
From Sandbox to Playground: Dynamic Virtual Environments in the Grid

Katarzyna Keahey

Argonne National Lab

Argonne, IL

keahey@mcs.anl.gov

Karl Doering

University of California

 Riverside, CA

 kdoering@cs.ucr.edu

 Ian Foster

Argonne National Lab

Argonne, IL

foster@mcs.anl.gov

Abstract

Much experience has been gained with the

protocols and mechanisms needed for discovery and

allocation of remote computational resources.

However, the preparation of a remote computer for

use by a distributed application also requires the

creation of an appropriate execution environment,

which remains an ad hoc and often clumsy process.

We propose here a codification of the interactions

required to negotiate the creation of new execution

environments. In brief, we model dynamic virtual

environments (DVEs) as first-class entities in a

distributed environment, with Grid service interfaces

defined to negotiate creation, monitor properties,

and manage lifetime. We also show how such DVEs

can be implemented in a variety of technologies—

sandboxes, virtual machines, or simply Unix

accounts—and evaluate costs associated with these

different approaches. DVEs provide a basis for both

customization of a remote computer to meet user

needs and also enforcement of resource usage and

security policies. They can also simplify the

administration of virtual organizations (VOs), by

allowing new environments to be created

automatically, subject to local and VO policy. Thus,

DVEs have the potential to relieve much of the

current administrative burden involved in providing

and using Grid resources.

1 Introduction

The dynamic acquisition and use of remote

computers requires policy-driven resource

management mechanisms that can establish new

computational environments without human

intervention [1]. Grid technologies such as the

GRAM remote access protocol [2], single-sign-on

[3], and agreement negotiation [4] are significant

steps towards this goal. However, the problem of

establishing and managing execution environments

on remote computers remains. The common

approach of using static user accounts has high

administrative costs and creates environments that do

not reflect dynamically changing policies, allow for

customized execution environments, or provide QoS

enforcement capabilities. Experiments show that

virtual machine technology [5-8] can be used to

address some of these issues, but no standardized

mechanisms have been defined for interacting with

such virtual machines.

We believe that the solution to these problems is

to introduce abstractions, protocols, and tools that

allow remote execution environments to be created

and managed as first-class entities. Thus, users will

be able to negotiate the creation of new execution

environments, administrators will be able to specify

the policies that govern their use, and various entities

can be authorized for monitoring and management.

We expect that in implementing such ideas, we can

exploit recent advances in virtual machine and

sandbox technologies.

These observations motivate the work presented

in this article, which comprises three distinct but

interrelated thrusts.

First, we show how dynamic virtual environments

(DVEs) can be modeled as Grid services, thus

allowing a client to create, configure, and manage

remote execution environments using common

protocols.

Second, we show how such DVEs can be

implemented via a variety of technologies, including

dynamic accounts and virtual machines, to obtain

access to a range of virtualization and resource

management functions. We also examine how DVEs

can be implemented within the context of a particular

Grid middleware framework, Globus Toolkit 3

(GT3).

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

Third, we present an experimental evaluation of

various DVE implementation technologies. Our

results allow us to evaluate the impact of technology

choices both in quantitative terms (e.g.,

computational costs and resource usage) and also

respect to other qualitative concerns that arise in Grid

contexts.

The dynamic creation of remote environments as

user accounts has been previously investigated [9-

13], as has the use of virtual machines to model

virtual resources [8, 14, 15]. Our work is

distinguished by its focus on creating, configuring

and managing execution environments as first class

entities, that can be implemented via different

technologies as dictated by the needs of sites and

organizations.

2 Dynamic Virtual Environments

We speak first to the DVE abstraction, its

representation in terms of Grid service interfaces, and

our prototype implementation within GT3.

