository, called

DLV, through the hosted service to enable publication and discovery. ModelHub

is underpinned by Git, inheriting versioning capabilities, support for arbitrary

datasets, scripts, features, and accommodates models regardless of domain. A

custom SQL-like query language, called DQL, allows ModelHub users to search

across repositories on characteristics such as authors, network architecture, and

hyper-parameters.

Caffe Model Zoo <37> is a community-driven effort to publish and share

Caffe <14> models. Users contribute models via Dropbox or GitHub Gists.

The Model Zoo provides a standard format for packaging, describing, and shar-

ing Caffe models. It also provides tools to enable users to upload models and
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download trained binaries. The Model Zoo operates a community-edited Wiki

page to describe each of the published models, aggregating information regard-

ing manuscripts, citation, and usage documentation in an unstructured format.

The project encourages open sharing of models, trained weights, datasets, and

code through GitHub. The Model Zoo provides guidelines on how to contribute

models and what metadata should be included in the accompanying readme.md

file without enforcing a specific schema. Users typically include citation infor-

mation, links to the project page, a GitHub address for the model’s code, and

in some cases, a link to haystack.ai where the model can be tested.

ModelHub.ai <38> is a service to crowdsource and aggregate deep learn-

ing models related to medical applications. ModelHub.ai has a Web interface

that lets users review published models, experiment with example inputs, and

even test them online using custom inputs. The service provides detailed doc-

umentation and libraries to package models into a supported Docker format.

Once packaged, users can add the model and any associated metadata to the

ModelHub GitHub repository and submit a pull-request. The contributed model

is curated and added to the catalog. The ModelHub.ai project provides both

a Flask and Python API to interact with Dockerized models, which can be

retrieved by either downloading the Docker image or cloning the GitHub repos-

itory.

Kipoi <4> is a repository of trained models for genomics that includes more

than 2000 models of 21 different types. It provides a command line interface

(CLI) for publishing and accessing models. On publication, the CLI prompts the

user for descriptive metadata and generates a configuration file containing the

metadata needed to discover and run the model. Users can then publish their

models by submitting a pull-request to the Kipoi GitHub repository. Models

can be listed and retrieved through the API and then invoked locally.

3.2. Model Serving

ML model serving platforms provide on-demand model inference. Existing

model serving platforms vary in both their goals and capabilities: for example,
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some focus on serving a specific type of model with extremely low latency, while

others prioritize ease of use and simple inference interfaces. We have identified

the following important dimensions to capture the differences between model

serving platforms. Table 2 summarizes popular model serving platforms plus

DLHub along these dimensions.

• Service model: Whether the platform is offered as a hosted service or

requires self-service deployment.

• Model types: What languages and types are supported (e.g., Tensor-

Flow, Scikit-learn, R, Python, etc.).

• Input types: The range of input types supported by the system (e.g.,

structured, files, or primitive types).

• Training capabilities: Whether the system supports training.

• Transformations: Whether pre-/post-processing steps can be deployed.

• Invocation interface: What methods of interaction with the models are

supported.

• Execution environment: Where models are deployed (e.g., cloud, Ku-

bernetes, Docker).

PennAI <39> provides model serving capabilities for biomedical and health

data. The platform allows users to apply six ML algorithms, including regres-

sions, decision trees, SVMs, and random forests to their datasets, and to perform

supervised classifications. The PennAI website provides a user-friendly interface

for selecting, training, and applying algorithms to data. The platform also ex-

poses a controller for job launching and result tracking, result visualization tools,

and a graph database to store results. PennAI does not support user-provided

models, but does provide an intuitive mechanism to train classification tools

and simplify the integration of ML into scientific processes.
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TensorFlow Serving <23> is the most well-known model serving solution

and is used extensively in production environments. TensorFlow Serving pro-

vides high performance serving via gRPC and REST APIs and is capable of

simultaneously serving many models, with many versions, at scale. TensorFlow

Serving provides the lowest latency serving of any of the surveyed platforms. It

serves trained TensorFlow models using the standard tensorflow model server,

which is built in C++. Although TensorFlow Serving does support a range

of model types—those that can be exported into TensorFlow servables—it is

limited in terms of its support for custom transformation codes and does not

support the creation of pipelines between servables. TensorFlow Serving is also

self-service, requiring users to deploy and operate TensorFlow Serving on local

(or cloud) infrastructure in order to deposit models and perform inferences. Ten-

sorFlow also provides model repository capabilities through a library of reusable

ML modules, called TensorFlow Hub.

