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Abstract

Much experience has been gained with the 

protocols and mechanisms needed for discovery and 

allocation of remote computational resources. 

However, the preparation of a remote computer for 

use by a distributed application also requires the 

creation of an appropriate execution environment, 

which remains an ad hoc and often clumsy process. 

We propose here a codification of the interactions 

required to negotiate the creation of new execution 

environments. In brief, we model dynamic virtual 

environments (DVEs) as first-class entities in a 

distributed environment, with Grid service interfaces 

defined to negotiate creation, monitor properties, 

and manage lifetime. We also show how such DVEs 

can be implemented in a variety of technologies—

sandboxes, virtual machines, or simply Unix 

accounts—and evaluate costs associated with these 

different approaches. DVEs provide a basis for both 

customization of a remote computer to meet user 

needs and also enforcement of resource usage and 

security policies. They can also simplify the 

administration of virtual organizations (VOs), by 

allowing new environments to be created 

automatically, subject to local and VO policy. Thus, 

DVEs have the potential to relieve much of the 

current administrative burden involved in providing 

and using Grid resources. 

1 Introduction

The dynamic acquisition and use of remote 

computers requires policy-driven resource 

management mechanisms that can establish new 

computational environments without human 

intervention [1]. Grid technologies such as the 

GRAM remote access protocol [2], single-sign-on 

[3], and agreement negotiation [4] are significant 

steps towards this goal. However, the problem of 

establishing and managing execution environments 

on remote computers remains. The common 

approach of using static user accounts has high 

administrative costs and creates environments that do 

not reflect dynamically changing policies, allow for 

customized execution environments, or provide QoS 

enforcement capabilities. Experiments show that 

virtual machine technology [5-8] can be used to 

address some of these issues, but no standardized 

mechanisms have been defined for interacting with 

such virtual machines.  

We believe that the solution to these problems is 

to introduce abstractions, protocols, and tools that 

allow remote execution environments to be created 

and managed as first-class entities. Thus, users will 

be able to negotiate the creation of new execution 

environments, administrators will be able to specify 

the policies that govern their use, and various entities 

can be authorized for monitoring and management. 

We expect that in implementing such ideas, we can 

exploit recent advances in virtual machine and 

sandbox technologies.  

These observations motivate the work presented 

in this article, which comprises three distinct but 

interrelated thrusts. 

First, we show how dynamic virtual environments 

(DVEs) can be modeled as Grid services, thus 

allowing a client to create, configure, and manage 

remote execution environments using common 

protocols. 

Second, we show how such DVEs can be 

implemented via a variety of technologies, including 

dynamic accounts and virtual machines, to obtain 

access to a range of virtualization and resource 

management functions. We also examine how DVEs 

can be implemented within the context of a particular 

Grid middleware framework, Globus Toolkit 3 

(GT3).

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04) 
1550-5510/04 $ 20.00 IEEE 



Third, we present an experimental evaluation of 

various DVE implementation technologies. Our 

results allow us to evaluate the impact of technology 

choices both in quantitative terms (e.g., 

computational costs and resource usage) and also 

respect to other qualitative concerns that arise in Grid 

contexts.  

The dynamic creation of remote environments as 

user accounts has been previously investigated [9-

13], as has the use of virtual machines to model 

virtual resources [8, 14, 15]. Our work is 

distinguished by its focus on creating, configuring 

and managing execution environments as first class 

entities, that can be implemented via different 

technologies as dictated by the needs of sites and 

organizations. 

2 Dynamic Virtual Environments 

We speak first to the DVE abstraction, its 

representation in terms of Grid service interfaces, and 

our prototype implementation within GT3. 

Our goal in introducing the DVE abstraction is to 

codify the interactions required for a client to create, 

monitor, manage, and ultimately destroy a remote 

execution environment. Our approach is to model 

individual DVEs as stateful Web services [16] (in 

OGSI [17], our focus here) or, as we shall consider in 

future work, as WS-Resources [18]. We adopt 

OGSI/WSRF because DVE management operations 

map conveniently to OGSI/WSRF mechanisms. In 

particular, OGSI/WSRF lifetime management 

mechanisms can be used to manage the creation and 

destruction of DVEs, and OGSI/WSRF state 

representation and inspection mechanisms can be 

used to provide access to descriptions of DVE 

properties such as quality of protection, resource 

limits, and configuration. 