Our goal in introducing the DVE abstraction is to

codify the interactions required for a client to create,

monitor, manage, and ultimately destroy a remote

execution environment. Our approach is to model

individual DVEs as stateful Web services [16] (in

OGSI [17], our focus here) or, as we shall consider in

future work, as WS-Resources [18]. We adopt

OGSI/WSRF because DVE management operations

map conveniently to OGSI/WSRF mechanisms. In

particular, OGSI/WSRF lifetime management

mechanisms can be used to manage the creation and

destruction of DVEs, and OGSI/WSRF state

representation and inspection mechanisms can be

used to provide access to descriptions of DVE

properties such as quality of protection, resource

limits, and configuration.

2.1 Creating Dynamic Virtual Environments

DVEs are represented as Grid services and

created by DVE factories. As shown in Figure 1, a

factory first authorizes the request to create a DVE

with the requested properties. An authorization

failure results in an exception. On success, the

factory performs the following actions: (1) creates a

DVE Grid service, (2) initializes its implementation

(this could for example involve creating a Unix

account or a new J2EE container) and sets its

properties (such as its termination time), and (3)

records access and other usage policy for the newly

created DVE. As a result of the creation process a

Grid service handle (GSH) representing the newly

created DVE is returned to the client.

DVE creation, configuration, and deployment

should in principle be separate. However, in our

current prototype DVEs are configured and deployed

at creation time. The creation process is securely

logged to allow for audit.

DVE termination is managed via the use of OGSI

lifetime management mechanisms, which allow the

user to request both explicit destruction and implicit

(soft-state, or lifetime based) termination.

Termination involves cleaning up the state associated

with this DVE: policies may be revoked and

information relevant to DVE erased. Termination

might involve deleting (or returning to a pool) a

dynamically created account or virtual machine.

2.2 Dynamic Virtual Environment Services

The DVEService is a Grid interface to a transient,

dynamically created execution environment.

DVEService shares the properties of any other Grid

service: it is identified by a handle, subject to soft-

state lifetime management, and exposes its properties

(such as the disk space or memory associated with

the environment, and/or installed software) through

Service Data Elements (SDEs). The interface allows

the client to manage the DVE, by for example

extending its original termination time, requesting

more disk space, or installing software. These

requests are authorized in the context of credentials

that may be dynamically granted and adjusted [19].

2.3 DVEs and Grid Resource Management

The process of job submission against a DVE is

illustrated in Figure 1:

1. The client sends a request for DVE creation to

the factory. The request may include the

properties and lifetime of the DVE, as well as

the client’s credentials.

2. The factory authorizes the request. If the client is

not authorized to create the environment as

requested, an exception is thrown. Otherwise, a

DVE service is instantiated.

3. At instantiation, the DVE service creates an

execution environment in an implementation-

dependent way. New policy is recorded allowing

or restricting access and management of the

newly created environment.

4. A handle to the DVE service is returned to the

client.

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

5. At any time during the DVE lifetime, authorized

clients may inspect or manage its properties.

6. At any time during the DVE lifetime, authorized

clients may perform operations on the DVE (for

example, request execution of programs) as

authorized by the associated access policy.

7. When the DVE service is destroyed, all

associated state is deleted.

Figure 1: Interactions of DVEs with Grid resource

management: the policy evaluation points (PEP)

authorize client’s requests.

2.4 Implementation of DVEs within GT3

Creating an execution environment on a remote

host is a sensitive operation requiring special

privileges; it is therefore critical that it should be

carried out securely. In our implementation the

execution environment is created by the DVE service

running under a reserved Unix account (called

globus). The creation request (as well as management

requests on the DVE service) is authorized by an

application-specific authorization based on the

requestor’s Grid credential and a callout to an access

control list. The DVE service then uses a setuid

program, executable only by globus, that validates its

arguments and refuses to undertake any actions

contrary to a predefined policy (for example, only

accounts within a prespecified UID range may be

created and destroyed), thus limiting risk to other

accounts on the system should the globus account be

compromised.

The access policy to the execution environment is

recorded in the GT3 gridmapfile. Although more

complex policies are envisioned, in the current

implementation the policy simply gives the right to

use the environment to the Grid entity that created it.

For the purposes of audit, the creation process is

securely logged using the GT3 logging mechanism.