Clipper <5> is a prediction serving system that focuses on low latency

serving. It deploys models as Docker containers, which eases management

complexity and allows each model to have its own dependencies wrapped in

a self-contained environment. Clipper includes several optimizations to improve

serving performance including data batching and memoization. Clipper also

provides a model selection framework to improve prediction accuracy. However,

because Clipper needs to Dockerize the models on the manager node, it requires

privileged access, which is not available on all execution environments (e.g., high

performance computing clusters).

SageMaker <3> is an ML serving platform provided by Amazon Web Ser-

vices that supports both the training of models and the deployment of trained

models as Docker containers for serving. It helps users to handle large data

efficiently by providing ML algorithms that are optimized for distributed envi-

ronments. SageMaker APIs allow users to deploy a variety of ML models and

integrate their own algorithms. In addition, trained models can be exported as

Docker containers for local deployment.

Algorithmia <40> is an industry platform for deploying and scaling ML
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models in the cloud for production use. Algorithmia creates a GitHub reposi-

tory for each published model before containerizing it with Docker and making

it available via the Internet. Model deployments are elastically scalable and can

leverage accelerators, enabling users to tune performance. Algorithmia provides

users with fine-grained access control for sharing and disseminating their con-

tributions. While many of Algorithmia’s capabilities overlap with DLHub, we

provide additional capabilities to enrich scientific ML, such as making models

citable, reusable, and deployable on existing research computing infrastructures.

Kubeflow <41> is a collection of open source ML services that can be

deployed to provide a fully-functional ML environment on a Kubernetes cluster.

The system simplifies the deployment of various ML tools and services, including

those to support model training, hyper-parameter tuning, and model serving.

Kubeflow also integrates Jupyter Notebooks to provide a user-friendly interface

to many of these services. Model serving in Kubeflow uses TensorFlow Serving,

so we have not included it in our summary table.

4. DLHub Architecture and Implementation

DLHub is a learning system that provides model publishing and serving

capabilities for scientific ML. DLHub’s model repository supports user-driven

publication, citation, discovery, and reuse of ML models from a wide range of

domains. It offers rich search capabilities to enable discovery of, and access to,

published models. DLHub automatically converts each published model into a

“servable”—an executable DLHub container that implements a standard execu-

tion interface and comprises a complete model package that includes the trained

model, model components (e.g., training weights, hyperparameters), and any

dependencies (e.g., system or Python packages). DLHub can then “serve” the

model by deploying and invoking one or more instances of the servable on exe-

cution site(s). DLHub provides high throughput and low-latency model serving

by dispatching tasks in parallel to the remote execution site(s). DLHub imple-

ments a flexible inference system, built upon the funcX distirbuted function as
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a service platform <19>, via which inference tasks can be executed on arbitrary

computing resources. The DLHub architecture, shown in Figure 2, comprises

two core components: the Management Service and Catalog and the distributed

inference execution system.

Endpoint N

REST

Model 
Repository

Model Publication

Model Search

Management Service funcX Service 

CLI SDK

Queue Map

...

Endpoint A

Endpoint B

Forwarders

A

B

N

...
Catalog Serving Sites

Figure 2: DLHub architecture. User requests, submitted via REST, SDK, or CLI (top),

can result in model publication to a catalog or the dispatch of serving requests to servables

deployed on any computing resources with a funcX endpoint (right).

4.1. Management Service and Catalog

DLHub’s Management Service is the user-facing interface to DLHub. It

enables users to publish models and query available models. The Management

Service includes functionality to build models and optimize task performance.

Model repository: The primary function of the Management Service is

to support the publication and discovery of models. DLHub defines a general

model schema that is used to describe all published models. The schema includes

standard publication metadata (e.g., creator, date, name, description) as well as

ML-specific metadata such as model type (e.g., Keras, TensorFlow) and input

and output data types. These metadata are registered with a search catalog to

enable flexible discovery.

Model discovery: DLHub’s discovery interface supports fine-grained, access-

controlled search across registered model metadata. It provides a rich search

model, in which model metadata can be queried using free text queries, partial
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matching, range queries, faceted search, and more through both the DLHub

CLI and SDK.