2.1 Creating Dynamic Virtual Environments 

DVEs are represented as Grid services and 

created by DVE factories. As shown in Figure 1, a 

factory first authorizes the request to create a DVE 

with the requested properties. An authorization 

failure results in an exception. On success, the 

factory performs the following actions: (1) creates a 

DVE Grid service, (2) initializes its implementation 

(this could for example involve creating a Unix 

account or a new J2EE container) and sets its 

properties (such as its termination time), and (3) 

records access and other usage policy for the newly 

created DVE. As a result of the creation process a 

Grid service handle (GSH) representing the newly 

created DVE is returned to the client.

DVE creation, configuration, and deployment 

should in principle be separate. However, in our 

current prototype DVEs are configured and deployed 

at creation time. The creation process is securely 

logged to allow for audit.  

DVE termination is managed via the use of OGSI 

lifetime management mechanisms, which allow the 

user to request both explicit destruction and implicit 

(soft-state, or lifetime based) termination. 

Termination involves cleaning up the state associated 

with this DVE: policies may be revoked and 

information relevant to DVE erased. Termination 

might involve deleting (or returning to a pool) a 

dynamically created account or virtual machine. 

2.2 Dynamic Virtual Environment Services

The DVEService is a Grid interface to a transient, 

dynamically created execution environment. 

DVEService shares the properties of any other Grid 

service: it is identified by a handle, subject to soft-

state lifetime management, and exposes its properties 

(such as the disk space or memory associated with 

the environment, and/or installed software) through 

Service Data Elements (SDEs). The interface allows 

the client to manage the DVE, by for example 

extending its original termination time, requesting 

more disk space, or installing software. These 

requests are authorized in the context of credentials 

that may be dynamically granted and adjusted [19].  

2.3 DVEs and Grid Resource Management

The process of job submission against a DVE is 

illustrated in Figure 1:  

1. The client sends a request for DVE creation to 

the factory. The request may include the 

properties and lifetime of the DVE, as well as 

the client’s credentials. 

2. The factory authorizes the request. If the client is 

not authorized to create the environment as 

requested, an exception is thrown. Otherwise, a 

DVE service is instantiated. 

3. At instantiation, the DVE service creates an 

execution environment in an implementation-

dependent way. New policy is recorded allowing 

or restricting access and management of the 

newly created environment.  

4. A handle to the DVE service is returned to the 

client. 
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5. At any time during the DVE lifetime, authorized 

clients may inspect or manage its properties.  

6. At any time during the DVE lifetime, authorized 

clients may perform operations on the DVE (for 

example, request execution of programs) as 

authorized by the associated access policy. 

7. When the DVE service is destroyed, all 

associated state is deleted.

Figure 1: Interactions of DVEs with Grid resource 

management: the policy evaluation points (PEP) 

authorize client’s requests. 

2.4 Implementation of DVEs within GT3 

Creating an execution environment on a remote 

host is a sensitive operation requiring special 

privileges; it is therefore critical that it should be 

carried out securely. In our implementation the 

execution environment is created by the DVE service 

running under a reserved Unix account (called 

globus). The creation request (as well as management 

requests on the DVE service) is authorized by an 

application-specific authorization based on the 

requestor’s Grid credential and a callout to an access 

control list. The DVE service then uses a setuid 

program, executable only by globus, that validates its 

arguments and refuses to undertake any actions 

contrary to a predefined policy (for example, only 

accounts within a prespecified UID range may be 

created and destroyed), thus limiting risk to other 

accounts on the system should the globus account be 

compromised. 

The access policy to the execution environment is 

recorded in the GT3 gridmapfile. Although more 

complex policies are envisioned, in the current 

implementation the policy simply gives the right to 

use the environment to the Grid entity that created it. 

For the purposes of audit, the creation process is 

securely logged using the GT3 logging mechanism. 

DVE termination implies that the entire DVE 

state is cleaned in an implementation-specific way. In 

addition, any state associated with the Grid 

infrastructure has to be cleaned. We remove access 

policies from the gridmapfile, and clear entries from 

the GT3 port mapping file which assists in hosting 

environment restoration in case it was not cleanly 

shut down. This eliminates attempts to recreate the 

environment for nonexistent (or worse yet, different) 

user.