DVE termination implies that the entire DVE

state is cleaned in an implementation-specific way. In

addition, any state associated with the Grid

infrastructure has to be cleaned. We remove access

policies from the gridmapfile, and clear entries from

the GT3 port mapping file which assists in hosting

environment restoration in case it was not cleanly

shut down. This eliminates attempts to recreate the

environment for nonexistent (or worse yet, different)

user.

In order to integrate DVEs with the GT3’s Grid

Resource Management System (GRAM) [2], we

extended the GRAM protocol to include a handle to a

specific DVE with the description of remote actions

to be performed. For backward compatibility, if the

handle is not presented, then the first relevant

mapping in the gridmapfile is used. We also changed

its implementation to integrate DVE access policies

into its authorization mechanism.

Introducing DVEs splits the process of job

submission into two phases: creation and deployment

of a DVE and job submission against that

environment. While creation of a DVE simply

replaces the process of obtaining an user account, it

can still be seen as complex by users who are

interested in executing things quickly on new

resources. For this reason, we have also provided a

simplified job submission facility in which the user

delegates its credentials to GRAM which then

automatically obtains an execution environment for

the user, executes the request, and terminates the

environment. Since the DVE is destroyed, this

mechanism does not allow the user to preserve state

between different executions but provides a

significant simplification.

3 DVE Implementations

We expect that the DVE implementations will be

chosen based on the security, performance, cost and

flexibility requirements of different sites. We have

investigated a range of different options and decided

to focus on a group of implementations meeting the

following criteria:

Generality: in order to accommodate the largest

possible set of codes, the implementation should

be generic rather than focused on a specific

technology or language (such as the Java Virtual

Machine (JVM) [20] for example).

Non-invasive: while techniques such as software

fault isolation [21, 22], and proof-carrying code

[22] are viable options for DVE implementation

they require the system to modifying binary or

source of application code which may not be

acceptable to some Grid users.

C
li

en
t

(1) client credentials

(4) DVE service handle

create local

environment

(3)

access policy

(5) DVE management

(6) DVE handle + request

(2)

DVE Factory

P
E

P

DVE Service

P
E

P

Grid Resource

Manager

Resource

management

action

(7) DVE termination

C
li

en
t

(1) client credentials(1) client credentials

(4) DVE service handle(4) DVE service handle

create local

environment

(3)

access policy

(5) DVE management(5) DVE management

(6) DVE handle + request(6) DVE handle + request

(2)(2)

DVE Factory

P
E

P

DVE Factory

P
E

P
P

E
P

DVE Service

P
E

P

DVE Service

P
E

P
P

E
P

Grid Resource

Manager

Resource

management

action

(7) DVE termination(7) DVE termination

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

Protection: the DVE implementation should

provide suitable levels of protection between

users (not allowing users read each other’s files

for example) as well as between the user and

resource (not allowing a user to gain superuser

privileges on a resource)

Enforcement: an implementation should offer a

range of enforcement options, i.e., allow

enforcing disk quotas or CPU share.

State: the ability to preserve state associated with

a specific environment, ranging from

environment settings to execution state, is an

important option of execution environments

especially if we consider migrating them

between resources.

Given these criteria, our exploration of

technologies focused on three kinds of technologies:

Unix accounts, sandboxes and virtual machines.

Sandboxes provide secure environments restricting

executing code to a certain protection environment.

Kernel-level sandboxes [23, 24] are efficient, but are

possible only where the kernel is available for

modification and require sites to run a custom

installation of the operating system. User-level

sandboxes [25, 26] rely on finding a way to prevent

the user from bypassing the interception mechanism

which is typically expensive (on the order of 40% for

ptrace-based systems [27]). For our evaluation, we

selected the VServer technology [7] using kernel-

level modifications (also used by PlanetLab [15]).