Model publication: In order to provide a common model execution inter-

face irrespective of model type, DLHub converts all published models into exe-

cutable servables. DLHub provides two publication pipelines for users to publish

models: either by directly uploading model components as well as descriptive

metadata for building the servable to the DLHub service, or importing from

a GitHub repository and uploading minimal DLHub-specific metadata (e.g.,

model type and entry point) defined in a DLHub-specific JSON file. In both

cases the servable is uploaded to the model repository and any user-supplied

metadata is registered alongside the servable location in the search index.

Implementation: DLHub supports several publication modes, for example,

a user can choose to 1) upload model components directly to DLHub; 2) specify

a remote location on an AWS S3 bucket or Globus endpoint; or 3) provide a

GitHub location for DLHub to clone. Irrespective of the publication mode,

the Management Service access, transfers, or downloads the published model

components and builds a servable in a DLHub-compatible format. DLHub first

uses repo2docker to build a base container environment, incorporating all user-

defined dependencies. It then uses the base container to build a servable by

adding DLHub-specific components and interfaces. DLHub uses Amazon Elastic

Container Registry as the servable repository. The metadata for each published

servable is indexed in a Globus Search catalog <42>. Globus Search is built

upon Elasticsearch, providing the flexibility to accommodate diverse scientific

metadata.

4.2. Model Descriptions

We have developed a metadata schema to describe published models and en-

code authorship, provenance, dependency, and interface metadata. Our schema

achieves two key goals: first, it enables model developers to describe the in-

formation necessary for others to use their model, such as its inputs, training

configuration, and outputs; and second, it encodes the “recipe” for DLHub to
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create, deploy, and serve the model.

The schema first encodes information necessary for humans to understand

and use a model (e.g., inputs/outputs). It must include the type of model (e.g.,

a TensorFlow model) and any configuration information that is required (e.g.,

the model’s weights file).

The model description also includes metadata needed for DLHub to con-

struct the servable. Specifically, it defines the computational environment, soft-

ware dependencies, and associated files necessary to create, deploy, and execute

a servable. When defining the environment and dependencies, a model devel-

oper can list the necessary Python packages, configuration files (e.g., a model’s

weights file or license information), or repo2docker <43> configuration files.

Implementation: The DLHub model description schema is publicly acces-

sible and builds upon prior work and standards. We use the DataCite <44>

metadata schema to describe provenance, ownership, references to associated

artifacts (e.g., code repositories, publications, and datasets), human-readable

descriptions of the model, and persistent identifiers.

DLHub provides tools to simplify the description process by automatically

extracting information from the environment (e.g., Python package versions)

and from the model implementation. For example, the DLHub tools can iden-

tify the types and shapes of a Keras model’s inputs/outputs that are stored

within the HDF5 model file. The DLHub SDK reads this information from the

HDF5 file, enabling the creation of a valid model definition in just three lines of

code. The DLHub SDK provides similar tools to help users generate DataCite-

compatible metadata, define the computational environment, and describe other

types of models.

4.3. Inference Execution System

DLHub coordinates the execution of inference tasks on remote resources.

This architecture focuses on high performance and low latency model inference

as well as flexiblity in terms of where inference tasks are executed. Specifi-

cally, DLHub allows researchers to execute inference tasks onKubernetes clus-
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ters, HPC resources, or clouds using various container technogies (e.g., Docker,

Singularity or Shifter), on edge devices, or even on their own execution resources

using any of these containerization mechanisms.

DLHub supports both synchronous and asynchronous task execution. In

asynchronous mode, the DLHub SDK returns a task UUID that can be used

subsequently to monitor the status of the task and retrieve its result.

Implementation: DLHub’s on-demand inference is built on the funcX plat-

form <20>. funcX is a distributed Function-as-a-Service (FaaS) platform in-

spired by the original DLHub model. We briefly describe funcX and outline

how it is used by DLHub.

funcX: funcX enables the managed execution of functions—snippets of

Python code—on arbitrary remote resources. Users can register and discover

functions through a cloud-hosted service and then execute those functions with

arbitrary input parameters on arbitrary endpoints. Where an endpoint abstracts

a specific compute resource, whether a single edge device or a supercomputer,

in a manner defined by the funcX agent software.