In order to integrate DVEs with the GT3’s Grid 

Resource Management System (GRAM) [2], we 

extended the GRAM protocol to include a handle to a 

specific DVE with the description of remote actions 

to be performed. For backward compatibility, if the 

handle is not presented, then the first relevant 

mapping in the gridmapfile is used. We also changed 

its implementation to integrate DVE access policies 

into its authorization mechanism.  

Introducing DVEs splits the process of job 

submission into two phases: creation and deployment 

of a DVE and job submission against that 

environment. While creation of a DVE simply 

replaces the process of obtaining an user account, it 

can still be seen as complex by users who are 

interested in executing things quickly on new 

resources. For this reason, we have also provided a 

simplified job submission facility in which the user 

delegates its credentials to GRAM which then 

automatically obtains an execution environment for 

the user, executes the request, and terminates the 

environment. Since the DVE is destroyed, this 

mechanism does not allow the user to preserve state 

between different executions but provides a 

significant simplification. 

3 DVE Implementations 

We expect that the DVE implementations will be 

chosen based on the security, performance, cost and 

flexibility requirements of different sites. We have 

investigated a range of different options and decided 

to focus on a group of implementations meeting the 

following criteria: 

Generality: in order to accommodate the largest 

possible set of codes, the implementation should 

be generic rather than focused on a specific 

technology or language (such as the Java Virtual 

Machine (JVM) [20] for example).  

Non-invasive: while techniques such as software 

fault isolation [21, 22], and proof-carrying code 

[22] are viable options for DVE implementation 

they require the system to modifying binary or 

source of application code which may not be 

acceptable to some Grid users. 
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Protection: the DVE implementation should 

provide suitable levels of protection between 

users (not allowing users read each other’s files 

for example) as well as between the user and 

resource (not allowing a user to gain superuser 

privileges on a resource) 

Enforcement: an implementation should offer a 

range of enforcement options, i.e., allow 

enforcing disk quotas or CPU share. 

State: the ability to preserve state associated with 

a specific environment, ranging from 

environment settings to execution state, is an 

important option of execution environments 

especially if we consider migrating them 

between resources.

Given these criteria, our exploration of 

technologies focused on three kinds of technologies: 

Unix accounts, sandboxes and virtual machines. 

Sandboxes provide secure environments restricting 

executing code to a certain protection environment. 

Kernel-level sandboxes [23, 24] are efficient, but are 

possible only where the kernel is available for 

modification and require sites to run a custom 

installation of the operating system. User-level 

sandboxes [25, 26] rely on finding a way to prevent 

the user from bypassing the interception mechanism 

which is typically expensive (on the order of 40% for 

ptrace-based systems [27]). For our evaluation, we 

selected the VServer technology [7] using kernel-

level modifications (also used by PlanetLab [15]). 

Unlike a sandbox which strives only to confine a 

user’s activity on a given machine to a limited subset 

of a resource, a virtual machine (VM) provides an 

abstraction of the physical system itself so that 

multiple operating system can coexist on the actual 

machine sharing its resources. In our original 

experiments, we started out with User Mode Linux 

(UML) [28] but encountered difficulties running 

certain Java software packages. VMware [5] proved 

a more reliable choice.  

The sections below contain a description of the 

implementation of the DVEs for each of the three 

local enforcement vehicle used: Unix accounts, 

VServer, and VMware. The implementation aspects 

include environment creation/deployment, 

destruction, and the management aspects specific to 

each technology. Another common feature of interest 

is how a Grid coordination entity on a given machine 

(such as a local GRAM installation needed to start 

jobs) can interact with those implementations (for 

example: start a user hosting environment). Although 

we currently deploy DVEs on creation, we also 

investigated capability of a technology for preserving 

state to accommodate cases where a DVE could be 

redeployed in a different setting. 

3.1 Unix Accounts as DVE Implementation 

Unix accounts [9-13] can be created dynamically 

using standard systems tools, or allocated from a pool 

of pre-generated accounts. The former approach has 

the advantage that accounts can be flexibly created 

based on need, but requires a secure process for 

account creation. In addition, depending on the 

mechanism used, the implementation needs to be 

careful to respect the assumptions of a local account 

management system. Pre-generating accounts is 

limited in the number of users this method can 

service. Using either method, we want to avoid 

mapping two different Grid identities to the same 

local account in order to avoid problems of audit. 