Unlike a sandbox which strives only to confine a

user’s activity on a given machine to a limited subset

of a resource, a virtual machine (VM) provides an

abstraction of the physical system itself so that

multiple operating system can coexist on the actual

machine sharing its resources. In our original

experiments, we started out with User Mode Linux

(UML) [28] but encountered difficulties running

certain Java software packages. VMware [5] proved

a more reliable choice.

The sections below contain a description of the

implementation of the DVEs for each of the three

local enforcement vehicle used: Unix accounts,

VServer, and VMware. The implementation aspects

include environment creation/deployment,

destruction, and the management aspects specific to

each technology. Another common feature of interest

is how a Grid coordination entity on a given machine

(such as a local GRAM installation needed to start

jobs) can interact with those implementations (for

example: start a user hosting environment). Although

we currently deploy DVEs on creation, we also

investigated capability of a technology for preserving

state to accommodate cases where a DVE could be

redeployed in a different setting.

3.1 Unix Accounts as DVE Implementation

Unix accounts [9-13] can be created dynamically

using standard systems tools, or allocated from a pool

of pre-generated accounts. The former approach has

the advantage that accounts can be flexibly created

based on need, but requires a secure process for

account creation. In addition, depending on the

mechanism used, the implementation needs to be

careful to respect the assumptions of a local account

management system. Pre-generating accounts is

limited in the number of users this method can

service. Using either method, we want to avoid

mapping two different Grid identities to the same

local account in order to avoid problems of audit.

In our current implementation, we create accounts

on the fly by modifying the system password file. We

could also update a NIS/YP password database to

create accounts valid across a cluster. To destroy an

account, all processes running under the account are

killed, all files associated with the account are erased,

and then the corresponding entry is removed from the

password file. In order to avoid the need for a system

sweep every time an account is destroyed, accounts

are created with limited write privileges.

The enforcement capabilities offered by standard

Unix tools are limited. Disk space usage can be

enforced dynamically by using the quota command.

In addition, chroot restricts a user to a subtree of

the host filesystem which can be useful if we want to

restrict the account to its home directory. The

setrlimit system call is available for setting more

fine-grain limits on maximum CPU time, file size,

memory usage and number of open files and

processes, but few operating systems fully enforce

the limits.

The static user state for a Unix account is

relatively easy to manage: files belonging to a certain

account (including symbolic links) can be stored in a

designated place. The management of execution state

would require further support from the local system

in the form of checkpointing procedures.

3.2 VServer as DVE Implementation

VServer [7] provides Linux kernel-based virtual

servers via the addition of security contexts to the

kernel, a small number of new system calls, and

management utilities. Inside a VServer security

context, processes can only see other processes in the

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

same context, superuser capabilities are restricted,

filesystem access may be confined to a subtree of the

server’s filesystem, and networking and interprocess

communication can also be restricted.

Creating a new VServer DVE involves creating a

root filesystem for the VServer. To do that, a copy of

a precreated minimal filesystem (containing GT3 and

supporting software and libraries) is made. To reduce

disk space usage (as well as copy time), hard links

are used rather than a true copy, and file attributes are

set such that a user (including “root”) in one VServer

cannot modify files shared by other VServers.

However, with the immutable attribute set, not only

can a file not be modified, but it cannot be removed

and replaced with a modifiable copy, either. To

remedy this, the VServer kernel patch introduces a

new attribute bit, immutable-linkage-invert, which

when set allows immutable files to be unlinked, so

that VServer users may remove and replace files

within their own filesystem tree without affecting

other VServers. Once the VServer root filesystem is

ready, it can be activated by establishing a

corresponding new security context, and launching

the user hosting environment inside that context. To

destroy a VServer environment, all processes running

in the associated security context are terminated, and

the corresponding filesystem tree is deleted.

Since all processes associated with a VServer

environment share a unique security context ID, the

kernel scheduler could potentially be modified to

enforce per-environment CPU utilization limits. The

current implementation simply prevents one VServer

from starving another, but could be extended.

Likewise, the possibility exists for adding per-

environment memory usage enforcement. Per-

environment disk usage is enforced via per-context

quotas, an extension of standard user/group quotas.