The funcX service implements a secure, low-latency task execution model

with hierarchical queues for reliability. Tasks are submitted to the funcX Web

service where they are queued for execution. A Python Forwarder process is

operated for each endpoint. The Forwarder retrieves tasks from the cloud-

hosted queues and transmits them to the endpoint via a secure, low-latency,

and reliable message communication channel. Once delivered to the endpoint,

tasks are internally queued until they can be scheduled for execution on the

resource. Results are returned via the same channel and deposited in a result

queue until they can be retrieved by the user. funcX uses a Redis store to

implement the cloud-based queues. Redis is an easy-to-scale, in-memory key-

value store. Each function execution request is stored in a Redis hashmap and

the task identifier is added to the endpoint’s queue. funcX uses ZeroMQ to

establish high performance communication channels between the forwarder and

endpoint.

Endpoints: A funcX endpoint is a logical representation of a computational
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resource. The corresponding funcX agent deployed on that resource implements

an API that allows the funcX service to dispatch functions for execution. The

agent handles authentication and authorization, provisioning of nodes on the

compute resource, transfer of function containers, staging of data, and moni-

toring and management. Administrators or users can deploy an endpoint agent

and register an endpoint for themselves and/or others, providing descriptive

(e.g., name, description) and execution (e.g., container technology, scheduler)

metadata. Each endpoint is assigned a unique identifier for subsequent use. The

funcX endpoint thus serves for computation a comparable role in the research

CI ecosystem to that served by the Globus endpoint for data.

The funcX agent uses the Parsl <45; 46> execution model to dynamically

acquire compute nodes, deploy servable containers, and execute functions on

those deployed containers. Parsl implements a modular execution model that

supports various common cluster and supercomputer schedulers as well as com-

mon cloud computing providers. In each case, it uses platform-specific mech-

anisms to requests nodes, deploy pilot job software, dispatch tasks to workers,

monitor progress, and report on results. On a Kubernetes cluster, for example,

the endpoint creates a Kubernetes Deployment consisting of n pods for each

servable that is to be executed, a number configurable in the Management Ser-

vice. The funcX agent then deploys worker engines in each servable container

which connect back to retrieve execution requests. The funcX agent dispatches

requests to the appropriate containers, load balancing them automatically across

the available pods.

DLHub and funcX: When a user publishes a model to DLHub, we create

and register a function with funcX and associate it with the DLHub servable

container. This allows funcX to deploy the servable on-demand to perform DL-

Hub invocations. When a user invokes a servable using DLHub the request is

routed to a DLHub-operated funcX endpoint. The funcX agent will then deploy

the servable and, once the servable is ready, deliver the request for execution.

The funcX agent is responsible for deploying and managing servables, monitor-

ing incoming requests from DLHub (via the funcX service), and then executing
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waiting tasks. The funcX agent can be deployed in Docker environments, Ku-

bernetes clusters, HPC resources via Singularity or Shifter, or locally via any of

these containerization mechanisms.

4.4. Security

DLHub implements a comprehensive security model to ensure that all oper-

ations are performed by authenticated and authorized users. DLHub’s security

model allows users to authenticate using one of hundreds of supported identity

providers (e.g., campus, ORCID, +Google). When authenticating, the Man-

agement Service first validates the user’s identity, and then retrieves short-term

access tokens that allow it to obtain profile information about the user, to ac-

cess/download data on their behalf, and to compute inference tasks on their

behalf. These capabilities allow DLHub to precomplete publication metadata

using profile information and also to transfer model components and inputs from

arbitrary locations.

DLHub relies on container technology to provide secure execution sandboxes

for inference isolation, ensuring inference tasks cannot interfere with other tasks

and can only access data and computing resources within the specified context.