In our current implementation, we create accounts 

on the fly by modifying the system password file. We 

could also update a NIS/YP password database to 

create accounts valid across a cluster. To destroy an 

account, all processes running under the account are 

killed, all files associated with the account are erased, 

and then the corresponding entry is removed from the 

password file. In order to avoid the need for a system 

sweep every time an account is destroyed, accounts 

are created with limited write privileges.  

The enforcement capabilities offered by standard 

Unix tools are limited. Disk space usage can be 

enforced dynamically by using the quota command. 

In addition, chroot restricts a user to a subtree of 

the host filesystem which can be useful if we want to 

restrict the account to its home directory. The 

setrlimit system call is available for setting more 

fine-grain limits on maximum CPU time, file size, 

memory usage and number of open files and 

processes, but few operating systems fully enforce 

the limits.  

The static user state for a Unix account is 

relatively easy to manage: files belonging to a certain 

account (including symbolic links) can be stored in a 

designated place. The management of execution state 

would require further support from the local system 

in the form of checkpointing procedures.  

3.2 VServer as DVE Implementation 

VServer [7] provides Linux kernel-based virtual 

servers via the addition of security contexts to the 

kernel, a small number of new system calls, and 

management utilities. Inside a VServer security 

context, processes can only see other processes in the 
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same context, superuser capabilities are restricted, 

filesystem access may be confined to a subtree of the 

server’s filesystem, and networking and interprocess 

communication can also be restricted. 

Creating a new VServer DVE involves creating a 

root filesystem for the VServer. To do that, a copy of 

a precreated minimal filesystem (containing GT3 and 

supporting software and libraries) is made. To reduce 

disk space usage (as well as copy time), hard links 

are used rather than a true copy, and file attributes are 

set such that a user (including “root”) in one VServer 

cannot modify files shared by other VServers. 

However, with the immutable attribute set, not only 

can a file not be modified, but it cannot be removed 

and replaced with a modifiable copy, either. To 

remedy this, the VServer kernel patch introduces a 

new attribute bit, immutable-linkage-invert, which 

when set allows immutable files to be unlinked, so 

that VServer users may remove and replace files 

within their own filesystem tree without affecting 

other VServers. Once the VServer root filesystem is 

ready, it can be activated by establishing a 

corresponding new security context, and launching 

the user hosting environment inside that context. To 

destroy a VServer environment, all processes running 

in the associated security context are terminated, and 

the corresponding filesystem tree is deleted. 

Since all processes associated with a VServer 

environment share a unique security context ID, the 

kernel scheduler could potentially be modified to 

enforce per-environment CPU utilization limits. The 

current implementation simply prevents one VServer 

from starving another, but could be extended. 

Likewise, the possibility exists for adding per-

environment memory usage enforcement. Per-

environment disk usage is enforced via per-context 

quotas, an extension of standard user/group quotas. 

Optionally, network usage is restricted by binding 

environments to separate IP addresses and then using 

the Linux kernel firewalling and traffic shaping 

capabilities exactly as for the VMware DVE 

implementation. 

VServer does not provide capabilities for state 

management beyond that provided by a Unix 

account. 

3.3 VMware as DVE Implementation 

VMware [5] is a commercial virtual machine 

implementation available in server and workstation 

versions. For our evaluation we used the workstation 

version. Physically, the VMware virtual machine 

consists of a directory on the host containing a set of 

files, including VM configuration information and 

virtual disk image(s).  

In order to avoid repeating installation 

information for each DVE creation, we precreated a 

“master” VMware virtual disk, with a minimal Linux 

and GT3 installation, which is then used by the 

individual sessions. The VM-based DVE is activated 

by a launching script similar to the one used in the 

Unix account implementation. Inside the VM, at the 

end of the boot sequence, the user hosting 

environment is then created. Its creation is 

complicated by the fact that command-line arguments 

required by the hosting environment for initialization 

can no longer be passed to it directly from the 

launching script, because the launching script and 

hosting environment are running on two separate 

machines. For reasons of simplicity, we 

circumvented this problem by passing the 

information covertly (by encoding information in the 

MAC address of the virtual machine, which is 

modifiable), although implementing a DHCP-like 

discovery service would provide a more elegant 

solution.  