Optionally, network usage is restricted by binding

environments to separate IP addresses and then using

the Linux kernel firewalling and traffic shaping

capabilities exactly as for the VMware DVE

implementation.

VServer does not provide capabilities for state

management beyond that provided by a Unix

account.

3.3 VMware as DVE Implementation

VMware [5] is a commercial virtual machine

implementation available in server and workstation

versions. For our evaluation we used the workstation

version. Physically, the VMware virtual machine

consists of a directory on the host containing a set of

files, including VM configuration information and

virtual disk image(s).

In order to avoid repeating installation

information for each DVE creation, we precreated a

“master” VMware virtual disk, with a minimal Linux

and GT3 installation, which is then used by the

individual sessions. The VM-based DVE is activated

by a launching script similar to the one used in the

Unix account implementation. Inside the VM, at the

end of the boot sequence, the user hosting

environment is then created. Its creation is

complicated by the fact that command-line arguments

required by the hosting environment for initialization

can no longer be passed to it directly from the

launching script, because the launching script and

hosting environment are running on two separate

machines. For reasons of simplicity, we

circumvented this problem by passing the

information covertly (by encoding information in the

MAC address of the virtual machine, which is

modifiable), although implementing a DHCP-like

discovery service would provide a more elegant

solution.

The deactivation process is complicated by the

fact that VMware Workstation provides no published

interface for shutting down a particular VM from the

host. Our workaround was to run a shutdown service

inside the VM, which the host could then contact to

shut down the VM. This works as long as the user

owning the VM does not have root access inside the

VM (otherwise he could kill the shutdown service).

Once the VM is no longer running, a DVE may be

destroyed by deleting the directory on the host

containing the files corresponding to the VM.

VMware provides only static enforcement of

memory and disk usage. VMware workstation also

does not support any capability for CPU

management. (This capability is supported by

VMware ESX Server.) If multiple virtual machines

are used, VMware can be configured to use

NAT/bridged network Since each VM has its own

virtual MAC and IP address, the host can do full

firewalling and traffic shaping per-VM (for the Linux

capabilities, see [29]). In this setting difficulties arise

due to the fact that the VM’s private IP address

and/or port number may be exposed at a higher level

in the network protocol stack (for example as part of

the Grid Service Handle (GSH)), which standard

NAT cannot handle. We managed to deal with them

to some extent through careful configuration of the

toolkit.

Finally, while VMware does implement a

promising solution for user state preservation and

restoration, we were unfortunately not able to take

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

advantage of it because the product does not expose a

protocol for accessing it but exposes it only through a

Graphical User Interface (GUI).

4 Comparison

In addition to qualitative comparison of different

implementations, we conducted a quantitative

analysis estimating the impact of different

implementations on the user programs run within

those environments as well as their efficiency of

resource usage. We conducted our evaluation on a

Pentium 4 3.0 GHz machine with 1 GB RAM,

running Red Hat Linux 9.0 (kernel 2.4.22, gcc 3.2.2)

and Globus Toolkit 3.0.2. We implemented DSVs

using Linux accounts, VServer 0.26, and VMware

Workstation 4.0.5.

We first estimated the impact on the performance

using as benchmark a scientific compute-intensive

application called EFIT [30] representative of the

needs of one of the experimental communities using

Grids. The application is mostly CPU-bound with

minimal access to disk.

0

0.2

0.4

0.6

0.8

1

1.2

110100jt 110105jt 110109jt

UNIX acct
Vserver
VMware

Figure 2: Comparison of different EFIT runs

executing directly on Unix, under VServer and

VMware. The times on Y axis are normalized to the

Unix run.

The results summarized in Figure 2 show

execution times directly over the operating system,

under VServer, and under VMware. Each grouping

represents runs for different dataset and application

configurations. For each run, the data shows the

mean of five runs per selected data set, normalized to

the execution time directly on the operating system.

The runs took approximately 100 sec each, with

standard deviations between 0.2 sec and 1.2 sec.