For model reliability, DLHub stores hashes of published models to ensure the

integrity of models executed both within our serving infrastructures and when

deployed locally. However, this approach does not protect users against down-

loading models published maliciously. In this case, users must determine the

safety of the model by trusting the author or manually inspecting the servable

code before execution. Importantly, DLHub exposes the publisher’s authenti-

cated identity (in most cases an institution identity) and thus makes it simple

to verify the author. We are actively explore methods to further validate the

function of servables. We intend to encourage users to follow the Findable, Ac-

cessible, Interoperable, and Reusable (FAIR) principles <47> when they publish

their models to DLHub. We also aim to investigate developing a community-

driven governance system in which users can review and recommend servables.
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Implementation: DLHub uses Globus Auth <48> for authentication and

authorization. Globus Auth is a flexible identity and access management service

that is designed to broker authentication and authorization decisions between

users, identity providers, resource serves, and clients. The DLHub Management

Service is registered as a Globus Auth resource server with an associated scope

for programmatic invocation. funcX, and funcX endpoints, are also registered as

independent Globus Auth resource servers, enabling secure routing of inference

tasks to compute endpoints.

4.5. DLHub Interfaces

DLHub offers a REST API, a Python Software Development Kit (SDK),

and a Command Line Interface (CLI) for publishing, managing, and invoking

models.

The DLHub Python SDK supports programmatic construction of JSON

documents that specify publication and model-specific metadata that complies

with DLHub-required schemas. The SDK can then be used to publish the

model by uploading the JSON metadata documents. The SDK also supports

programmatic interactions with DLHub to discover, update, and invoke pub-

lished models.

The DLHub CLI provides an intuitive Git-like user interface to interact

with DLHub. It provides commands for initializing a DLHub servable in a local

directory, publishing the servable to DLHub, creating metadata using the SDK,

and invoking the published servable with input data.

5. Evaluation

To evaluate DLHub we conducted experiments to explore its serving per-

formance, the impacts of memoization and data batching, and scalability on

different compute resources. We also compared its serving performance against

TensorFlow Serving, Clipper, and SageMaker.
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5.1. Experimental Setup

Platforms. We deployed funcX endpoints on three different clusters: Theta <49>,

Cooley <50>, and PetrelKube <51> at Argonne National Laboratory. Theta

is a supercomputer with 4392 nodes, each containing a 64-core Intel Xeon Phi

“Knights Landing“ (KNL) processor, 16 GB MCDRAM, 192 GB of DDR4

RAM, and interconnected with high speed InfiBand. Cooley is a cluster de-

signed for data analysis. It has 126 computing nodes, each equipped with 12

CPU cores, one NVIDIA Tesla K80 dual-GPU, 384 GB RAM per node and

Infiniband interconnect. PetrelKube is a 14-node Kubernetes cluster, each con-

taining two E5-2670 CPUs, 128GB RAM, and 40GbE network interconnect.

Servables. We use six servables in our evaluation.

The first is a baseline “no-op” task that returns “hello world” when invoked.

The second is Google’s 22-layer Inception-v3 <52> model (“Inception”).

Inception is trained on a large academic dataset for image recognition and classi-

fies images into 1000 categories. Inception takes an image as input and outputs

the five most likely categories.

The third is a multi-layer convolutional neural network trained on CIFAR-

10 <53> (“CIFAR-10”). This common benchmark problem for image recog-

nition takes a 32×32 pixel RGB image as input and classifies it in 10 categories.

The final three servables are part of a workflow used to predict the stability of

a material given its elemental composition (e.g., NaCl). The model is split into

three servables: parsing a string with pymatgen <54> to extract the elemental

composition (“matminer util”), computing features from the element fractions

by using Matminer <55> (“matminer featurize”), and executing a scikit-

learn random forest model to predict stability (“matminer model”). The

model was trained with the features of Ward et al. <7> and data from the

Open Quantum Materials Database <56>.

We create both Singularity and Docker containers for all these six serv-

ables to be served on Theta (Singularity), Cooley (Singularity), and Kubernetes

(Docker).
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5.2. Experiments

To remove bias we disable DLHub memoization mechanisms and restrict

data batch size to one in the following experiments, except where otherwise

noted.

5.2.1. Latency

We study the latency imposed by each component in DLHub. To do so,

we deployed the “no-op” servable to a warmed container on the Cooley cluster,

and instrumented each system component to record start and finish times. Fig-

ure 3 shows the breakdown of total execution time at the funcX web service,

forwarder, endpoint, and worker, in addition to network transport times. We

see that of the total 72ms round-trip time, the “no-op” function spends a com-

bined 54ms across all system components, and 18ms traversing the network. We

observe that the overhead for executing the function on the worker is just 2ms.