The deactivation process is complicated by the 

fact that VMware Workstation provides no published 

interface for shutting down a particular VM from the 

host. Our workaround was to run a shutdown service 

inside the VM, which the host could then contact to 

shut down the VM. This works as long as the user 

owning the VM does not have root access inside the 

VM (otherwise he could kill the shutdown service). 

Once the VM is no longer running, a DVE may be 

destroyed by deleting the directory on the host 

containing the files corresponding to the VM. 

VMware provides only static enforcement of 

memory and disk usage. VMware workstation also 

does not support any capability for CPU 

management. (This capability is supported by 

VMware ESX Server.) If multiple virtual machines 

are used, VMware can be configured to use 

NAT/bridged network Since each VM has its own 

virtual MAC and IP address, the host can do full 

firewalling and traffic shaping per-VM (for the Linux 

capabilities, see [29]). In this setting difficulties arise 

due to the fact that the VM’s private IP address 

and/or port number may be exposed at a higher level 

in the network protocol stack (for example as part of 

the Grid Service Handle (GSH)), which standard 

NAT cannot handle. We managed to deal with them 

to some extent through careful configuration of the 

toolkit.  

Finally, while VMware does implement a 

promising solution for user state preservation and 

restoration, we were unfortunately not able to take 
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advantage of it because the product does not expose a 

protocol for accessing it but exposes it only through a 

Graphical User Interface (GUI).

4 Comparison

In addition to qualitative comparison of different 

implementations, we conducted a quantitative 

analysis estimating the impact of different 

implementations on the user programs run within 

those environments as well as their efficiency of 

resource usage. We conducted our evaluation on a 

Pentium 4 3.0 GHz machine with 1 GB RAM, 

running Red Hat Linux 9.0 (kernel 2.4.22, gcc 3.2.2) 

and Globus Toolkit 3.0.2. We implemented DSVs 

using Linux accounts, VServer 0.26, and VMware 

Workstation 4.0.5. 

We first estimated the impact on the performance 

using as benchmark a scientific compute-intensive 

application called EFIT [30] representative of the 

needs of one of the experimental communities using 

Grids. The application is mostly CPU-bound with 

minimal access to disk.  
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Figure 2: Comparison of different EFIT runs 

executing directly on Unix, under VServer and 

VMware. The times on Y axis are normalized to the 

Unix run. 

The results summarized in Figure 2 show 

execution times directly over the operating system, 

under VServer, and under VMware. Each grouping 

represents runs for different dataset and application 

configurations. For each run, the data shows the 

mean of five runs per selected data set, normalized to 

the execution time directly on the operating system. 

The runs took approximately 100 sec each, with 

standard deviations between 0.2 sec and 1.2 sec. 

VMware runs took 6% longer; there was no 

statistically significant difference between direct 

operating system runs and VServer runs. The time 

shown includes the application execution time only, 

as measured via the gettimeofday() system call, and 

does not include DVE creation times. The 

measurements confirm the result presented in [8]; the 

performance impact of the selected enforcement 

technologies on compute bound applications is 

relatively small.  

We next compared create/destroy times for the 

different technologies as shown in Table 1. 

Measurements do not include time taken to invoke 

the factory service, which is independent of the 

implementation type, but simply represents the time 

elapsed for the implementation-specific callout for 

environment creation (as measured within 

theservice).

Table 1: DVE create/destroy times 

 Linux VServer VMware 

Create 100 ms 360 ms 14-52 sec 

Destroy 70 ms 200 ms 3-38 sec 

Creating both VServer and VMware DVEs 

involves creating a new file system root. Our file 

system size was just under 300 MB, including: (1) 

minimal Red Hat 9.0 (with stripped-down /bin, /dev, 

/etc, /lib, /proc, /sbin, /var): 14,636 KB, (2) Perl 5.6.1 

(used by GT3 job execution components): 29,728 

KB, (3) Java 2 Runtime Environment 1.4.2: 60,320 

KB, and (4) Globus Toolkit 3.0.2: 188,408 KB. 

Because VServer uses a copy-on-write technique, 

environment creation time as compared to that of 

VMware is drastically reduced. Another interesting 

measure is the overhead used by these technologies, 

in other words, a measure of how efficiently they use 

the resource. The results are summarized in Table 2. 