VMware runs took 6% longer; there was no

statistically significant difference between direct

operating system runs and VServer runs. The time

shown includes the application execution time only,

as measured via the gettimeofday() system call, and

does not include DVE creation times. The

measurements confirm the result presented in [8]; the

performance impact of the selected enforcement

technologies on compute bound applications is

relatively small.

We next compared create/destroy times for the

different technologies as shown in Table 1.

Measurements do not include time taken to invoke

the factory service, which is independent of the

implementation type, but simply represents the time

elapsed for the implementation-specific callout for

environment creation (as measured within

theservice).

Table 1: DVE create/destroy times

 Linux VServer VMware

Create 100 ms 360 ms 14-52 sec

Destroy 70 ms 200 ms 3-38 sec

Creating both VServer and VMware DVEs

involves creating a new file system root. Our file

system size was just under 300 MB, including: (1)

minimal Red Hat 9.0 (with stripped-down /bin, /dev,

/etc, /lib, /proc, /sbin, /var): 14,636 KB, (2) Perl 5.6.1

(used by GT3 job execution components): 29,728

KB, (3) Java 2 Runtime Environment 1.4.2: 60,320

KB, and (4) Globus Toolkit 3.0.2: 188,408 KB.

Because VServer uses a copy-on-write technique,

environment creation time as compared to that of

VMware is drastically reduced. Another interesting

measure is the overhead used by these technologies,

in other words, a measure of how efficiently they use

the resource. The results are summarized in Table 2.

For VServer, there is in fact a very small amount

of memory and CPU overhead resulting from the

VServer kernel modifications: the kernel must track

which security context a process is associated with,

and incurs slight overhead in checking the security

context inside relevant system calls. However, this

overhead was sufficiently small as to not show up in

our measurements, and is therefore listed as

negligible. While both technologies induce some

overhead of resource usage, for VMware this

overhead is significantly larger.

 Table 3 summarizes the qualitative differences

among the different technologies. Both VServer and

VMware offer substantial improvement over plain

accounts in terms of protection and sharing. VServer

allows the creation of separate security contexts

which restrict user privileges but allow for sharing of

files. However, all contexts still share the same

kernel. VMware allows each execution environment

to run its own kernel. This requires repeating all

required software installations for each VM running

on the machine: an inconvenience compounded by

potential licensing issues. VServer offers dynamic

enforcement capabilities (or potential of such

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

capabilities), VMware has only limited static

enforcement capabilities. This however is not the

case for other virtual machine technologies [6].

Although VServer presents a more lightweight

solution in terms of performance, its impact, at least

in our experience, is not significant and can be

expected to decrease as the technology improves. To

balance this, virtual machines offer the potential for

better user state management, which could have

significant benefits for implementing migration in the

Grid environment.

5 Conclusions

We strongly believe that in order to become

successful Grids will need the ability to create and

manage remote execution environments dynamically

and effortlessly. Rather than imposing one

implementation, these environments should be able

to rely on a mix of technologies as acceptable to site

administrators, users and suitable for specific

problems. Different implementations will provide

different functionality ranging from a simple

execution environment to a high degree of

customization (including running the required

operating system kernel on any resource possible

through the agency of true virtual machines).

Different implementations entail different trade-offs

in terms of efficiency, cost, configurability, quality of

protection and other characteristics as discussed

above.

Our exploration of three such implementations

shows that all are roughly acceptable from the point

of view of efficiency for a Grid application without

strong I/O demands. All have shortcomings in the

area of QoS enforcement, but those could potentially

be fixed by similar technologies or more advanced

versions of the same software. The issue of sharing

between the environments presents an interesting

trade-off: on one hand virtual machines allow users

to customize their environments once and then port

them across different machines, on the other this

practice will lead to bulky installations and potential

duplication of much of the software on one real

resource. In those cases, software allowing sharing

between environments, such as VServer, can lead to

more lightweight solutions, but dependent on a

shared infrastructure maintained on a resource by, for

example, the VO.