A majority of the system latency is due to queuing and authorization calls at

the web service (37ms total), and when dispatching the servable request from

the endpoint to the worker (15ms total). This implies that the DLHub inference

execution system incurs minimal latencies.

Figure 3: Latency breakdown for no-op DLHub servable on Cooley cluster.

5.2.2. Memoization

DLHub implements memoization <57>, at the funcX endpoint, to cache

the inputs and outputs for each request and return the cached output for a

new request if its inputs are in the cache. While memoization is not necessarily

applicable to all ML models, we have found it useful in cases with repeated
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execution of deterministic models with the same arguments (e.g., content rec-

ommendation). To investigate the effect of memoization on serving performance

we submitted requests with the same inputs, with memoization enabled and dis-

abled. Figure 4 shows the total completion time of requests. We observe that

memoization reduces total completion time by 10–95%, as it removes the time

to compute the inference. The total completion time with memoization enabled

for different servables are relatively consistent (around 0.2–0.4s, primarily due

to network latencies and system overheads). The performance improvements

differ between models due to the variance of computation time and input size.

(a) Caching on Theta. (b) Caching on Cooley.

(c) Caching on PetrelKube.

Figure 4: Performance impact of memoization on Theta, Cooley, and PetrelKube. Bars and

error bars show mean and standard deviation.
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5.2.3. Batching

DLHub supports batching of requests to improve overall throughput by

amortizing system overheads and network latencies over many requests. To

study how performance varies with batch size we deployed funcX endpoints on

Theta, Cooley and PetrelKube and limited the number of deployed containers

of each servable to one. We then sent a batch of invocations to each servable

and increased the batch size (i.e., the number of invocations in a single query)

from 1 to 1024. Figure 5 shows the time per request versus the batch size. The

time per request is computed as the total completion time of a batch divided by

the batch size. We observe that all servables follow a similar trend: as the batch

size increases, the time per request decreases. This is because batching amor-

tizes system overheads and network latencies over many requests. The benefit

of batching starts to diminish as the batch size becomes large. This is because

the computation on each servable begins to dominate the total completion time.

Similarly, the computation using Theta KNL nodes is relatively slow, causing

the computation time to account for a greater percentage of the total comple-

tion time. The result is that batching is less beneficial on Theta than on other

platforms. In future work, we intend to develop servable profiles and to explore

adaptive batching algorithms that can intelligently distribute serving requests

to reduce latency.

5.2.4. Scalability

We evaluate the scalability of DLHub by sending inference requests to con-

nected funcX endpoints. We report only the scalability of the endpoints as the

other components are hosted on AWS services, which are known to be highly

scalable. We deployed funcX endpoints on Argonne’s Theta, Cooley, and Pe-

trelKube computers with varying numbers of containers for each of the six serv-

ables. We set 64 and 12 containers per node on Theta and Cooley, respectively.

On PetrelKube, Kubernetes will automatically manage the container deploy-

ment to nodes. We performed 1000 requests of each servable to the endpoints

directly and measured the completion time of all requests. Figure 6 shows the
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(a) Batching on Theta. (b) Batching on Cooley.

(c) Batching on PetrelKube.

Figure 5: Time per request versus batch size on Theta, Cooley, and PetrelKube.

results on different platforms.

Our results show that the endpoint can easily deploy hundreds of containers

for each servable. However, we also see that scalability is dependent on the serv-

able itself. For example, when serving Matminer-featurize requests, throughput

increases rapidly up to ∼32 containers, after which more containers have di-

minishing benefits and throughput is saturated, because task dispatch latencies

dominate execution time. As expected, servables that execute for shorter pe-

riods of time (e.g., Matminer-model) show less benefit as additional containers

are used, and vice versa.

5.2.5. Serving Comparison

We used CIFAR-10 and Inception to compare the serving performance of

TensorFlow Serving, SageMaker, Clipper, and DLHub when hosted on the Pe-

trelKube Kubernetes cluster For TensorFlow Serving, we export the trained

models and use the standard tensorflow model server. For SageMaker, we

24



(a) Scaling on Theta. (b) Scaling on Cooley.

(c) Scaling on PetrelKube.