For VServer, there is in fact a very small amount 

of memory and CPU overhead resulting from the 

VServer kernel modifications: the kernel must track 

which security context a process is associated with, 

and incurs slight overhead in checking the security 

context inside relevant system calls. However, this 

overhead was sufficiently small as to not show up in 

our measurements, and is therefore listed as 

negligible. While both technologies induce some 

overhead of resource usage, for VMware this 

overhead is significantly larger.

   Table 3 summarizes the qualitative differences 

among the different technologies. Both VServer and 

VMware offer substantial improvement over plain 

accounts in terms of protection and sharing. VServer 

allows the creation of separate security contexts 

which restrict user privileges but allow for sharing of 

files. However, all contexts still share the same 

kernel. VMware allows each execution environment 

to run its own kernel. This requires repeating all 

required software installations for each VM running 

on the machine: an inconvenience compounded by 

potential licensing issues. VServer offers dynamic 

enforcement capabilities (or potential of such  
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capabilities), VMware has only limited static 

enforcement capabilities. This however is not the 

case for other virtual machine technologies [6]. 

Although VServer presents a more lightweight 

solution in terms of performance, its impact, at least 

in our experience, is not significant and can be 

expected to decrease as the technology improves. To 

balance this, virtual machines offer the potential for 

better user state management, which could have 

significant benefits for implementing migration in the 

Grid environment.  

5 Conclusions

We strongly believe that in order to become 

successful Grids will need the ability to create and 

manage remote execution environments dynamically 

and effortlessly. Rather than imposing one 

implementation, these environments should be able 

to rely on a mix of technologies as acceptable to site 

administrators, users and suitable for specific 

problems. Different implementations will provide 

different functionality ranging from a simple 

execution environment to a high degree of 

customization (including running the required 

operating system kernel on any resource possible 

through the agency of true virtual machines). 

Different implementations entail different trade-offs 

in terms of efficiency, cost, configurability, quality of 

protection and other characteristics as discussed 

above.

Our exploration of three such implementations 

shows that all are roughly acceptable from the point 

of view of efficiency for a Grid application without 

strong I/O demands. All have shortcomings in the 

area of QoS enforcement, but those could potentially 

be fixed by similar technologies or more advanced 

versions of the same software. The issue of sharing 

between the environments presents an interesting 

trade-off: on one hand virtual machines allow users 

to customize their environments once and then port 

them across different machines, on the other this 

practice will lead to bulky installations and potential 

duplication of much of the software on one real 

resource. In those cases, software allowing sharing 

between environments, such as VServer, can lead to 

more lightweight solutions, but dependent on a 

shared infrastructure maintained on a resource by, for 

example, the VO. 

Finally, it is clear that some of the current 

execution environment examples were not designed 

with Grids in mind (the lack of exposed protocols in 

VMware workstation is an example). While more 

research is necessary in order to fully determine the 

requirements for an ideal sandbox implementation to 

put in the Grid playground, the Grid technologies 

themselves will also have to change. The widespread 

use of remotely created virtual environments, if 

successful, will shift trust from the account screening 

process typically applied by the resource owner to 

screening process implemented by a virtual 

Table 2: Resource overheads (over Linux) of DVE implementations 

 VServer VMware 

Disk overhead Small: approximately 0.5% Large: 150% - 200% 

Memory overhead Negligible Large: 24MB + 1 MB per 32 MB memory allocated per 

VM 

CPU overhead Negligible Depends on application characteristics (5% and up) 

Network overhead Only when restricting 

access

Yes: depends on network configuration 

Table 3: Enforcement capabilities of selected DVE implementations 

 Unix account VServer VMware 

CPU usage (seconds) Via setrlimit() Not at present, but could be added Not enforced 

CPU usage (percent) Not enforced Limited: no VServer can starve 

another 

Not in VMware Workstation, 

but enforced in VMware Server 

Disk space usage Dynamically 

(per-user quotas) 

Dynamically (per-context quotas) Statically (virtual disks) 

Memory usage No Not at present, but could be added Statically 

Network usage No Dynamically (binding contexts to 

specific IP addresses) 

Dynamically (via VM 

configuration and host firewall) 
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organization which will thereby acquire more 

importance as well as responsibility.  
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