Finally, it is clear that some of the current

execution environment examples were not designed

with Grids in mind (the lack of exposed protocols in

VMware workstation is an example). While more

research is necessary in order to fully determine the

requirements for an ideal sandbox implementation to

put in the Grid playground, the Grid technologies

themselves will also have to change. The widespread

use of remotely created virtual environments, if

successful, will shift trust from the account screening

process typically applied by the resource owner to

screening process implemented by a virtual

Table 2: Resource overheads (over Linux) of DVE implementations

 VServer VMware

Disk overhead Small: approximately 0.5% Large: 150% - 200%

Memory overhead Negligible Large: 24MB + 1 MB per 32 MB memory allocated per

VM

CPU overhead Negligible Depends on application characteristics (5% and up)

Network overhead Only when restricting

access

Yes: depends on network configuration

Table 3: Enforcement capabilities of selected DVE implementations

 Unix account VServer VMware

CPU usage (seconds) Via setrlimit() Not at present, but could be added Not enforced

CPU usage (percent) Not enforced Limited: no VServer can starve

another

Not in VMware Workstation,

but enforced in VMware Server

Disk space usage Dynamically

(per-user quotas)

Dynamically (per-context quotas) Statically (virtual disks)

Memory usage No Not at present, but could be added Statically

Network usage No Dynamically (binding contexts to

specific IP addresses)

Dynamically (via VM

configuration and host firewall)

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

organization which will thereby acquire more

importance as well as responsibility.

6 Acknowledgement

This work was supported by the Mathematical,

Information, and Computational Sciences Division

subprogram of the Office of Advanced Scientific

Computing Research, Office of Science, SciDAC

Program, U.S. Department of Energy, under Contract

W-31-109-ENG-38.

7 References

1. Foster, I., What is the Grid? A Three Point

Checklist. 2002: http://www-

fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf.

2. Czajkowski, K., I. Foster, N. Karonis, C.

Kesselman, S. Martin, W. Smith, and S. Tuecke, A

Resource Management Architecture for

Metacomputing Systems, in 4th Workshop on Job

Scheduling Strategies for Parallel Processing. 1998,

Springer-Verlag. p. 62-82.

3. Butler, R., D. Engert, I. Foster, C.

Kesselman, S. Tuecke, J. Volmer, and V. Welch,

Design and Deployment of a National-Scale

Authentication Infrastructure. IEEE Computer, 2000.

33(12): p. 60-66.

4. Czajkowski, K., A. Dan, J. Rofrano, S.

Tuecke, and M. Xu, Agreement-based Grid Service

Management (OGSI-Agreement) Version 0.

https://forge.gridforum.org/projects/graap-

wg/document/Draft_OGSI-

Agreement_Specification/en/1/Draft_OGSI-

Agreement_Specification.doc, 2003.

5. VMware: http://www.vmware.com/.

6. Barham, P., B. Dragovic, K. Fraser, S.

Hand, T. Harris, A. Ho, R. Neugebar, I. Pratt, and A.

Warfield. Xen and the Art of Virtualization. in ACM

Symposium on Operating Systems Principles (SOSP).

7. Solucorp, vserver:

http://www.solucorp.qc.ca/miscprj/s_context.hc.

8. Figueiredo, R., P. Dinda, and J. Fortes. A

Case for Grid Computing on Virtual Machines. in

The 23rd International Conference on Distributed

Computing Systems (ICDCS). 2003.

9. Hacker, T. and B. Athey, A Methodology for

Account Management in Grid Computing

Environments. Proceedings of the 2nd International

Workshop on Grid Computing, 2001.

10. Kapadia, N.H., R.J. Figueiredo, and J.

Fortes. Enhancing the Scalability and Usability of

Computational Grids via Logical User Accounts and

Virtual File Systems. in 10th Heterogeneous

Computing Workshop. 2001. San Francisco,

California.

11. Talwar, V., S. Basu, and R. Kumar. An

Environment for Enabling Interactive Grids. in The

Twelfth IEEE International Symposium on High

Performance Distributed Computing (HPDC-12).