Figure 6: Scalability performance.

use the SageMaker service to create the models before exporting the model as

a Docker container and deploy it as a Pod on PetrelKube. For Clipper, we use

its Kubernetes container manager to deploy it on PetrelKube and register the

CIFAR-10 and Inception models. For DLHub we use a funcX endpoint deployed

on PetrelKube. To standardize our measurements we remove network overheads

by submitting tasks directly to each platform and report the average time from

100 requests for each model and platform.

TensorFlow Serving provides two model serving APIs: REST and gRPC.

SageMaker also supports serving TensorFlow models through TensorFlow Serv-

ing or its native Flask framework. In our experiments, we explore all possible

APIs and frameworks, i.e., TFServing-REST, TFServing-gRPC, SageMaker-

TFServing-REST, SageMaker-TFServing-gRPC, SageMaker-Flask. In addition,

as Clipper supports caching, we evaluate it with and without caching.

Figure 7 shows the invocation times of CIFAR-10 and Inception using each

serving system. We see that the servables invoked through the TensorFlow
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Serving framework (i.e., TFServing-gRPC, TFServing-REST and SageMaker-

TFServing) outperform those using other serving systems (SageMaker-Flask

and DLHub). This is because the core tensorflow model server, implemented in

C++, outperforms Python-based systems. gRPC leads to slightly better perfor-

mance than REST due to the overhead of the HTTP protocol. Clipper performs

similarly to other systems when caching is enabled. The clipper caching model

maintains a cache at the query frontend (on a PetrelKube pod) and therefore

performance is not significantly better than other systems as it requires that

the request be transmitted to the query frontend. DLHub’s performance is

comparable to the other Python-based serving infrastructures.

Figure 7: Performance of different serving systems on the Inception and CIFAR-10 problems.

6. Case Studies

To illustrate the value of DLHub we briefly outline five case studies that

exemplify early adoption of the system.

6.1. Publication of Cancer Research Models

The Cancer Distributed Learning Environment (CANDLE) project <58>

leverages leadership scale computing resources to address problems relevant to
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cancer research at different biological scales, specifically problems at the molec-

ular, cellular, and population scales. CANDLE uses DLHub to securely share

and serve a set of deep learning models and benchmarks using cellular level data

to predict drug response based on molecular features of tumor cells and drug

descriptors. As the models are still in development, they require substantial

testing and verification by a subset of selected users prior to their general re-

lease. DLHub supports this use case by providing model sharing and discovery

with fine grain access control. Thus, only permitted users can discover and in-

voke the models through the platform. Once models are determined suitable for

general release, the access control on the model can be updated within DLHub

to make them publicly available.

6.2. Enriching Materials Datasets

The Materials Data Facility <35; 59> (MDF) is a set of data services de-

veloped to enable data publication and data discovery in the materials science

community. MDF allows researchers to distribute their data, which may be

large or heterogeneous, and rapidly find, retrieve, and combine the contents of

datasets indexed from across the community. MDF leverages several models

published in DLHub to add value to datasets as they are ingested. When a

new dataset is registered with MDF, automated workflows <42> are applied to

trigger the invocation of relevant models to analyze the dataset and generate

additional metadata. MDF extracts and associates fine-grained type informa-

tion with each dataset which are closely aligned with the applicable input types

described for each DLHub model.

6.3. Quality Control for SEM Images

DLHub is used by researchers studying the neuroanatomical structure of

brains with a scanning electron microscope (SEM). Scientists produce films of

thin brain slices and use the SEM to obtain images of the slices. A key limita-

tion is the lack of built-in quality control mechanisms, and thus it is difficult to

determine if the collected image is of suitable quality to be used in subsequent
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stitching and segmentation processes. These scientists use a set of models pub-

lished in DLHub to automatically identify low quality images. Specifically they

use five different focus detection models, and apply an ensemble methodology

to determine if the image is of suitable quality.

6.4. X-Ray Tomography with Generative Adversarial Networks

X-ray computed tomography is a common imaging modality used at syn-

chrotrons to understand the structure of materials. To avoid damaging sam-

ples, low-dose imaging with short exposure times are often used. Unfortunately,

low-dose imaging can result in noisy measurements and low quality images.

TomoGAN applies a Generative Adversarial Network (GAN) approach to im-

prove the quality of 3D tomography images by reducing noise and eliminating

artifacts. TomoGAN, a TensorFlow model, was easily published in DLHub by

ingesting the SavedModel directory and generating a DLHub model description.