2003. Seattle, Washington.

12. McNab, A., Grid-Based Access Control for

Unix Environments, Filesystems and Web Sites.

Proceeings of the CHEP 2003 conference, 2003.

13. Keahey, K., M. Ripeanu, and K. Doering.

Dynamic Creation and Management of Runtime

Environments in the Grid. in Workshop on Designing

and Building Web Services (to appear). 2003.

Chicago, IL.

14. Chase, J., L. Grit, D. Irwin, J. Moore, and S.

Sprenkle, Dynamic Virtual Clusters in a Grid Site

Manager. accepted to the 12th International

Symposium on High Performance Distributed

Computing (HPDC-12), 2003.

15. Bavier, A., M. Bowman, B. Chun, D. Culler,

S. Karlin, S. Muir, L. Peterson, T. Roscoe, T.

Spalink, and M. Wawrzoniak. Operating System

Support for Planetary-Scale Services. in Proceedings

of the First Symposium on Network Systems Design

and Implementation (NSDI). 2004.

16. Foster, I., C. Kesselman, J. Nick, and S.

Tuecke, The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems

Integration. 2002: Open Grid Service Infrastructure

WG, Global Grid Forum,.

17. S. Tuecke, K. Czajkowski, I. Foster, J. Frey,

S. Graham, and C. Kesselman, Grid Service

Specification.

18. Foster, I., J. Frey, S. Graham, S. Tuecke, K.

Czajkowski, D. Ferguson, F. Leymann, M. Nally, T.

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

Storey, W. Vambenepe, and S. Weerawarana,

Modeling Stateful Resources with Web Services.

www.globus.org/wsrf, 2004.

19. Foster, I., C. Kesselman, and S. Tuecke, The

Anatomy of the Grid: Enabling Scalable Virtual

Organizations. International Journal of High

Performance Computing Applications, 2001. 15(3):

p. 200-222.

20. Lindholm, T. and F. Yellin, The Java(TM)

Virtual Machine Specification (2nd Edition). 1999:

Addison-Wesley Pub Co; 2nd edition.

21. Wahbe, R., S. Lucco, T. Anderson, and S.

Graham, Efficient software-based fault isolation, in

Proc. 14th Symposium on Operating System

Principles. 1993.

22. Necula, G.C. and P. Lee. Safe Kernel

Extensions without Run-Time Checking. in 2nd

Symposium on Operating Systems Design and

Implementation. 1996. Seattle, WA.

23. Cowan, C. and D. Wagner, Linux Security

Module. http://lsm.immunix.org.

24. Loscocco, P. and S. Smaller. Integrating

Flexible Support for Security Policies into the Linux

Operating System. in FREENIX Track of the 2001

USENIXS Annual Technical Conference. 2001.

25. Goldberg, I., D. Wagner, R. Thomas, and E.

Brewer, A Secure Environment for Untrusted Helper

Applications --- Confining the Wily Hacker, in Proc.

1996 USENIX Security Symposium. 1996.

26. Alexandrov, A.D., P. Kmiec, and K.

Schauser. Consh: A Confined Execution Environment

for Internet Computations. in USENIX Annual

Technical Conference. 1999.

27. Bosilca, G., F. Cappello, A. Djilali, G.

Fedak, T. Herault, and F. Magniette, Performance

Evaluation of Sandboxing Techniques for Peer-to-

Peer Computing. 2002, LRI-CNRS and Paris-Sud

University.

28. Dike, J. A User Mode Port of the Linux

Kernel. in USENIX Annual Linux Showcase and

Conference. 2000. Atlanta, GA.

29. Linux Advanced Routing and Traffic

Control: http://lartc.org.

30. Lao, L.L., H. St. John, R.D. Stambaugh,

A.G. Kellman, and W. Pfeiffer, Reconstruction of

Current Profile Parameters and Plasma Shapes in

Tokamaks. Nucl. Fusion, 1985. 25: p. 1611.

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