The published TomoGAN model can be used by tomography researchers to pro-

cess images uploaded via HTTPS. The resulting, denoised images are returned

in a matter of minutes. The elastic scalability of DLHub allows researchers to

trivially parallelize evaluation of each tomography frame. We are working with

researchers to make the published model part of their research workflow.

6.5. Predicting Formation Enthalpy

DLHub makes it easy to link models plus pre- and post-processing transfor-

mations in pipelines to simplify the user experience. For example, a pipeline

for predicting formation enthalpy from a material composition (e.g., SiO2) can

be organized into three steps: 1) conversion of material composition text into

a Python object; 2) creation of a set of features, via matminer <55>, using

the Python object as input; and 3) prediction of formation enthalpy using the

matminer features as input. Once the pipeline is defined, the end user sees a

simplified interface that allows them to input a material composition and receive

a formation enthalpy. This and other more complex pipelines are defined as a

series of modularized DLHub servables. Defining these steps as a pipeline allows
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data to be automatically passed between each servable, enabling execution to

be performed server-side, drastically lowering both the latency and user burden

to analyze inputs.

6.6. Evaluation

We have evaluated the invocation time and scalability of DLHub for each

use case on PetrelKube. Figure 8 shows the distribution of invocation time

for each use case, where x axis shows the invocation time and y axis shows

the distribution of invocation time (computed by the number of occurrences

divided by the total number of invocations). We see that each servable can

be rapidly used with short execution times and that the distributions of the

invocation times for all use cases except SEM are within a three-second range

and relatively stable. The SEM use case exhibits a wider distribution than

the other use cases due to variable network performance when downloading the

input image to the container.

Figure 9 shows the scalability of each use case. We measured the completion

times for 1000 concurrent invocations versus varying number of workers, for each

of the five use cases with DLHub. We see that DLHub can scale each servable

to more than 200 containers and that throughput is significantly increased in

each case. We note that the benefit of scaling Formation and CANDLE use

cases begins to diminish when using more than 200 containers. This is primar-

ily because the constant system overheads (e.g., network and task dispatching

latencies) start to dominate the completion times of Formation and CANDLE,

as DLHub continues to scale. MDF presents a flatter trend than the other use

cases due to the input data being downloaded from a single source and our

experiments saturating the network connection.

6.7. Discussion

We briefly discuss the lessons learned by using DLHub in these five use

cases. Prior to using DLHub, these use cases required a substantial amount

of human effort to manually manage model versions, publish and share models
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Figure 8: Distribution (computed by the number of occurrences divided by the total number

of invocations) of invocation times for 100 invocations, for each of the five use cases with

DLHub.

with others, deploy complex software environments on distributed computing

resources, and reliably deploy models for real-time inferences at scale.

DLHub provides several benefits: First, DLHub manages different versions

of the same model, removing challenges associated with tracking model versions

and using incorrect versions. A key side effect of this is that researchers are

able to deploy new versions of their models and compare the performance to

any of the previously published versions. Second, DLHub’s on-demand infer-

ence system abstracts the complexity of deploying models at different computing

resources and enables researchers to easily deploy their models at scale, with-

out requiring expert knowledge of batch submission interfaces and computing

architectures. Finally, the containerization of models allows researchers to se-

curely share models with others, removing the burden of porting models and

environments to other locations.

7. Conclusion

The broad adoption of ML in science has necessitates the development of

new learning systems to meet the unique requirements of science use cases. We

have described one such learning system, DLHub, that is designed to address in-

efficiencies in two important phases of the ML lifecycle, namely the publication

and serving of ML models plus associated data. DLHub’s flexible publication
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Figure 9: Completion times for 1000 concurrent invocations versus varying number of workers,

for each of the five use cases with DLHub.

and sharing capabilities enable researchers to deposit and describe models us-

ing a common metadata schema to enable discovery. It also enables association

of a persistent identifier for citation of published models. DLHub’s scalable

and low-latency model serving infrastructure enables the remote execution of

containerized models on arbitrary computing resources. We showed that DL-

Hub performs comparably with other serving platforms on Kubernetes clusters,

while also enabling execution on clouds and clusters. We also showed that its

memoization and batching optimizations can significantly improve serving per-

formance.
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